Search results for: probability of paternity
917 Reliability-Based Life-Cycle Cost Model for Engineering Systems
Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski
Abstract:
The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.Keywords: initial cost, life-cycle cost, maintenance cost, reliability
Procedia PDF Downloads 604916 The Consumer's Behavior of Bakery Products in Bangkok
Authors: Jiraporn Weenuttranon
Abstract:
The objectives of the consumer behavior of bakery products in Bangkok are to study consumer behavior of the bakery product, to study the essential factors that could possibly affect the consumer behavior and to study recommendations for the development of the bakery products. This research is a survey research. Populations are buyer’s bakery products in Bangkok. The probability sample size is 400. The research uses a questionnaire for self-learning by using information technology. The researcher created a reliability value at 0.71 levels of significance. The data analysis will be done by using the percentage, mean, and standard deviation and testing the hypotheses by using chi-square.Keywords: consumer, behavior, bakery, standard deviation
Procedia PDF Downloads 482915 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods
Authors: Abdelkader Hocine, Abdelhakim Maizia
Abstract:
The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.Keywords: composite, design, monte carlo, tubular structure, reliability
Procedia PDF Downloads 464914 Reliability Analysis of a Fuel Supply System in Automobile Engine
Authors: Chitaranjan Sharma
Abstract:
The present paper deals with the analysis of a fuel supply system in an automobile engine of a four wheeler which is having both the option of fuel i.e. PETROL and CNG. Since CNG is cheaper than petrol so the priority is given to consume CNG as compared to petrol. An automatic switch is used to start petrol supply at the time of failure of CNG supply. Using regenerative point technique with Markov renewal process, the reliability characteristics which are useful to system designers are obtained.Keywords: reliability, redundancy, repair time, transition, probability, regenerative points, markov renewal, process
Procedia PDF Downloads 550913 VaR or TCE: Explaining the Preferences of Regulators
Authors: Silvia Faroni, Olivier Le Courtois, Krzysztof Ostaszewski
Abstract:
While a lot of research concentrates on the merits of VaR and TCE, which are the two most classic risk indicators used by financial institutions, little has been written on explaining why regulators favor the choice of VaR or TCE in their set of rules. In this paper, we investigate the preferences of regulators with the aim of understanding why, for instance, a VaR with a given confidence level is ultimately retained. Further, this paper provides equivalence rules that explain how a given choice of VaR can be equivalent to a given choice of TCE. Then, we introduce a new risk indicator that extends TCE by providing a more versatile weighting of the constituents of probability distribution tails. All of our results are illustrated using the generalized Pareto distribution.Keywords: generalized pareto distribution, generalized tail conditional expectation, regulator preferences, risk measure
Procedia PDF Downloads 169912 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model
Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng
Abstract:
The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation
Procedia PDF Downloads 246911 Integrating Technology in Teaching and Learning Mathematics
Authors: Larry Wang
Abstract:
The aim of this paper is to demonstrate how an online homework system is integrated in teaching and learning mathematics and how it improves the student success rates in some gateway mathematics courses. WeBWork provided by the Mathematical Association of America is adopted as the online homework system. During the period of 2010-2015, the system was implemented in classes of precalculus, calculus, probability and statistics, discrete mathematics, linear algebra, and differential equations. As a result, the passing rates of the sections with WeBWork are well above other sections without WeBWork (about 7-10% higher). The paper also shows how the WeBWork system was used.Keywords: gateway mathematics, online grading, pass rate, WeBWorK
Procedia PDF Downloads 299910 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 389909 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis
Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana
Abstract:
Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis
Procedia PDF Downloads 126908 Optimum Design of Helical Gear System on Basis of Maximum Power Transmission Capability
Authors: Yasaman Esfandiari
Abstract:
Mechanical engineering has always dealt with amplification of the input power in power trains. One of the ways to achieve this goal is to use gears to change the amplitude and direction of the torque and the speed. However, the gears should be optimally designed to best achieve these objectives. In this study, helical gear systems are optimized to achieve maximum power. Material selection, space restriction, available facilities for manufacturing, the probability of tooth breakage, and tooth wear are taken into account and governing equations are derived. Finally, a Matlab code was generated to solve the optimization problem and the results are verified.Keywords: design, gears, Matlab, optimization
Procedia PDF Downloads 240907 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer
