Search results for: pattern of relapse
2335 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes
Authors: Hyun-Woo Cho
Abstract:
The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.Keywords: process data, data mining, process operation, real-time monitoring
Procedia PDF Downloads 6402334 Pattern Recognition Based on Simulation of Chemical Senses (SCS)
Authors: Nermeen El Kashef, Yasser Fouad, Khaled Mahar
Abstract:
No AI-complete system can model the human brain or behavior, without looking at the totality of the whole situation and incorporating a combination of senses. This paper proposes a Pattern Recognition model based on Simulation of Chemical Senses (SCS) for separation and classification of sign language. The model based on human taste controlling strategy. The main idea of the introduced model is motivated by the facts that the tongue cluster input substance into its basic tastes first, and then the brain recognizes its flavor. To implement this strategy, two level architecture is proposed (this is inspired from taste system). The separation-level of the architecture focuses on hand posture cluster, while the classification-level of the architecture to recognizes the sign language. The efficiency of proposed model is demonstrated experimentally by recognizing American Sign Language (ASL) data set. The recognition accuracy obtained for numbers of ASL is 92.9 percent.Keywords: artificial intelligence, biocybernetics, gustatory system, sign language recognition, taste sense
Procedia PDF Downloads 2942333 Metaphor Institutionalization as Phase Transition: Case Studies of Chinese Metaphors
Abstract:
Metaphor institutionalization refers to the propagation of a metaphor that leads to its acceptance in speech community as a norm of the language. Such knowledge is important to both theoretical studies of metaphor and practical disciplines such as lexicography and language generation. This paper reports an empirical study of metaphor institutionalization of 14 Chinese metaphors. It first explores the pattern of metaphor institutionalization by fitting the logistic function (or S-shaped curve) to time series data of conventionality of the metaphors that are automatically obtained from a large-scale diachronic Chinese corpus. Then it reports a questionnaire-based survey on the propagation scale of each metaphor, which is measured by the average number of subjects that can easily understand the metaphorical expressions. The study provides two pieces of evidence supporting the hypothesis that metaphor institutionalization is a phrase transition: (1) the pattern of metaphor institutionalization is an S-shaped curve and (2) institutionalized metaphors generally do not propagate to the whole community but remain in equilibrium state. This conclusion helps distinguish metaphor institutionalization from topicalization and other types of semantic change.Keywords: metaphor institutionalization, phase transition, propagation scale, s-shaped curve
Procedia PDF Downloads 1712332 Stability Analysis and Experimental Evaluation on Maxwell Model of Impedance Control
Authors: Le Fu, Rui Wu, Gang Feng Liu, Jie Zhao
Abstract:
Normally, impedance control methods are based on a model that connects a spring and damper in parallel. The series connection, namely the Maxwell model, has emerged as a counterpart and draw the attention of robotics researchers. In the theoretical analysis, it turns out that the two pattern are both equivalents to some extent, but notable differences of response characteristics exist, especially in the effect of damping viscosity. However, this novel impedance control design is lack of validation on realistic robot platforms. In this study, stability analysis and experimental evaluation are achieved using a 3-fingered Barrett® robotic hand BH8-282 endowed with tactile sensing, mounted on a torque-controlled lightweight and collaborative robot KUKA® LBR iiwa 14 R820. Object handover and incoming objects catching tasks are executed for validation and analysis. Experimental results show that the series connection pattern has much better performance in natural impact or shock absorption, which indicate promising applications in robots’ safe and physical interaction with humans and objects in various environments.Keywords: impedance control, Maxwell model, force control, dexterous manipulation
Procedia PDF Downloads 4972331 Substitution Effects of Baijiu and Cigarette Consumption on Anti-Corruption Campaigns: Evidence from China
Authors: Xiaohan Gu
Abstract:
China is perceived as one of the most politically corrupt countries in the world. The 2021 Transparency International Corruption Perceptions Index China (RPC) ranks the country in 66th place out of 180 countries in the Index, where the 180 countries are perceived to have the most corrupt public sector. This paper proposes a theory on the impact of corruption on the consumption of luxury goods. We test the theory and evaluate the effectiveness of China’s anti-corruption campaign in 2012 by conducting a difference-in-differences analysis of product-city-level alcohol and cigarette consumption from 2013 to 2022. We find that the campaign increased sales of middle-end baijiu and cigarettes but decreased sales of luxury baijiu and cigarettes, contrasting with the trend for low-end products. This substitution pattern may be attributable to decreased public spending on luxury goods. This substitution pattern is moderated by officials’ wages and anti-corruption efforts, which supports the theoretical predictions.Keywords: substitution effect, baijiu, corruption, anti-corruption, chinese political connection
Procedia PDF Downloads 832330 Item-Trait Pattern Recognition of Replenished Items in Multidimensional Computerized Adaptive Testing
Authors: Jianan Sun, Ziwen Ye
Abstract:
Multidimensional computerized adaptive testing (MCAT) is a popular research topic in psychometrics. It is important for practitioners to clearly know the item-trait patterns of administered items when a test like MCAT is operated. Item-trait pattern recognition refers to detecting which latent traits in a psychological test are measured by each of the specified items. If the item-trait patterns of the replenished items in MCAT item pool are well detected, the interpretability of the items can be improved, which can further promote the abilities of the examinees who attending the MCAT to be accurately estimated. This research explores to solve the item-trait pattern recognition problem of the replenished items in MCAT item pool from the perspective of statistical variable selection