Authors: Ravinder Bahl, Jamini Sharma
Abstract:
The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning
Procedia PDF Downloads 360906 Discovering Event Outliers for Drug as Commercial Products
Authors: Arunas Burinskas, Aurelija Burinskiene
Abstract:
On average, ten percent of drugs - commercial products are not available in pharmacies due to shortage. The shortage event disbalance sales and requires a recovery period, which is too long. Therefore, one of the critical issues that pharmacies do not record potential sales transactions during shortage and recovery periods. The authors suggest estimating outliers during shortage and recovery periods. To shorten the recovery period, the authors suggest using average sales per sales day prediction, which helps to protect the data from being downwards or upwards. Authors use the outlier’s visualization method across different drugs and apply the Grubbs test for significance evaluation. The researched sample is 100 drugs in a one-month time frame. The authors detected that high demand variability products had outliers. Among analyzed drugs, which are commercial products i) High demand variability drugs have a one-week shortage period, and the probability of facing a shortage is equal to 69.23%. ii) Mid demand variability drugs have three days shortage period, and the likelihood to fall into deficit is equal to 34.62%. To avoid shortage events and minimize the recovery period, real data must be set up. Even though there are some outlier detection methods for drug data cleaning, they have not been used for the minimization of recovery period once a shortage has occurred. The authors use Grubbs’ test real-life data cleaning method for outliers’ adjustment. In the paper, the outliers’ adjustment method is applied with a confidence level of 99%. In practice, the Grubbs’ test was used to detect outliers for cancer drugs and reported positive results. The application of the Grubbs’ test is used to detect outliers which exceed boundaries of normal distribution. The result is a probability that indicates the core data of actual sales. The application of the outliers’ test method helps to represent the difference of the mean of the sample and the most extreme data considering the standard deviation. The test detects one outlier at a time with different probabilities from a data set with an assumed normal distribution. Based on approximation data, the authors constructed a framework for scaling potential sales and estimating outliers with Grubbs’ test method. The suggested framework is applicable during the shortage event and recovery periods. The proposed framework has practical value and could be used for the minimization of the recovery period required after the shortage of event occurrence.Keywords: drugs, Grubbs' test, outlier, shortage event
Procedia PDF Downloads 132905 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce
Authors: Heiko Diefenbach, Christoph H. Glock
Abstract:
Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.Keywords: an aging workforce, error prevention, order picking, storage assignment
Procedia PDF Downloads 204904 A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario
Authors: Vinod Kumar Jaysaval, Prateek Agarwal
Abstract:
Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain.Keywords: airborne radar, blind zone, clutter, probability of detection
Procedia PDF Downloads 470903 Probabilistic Modeling Laser Transmitter
Authors: H. S. Kang
Abstract:
Coupled electrical and optical model for conversion of electrical energy into coherent optical energy for transmitter-receiver link by solid state device is presented. Probability distribution for travelling laser beam switching time intervals and the number of switchings in the time interval is obtained. Selector function mapping is employed to regulate optical data transmission speed. It is established that regulated laser transmission from PhotoActive Laser transmitter follows principal of invariance. This considerably simplifies design of PhotoActive Laser Transmission networks.Keywords: computational mathematics, finite difference Markov chain methods, sequence spaces, singularly perturbed differential equations
Procedia PDF Downloads 431902 Exponentiated Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution
Authors: Abd El Hady N. Ebraheim
Abstract:
This paper introduces a new generalization of the two parameter Weibull distribution. To this end, the quadratic rank transmutation map has been used. This new distribution is named exponentiated transmuted Weibull (ETW) distribution. The ETW distribution has the advantage of being capable of modeling various shapes of aging and failure criteria. Furthermore, eleven lifetime distributions such as the Weibull, exponentiated Weibull, Rayleigh and exponential distributions, among others follow as special cases. The properties of the new model are discussed and the maximum likelihood estimation is used to estimate the parameters. Explicit expressions are derived for the quantiles. The moments of the distribution are derived, and the order statistics are examined.Keywords: exponentiated, inversion method, maximum likelihood estimation, transmutation map
Procedia PDF Downloads 565901 Investigating the Effects of Data Transformations on a Bi-Dimensional Chi-Square Test
Authors: Alexandru George Vaduva, Adriana Vlad, Bogdan Badea
Abstract:
In this research, we conduct a Monte Carlo analysis on a two-dimensional χ2 test, which is used to determine the minimum distance required for independent sampling in the context of chaotic signals. We investigate the impact of transforming initial data sets from any probability distribution to new signals with a uniform distribution using the Spearman rank correlation on the χ2 test. This transformation removes the randomness of the data pairs, and as a result, the observed distribution of χ2 test values differs from the expected distribution. We propose a solution to this problem and evaluate it using another chaotic signal.Keywords: chaotic signals, logistic map, Pearson’s test, Chi Square test, bivariate distribution, statistical independence
Procedia PDF Downloads 97900 Female Labor Force Participation in Iranian Rural Areas: An Inter-provincial Study
Authors: Zahra Mila Elmi, Mahsa Khanekheshi
Abstract:
Almost half of the population and potential manpower in the country and rural areas are women. Manpower especially educated people, plays an important role in the production and economic growth. Also, the potential of rural areas to create employment should not be overlooked. In this research, the effects of socio-economic and demographic factors on women's economic participation in rural areas of Iran's provinces will be studied. Therefore, this study was performed by using the results of the rural households income and expenditure surveys -has been taken in 2016- in the framework of pseudo panel data. This study used the logit model and the maximum likelihood method to study the rural women's participation, with 28,265 observations. Results show the inverted U-shaped relationship between age and the probability of female participation; In other words, young women are more likely to participate in labor markets more than the other groups. Divorced and single woman has more chance of participation in comparison with who was being married. With increasing the divorce rate and singleness in Iran, economic policymakers must provide appropriate solutions for this challenge in the coming years. On the base of the results, being a student and the presence of an infant under the age of 6 in the household has a negative effect on the possibility of women's participation in the labor market. The women's education level has a U-shaped relationship with their participation rate. Illiteracy and high education have a strong positive effect on the economic participation of rural women. This shows the dual labor market for women in Iran. Illiterate women are attracted to service jobs, and educated woman are more attracted to education and health jobs. Increasing household income has a small but positive and significant effect on the probability of rural female participation. In the overlook, due to the frequency of the women population in the age group of 25 to 35 years, and more willingness of women in the age 35 to 44 years to participate in the labor market, and studying ofa significant portion of the rural women, the increase of rural female participation is expected in the years ahead. Thus, it is expected policy maker to create new job opportunities for the employment of educated women and take the necessary plan to improve the current situation for women.Keywords: female participation rate, rural area, provincial data, pseudo-panel data method
Procedia PDF Downloads 95899 Modelling Spatial Dynamics of Terrorism
Authors: André Python
Abstract:
To this day, terrorism persists as a worldwide threat, exemplified by the recent deadly attacks in January 2015 in Paris and the ongoing massacres perpetrated by ISIS in Iraq and Syria. In response to this threat, states deploy various counterterrorism measures, the cost of which could be reduced through effective preventive measures. In order to increase the efficiency of preventive measures, policy-makers may benefit from accurate predictive models that are able to capture the complex spatial dynamics of terrorism occurring at a local scale. Despite empirical research carried out at country-level that has confirmed theories explaining the diffusion processes of terrorism across space and time, scholars have failed to assess diffusion’s theories on a local scale. Moreover, since scholars have not made the most of recent statistical modelling approaches, they have been unable to build up predictive models accurate in both space and time. In an effort to address these shortcomings, this research suggests a novel approach to systematically assess the theories of terrorism’s diffusion on a local scale and provide a predictive model of the local spatial dynamics of terrorism worldwide. With a focus on the lethal terrorist events that occurred after 9/11, this paper addresses the following question: why and how does lethal terrorism diffuse in space and time? Based on geolocalised data on worldwide terrorist attacks and covariates gathered from 2002 to 2013, a binomial spatio-temporal point process is used to model the probability of terrorist attacks on a sphere (the world), the surface of which is discretised in the form of Delaunay triangles and refined in areas of specific interest. Within a Bayesian framework, the model is fitted through an integrated nested Laplace approximation - a recent fitting approach that computes fast and accurate estimates of posterior marginals. Hence, for each location in the world, the model provides a probability of encountering a lethal terrorist attack and measures of volatility, which inform on the model’s predictability. Diffusion processes are visualised through interactive maps that highlight space-time variations in the probability and volatility of encountering a lethal attack from 2002 to 2013. Based on the previous twelve years of observation, the location and lethality of terrorist events in 2014 are statistically accurately predicted. Throughout the global scope of this research, local diffusion processes such as escalation and relocation are systematically examined: the former process describes an expansion from high concentration areas of lethal terrorist events (hotspots) to neighbouring areas, while the latter is characterised by changes in the location of hotspots. By controlling for the effect of geographical, economical and demographic variables, the results of the model suggest that the diffusion processes of lethal terrorism are jointly driven by contagious and non-contagious factors that operate on a local scale – as predicted by theories of diffusion. Moreover, by providing a quantitative measure of predictability, the model prevents policy-makers from making decisions based on highly uncertain predictions. Ultimately, this research may provide important complementary tools to enhance the efficiency of policies that aim to prevent and combat terrorism.Keywords: diffusion process, terrorism, spatial dynamics, spatio-temporal modeling
Procedia PDF Downloads 350898 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.Keywords: Gaussian approximation, Kalman smoother, parameter estimation, noise variance
Procedia PDF Downloads 439897 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 14896 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind Systems
Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar
Abstract:
This paper presents fenestration analysis to study the balance between utilizing daylight and eliminating the disturbing parameters in a private office room with interior venetian blinds taking into account different slat angles. Mean luminance of the scene and window, luminance ratio of the workplane and window, work plane illumination and daylight glare probability(DGP) were calculated as a function of venetian blind design properties. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based evalglare and hdrscope help to investigate luminance-based metrics. A total of Eight-day measurement experiment was conducted to investigate the impact of different venetian blind angles in an office environment under daylight condition in Serdang, Malaysia. Detailed result for the selected case study showed that artificial lighting is necessary during the morning session for Malaysian buildings with southwest windows regardless of the venetian blind’s slat angle. However, in some conditions of afternoon session the workplane illuminance level exceeds the maximum illuminance of 2000 lx such as 10° and 40° slat angles. Generally, a rising trend is discovered toward mean window luminance level during the day. All the conditions have less than 10% of the pixels exceeding 2000 cd/m² before 1:00 P.M. However, 40% of the selected hours have more than 10% of the scene pixels higher than 2000 cd/m² after 1:00 P.M. Surprisingly in no blind condition, there is no extreme case of window/task ratio, However, the extreme cases happen for 20°, 30°, 40° and 50° slat angles. As expected mean window luminance level is higher than 2000 cd/m² after 2:00 P.M for most cases except 60° slat angle condition. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment, due to the window’s direction, location of the building and studied workplane. Specifically, this paper reviews different blind angle’s response to the suggested metrics by the previous standards, and finally conclusions and knowledge gaps are summarized and suggested next steps for research are provided. Addressing these gaps is critical for the continued progress of the energy efficiency movement.Keywords: daylighting, office environment, energy simulation, venetian blind
Procedia PDF Downloads 228895 Contraception in Schizophrenia Patients
Authors: Puspa Maharani, Hendy Muagiri Margono, Izzatul Fithriyah
Abstract:
Contraception is a medium used to prevent conception, aimed at couples who do not want pregnancy to occur. Unintended pregnancies have a prevalence of 48% per year of the total pregnancies that occur throughout the world. Schizophrenia sufferers have a high probability of being involved in unwanted sexual relations, but are not supported by adequate knowledge and use of contraception, so they are vulnerable to experiencing unwanted pregnancies. Unwanted pregnancy can pose significant health risks for patients with schizophrenia. There are many types of contraception that can be discussed and considered for patients with schizophrenia in order to improve the quality and well- being of their lives. Choosing the right contraceptive for patients with schizophrenia requires consideration of its use by taking into account the many factors that influence it.Keywords: schizophrenia, contraception, pregnancy, mental health
Procedia PDF Downloads 19894 Effects of the Affordable Care Act On Preventive Care Disparities
Authors: Cagdas Agirdas
Abstract:
Background: The Affordable Care Act (ACA) requires non-grandfathered private insurance plans, starting with plan years on or after September 23rd, 2010, to provide certain preventive care services without any cost sharing in the form of deductibles, copayments or co-insurance. This requirement may affect racial and ethnic disparities in preventive care as it provides the largest copay reduction in preventive care. Objectives: We ask whether the ACA’s free preventive care benefits are associated with a reduction in racial and ethnic disparities in the utilization of four preventive services: cholesterol screenings, colonoscopies, mammograms, and pap smears. Methods: We use a data set of over 6,000 individuals from the 2009, 2010, and 2013 Medical Expenditure Panel Surveys (MEPS). We restrict our data set only to individuals who are old enough to be eligible for each preventive service. Our difference-in-differences logistic regression model classifies privately-insured Hispanics, African Americans, and Asians as the treatment groups and 2013 as the after-policy year. Our control group consists of non-Hispanic whites on Medicaid as this program already covered preventive care services for free or at a low cost before the ACA. Results: After controlling for income, education, marital status, preferred interview language, self-reported health status, employment, having a usual source of care, age and gender, we find that the ACA is associated with increases in the probability of the median, privately-insured Hispanic person to get a colonoscopy by 3.6% and a mammogram by 3.1%, compared to a non-Hispanic white person on Medicaid. Similarly, we find that the median, privately-insured African American person’s probability of receiving these two preventive services improved by 2.3% and 2.4% compared to a non-Hispanic white person on Medicaid. We do not find any significant improvements for any racial or ethnic group for cholesterol screenings or pap smears. Furthermore, our results do not indicate any significant changes for Asians compared to non-Hispanic whites in utilizing the four preventive services. These reductions in racial/ethnic disparities are robust to reconfigurations of time periods, previous diagnosis, and residential status. Conclusions: Early effects of the ACA’s provision of free preventive care are significant for Hispanics and African Americans. Further research is needed for the later years as more individuals became aware of these benefits.Keywords: preventive care, Affordable Care Act, cost sharing, racial disparities
Procedia PDF Downloads 153893 Population Pharmacokinetics of Levofloxacin and Moxifloxacin, and the Probability of Target Attainment in Ethiopian Patients with Multi-Drug Resistant Tuberculosis
Authors: Temesgen Sidamo, Prakruti S. Rao, Eleni Akllilu, Workineh Shibeshi, Yumi Park, Yong-Soon Cho, Jae-Gook Shin, Scott K. Heysell, Stellah G. Mpagama, Ephrem Engidawork
Abstract:
The fluoroquinolones (FQs) are used off-label for the treatment of multidrug-resistant tuberculosis (MDR-TB), and for evaluation in shortening the duration of drug-susceptible TB in recently prioritized regimens. Within the class, levofloxacin (LFX) and moxifloxacin (MXF) play a substantial role in ensuring success in treatment outcomes. However, sub-therapeutic plasma concentrations of either LFX or MXF may drive unfavorable treatment outcomes. To the best of our knowledge, the pharmacokinetics of LFX and MXF in Ethiopian patients with MDR-TB have not yet been investigated. Therefore, the aim of this study was to develop a population pharmacokinetic (PopPK) model of levofloxacin (LFX) and moxifloxacin (MXF) and assess the percent probability of target attainment (PTA) as defined by the ratio of the area under the plasma concentration-time curve over 24-h (AUC0-24) and the in vitro minimum inhibitory concentration (MIC) (AUC0-24/MIC) in Ethiopian MDR-TB patients. Steady-state plasma was collected from 39 MDR-TB patients enrolled in the programmatic treatment course and the drug concentrations were determined using optimized liquid chromatography-tandem mass spectrometry. In addition, the in vitro MIC of the patients' pretreatment clinical isolates was determined. PopPK and simulations were run at various doses, and PK parameters were estimated. The effect of covariates on the PK parameters and the PTA for maximum mycobacterial kill and resistance prevention was also investigated. LFX and MXF both fit in a one-compartment model with adjustments. The apparent volume of distribution (V) and clearance (CL) of LFX were influenced by serum creatinine (Scr), whereas the absorption constant (Ka) and V of MXF were influenced by Scr and BMI, respectively. The PTA for LFX maximal mycobacterial kill at the critical MIC of 0.5 mg/L was 29%, 62%, and 95% with the simulated 750 mg, 1000 mg, and 1500 mg doses, respectively, whereas the PTA for resistance prevention at 1500 mg was only 4.8%, with none of the lower doses achieving this target. At the critical MIC of 0.25 mg/L, there was no difference in the PTA (94.4%) for maximum bacterial kill among the simulated doses of MXF (600 mg, 800 mg, and 1000 mg), but the PTA for resistance prevention improved proportionately with dose. Standard LFX and MXF doses may not provide adequate drug exposure. LFX PopPK is more predictable for maximum mycobacterial kill, whereas MXF's resistance prevention target increases with dose. Scr and BMI are likely to be important covariates in dose optimization or therapeutic drug monitoring (TDM) studies in Ethiopian patients.Keywords: population PK, PTA, moxifloxacin, levofloxacin, MDR-TB patients, ethiopia
Procedia PDF Downloads 120892 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes
Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez
Abstract:
Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability
Procedia PDF Downloads 233891 Parallel Hybrid Honeypot and IDS Architecture to Detect Network Attacks
Authors: Hafiz Gulfam Ahmad, Chuangdong Li, Zeeshan Ahmad
Abstract:
In this paper, we proposed a parallel IDS and honeypot based approach to detect and analyze the unknown and known attack taxonomy for improving the IDS performance and protecting the network from intruders. The main theme of our approach is to record and analyze the intruder activities by using both the low and high interaction honeypots. Our architecture aims to achieve the required goals by combing signature based IDS, honeypots and generate the new signatures. The paper describes the basic component, design and implementation of this approach and also demonstrates the effectiveness of this approach reducing the probability of network attacks.Keywords: network security, intrusion detection, honeypot, snort, nmap
Procedia PDF Downloads 567890 Analyzing the Commentator Network Within the French YouTube Environment
Authors: Kurt Maxwell Kusterer, Sylvain Mignot, Annick Vignes
Abstract:
To our best knowledge YouTube is the largest video hosting platform in the world. A high number of creators, viewers, subscribers and commentators act in this specific eco-system which generates huge sums of money. Views, subscribers, and comments help to increase the popularity of content creators. The most popular creators are sponsored by brands and participate in marketing campaigns. For a few of them, this becomes a financially rewarding profession. This is made possible through the YouTube Partner Program, which shares revenue among creators based on their popularity. We believe that the role of comments in increasing the popularity is to be emphasized. In what follows, YouTube is considered as a bilateral network between the videos and the commentators. Analyzing a detailed data set focused on French YouTubers, we consider each comment as a link between a commentator and a video. Our research question asks what are the predominant features of a video which give it the highest probability to be commented on. Following on from this question, how can we use these features to predict the action of the agent in commenting one video instead of another, considering the characteristics of the commentators, videos, topics, channels, and recommendations. We expect to see that the videos of more popular channels generate higher viewer engagement and thus are more frequently commented. The interest lies in discovering features which have not classically been considered as markers for popularity on the platform. A quick view of our data set shows that 96% of the commentators comment only once on a certain video. Thus, we study a non-weighted bipartite network between commentators and videos built on the sub-sample of 96% of unique comments. A link exists between two nodes when a commentator makes a comment on a video. We run an Exponential Random Graph Model (ERGM) approach to evaluate which characteristics influence the probability of commenting a video. The creation of a link will be explained in terms of common video features, such as duration, quality, number of likes, number of views, etc. Our data is relevant for the period of 2020-2021 and focuses on the French YouTube environment. From this set of 391 588 videos, we extract the channels which can be monetized according to YouTube regulations (channels with at least 1000 subscribers and more than 4000 hours of viewing time during the last twelve months).In the end, we have a data set of 128 462 videos which consist of 4093 channels. Based on these videos, we have a data set of 1 032 771 unique commentators, with a mean of 2 comments per a commentator, a minimum of 1 comment each, and a maximum of 584 comments.Keywords: YouTube, social networks, economics, consumer behaviour
Procedia PDF Downloads 68889 Analyzing Defects with Failure Assessment Diagrams of Gas Pipelines
Authors: Alfred Hasanaj , Ardit Gjeta, Miranda Kullolli
Abstract:
The approach in analyzing defects on different pipe lines is conducted through Failure Assessment Diagram (FAD). These methods of analyses have further extended in recent years. This approach is used to identify and stress out a solution for the defects which randomly occur with gas pipes such are corrosion defects, gauge defects, and combination of defects where gauge and dents are included. Few of the defects are to be analyzed in this paper where our main focus will be the fracture of cast Iron pipes, elastic-plastic failure and plastic collapse of X52 steel pipes for gas transport. We need to conduct a calculation of probability of the defects in order to predict and avoid such costly defects.Keywords: defects, failure assessment diagrams, steel pipes, safety factor
Procedia PDF Downloads 445888 Dynamics of Investor's Behaviour: An Analytical Survey Study in Indian Securities Market
Authors: Saurabh Agarwal
Abstract:
This paper attempts to formalise the effect of demographic variables like marital status, gender, occupation and age on the source of investment advice which, in turn, affect the herd behaviour of investors and probability of investment in near future. Further, postulations have been made for most preferred investment option and purpose of saving and source of investment. Impact of theoretical analysis on choice among investment alternatives has also been investigated. The analysis contributes to understanding the different investment choices made by households in India. The insights offered in the paper indirectly contribute in uncovering the various unexplained asset pricing puzzles.Keywords: portfolio choice, investment decisions, investor’s behaviour, Indian securities market
Procedia PDF Downloads 367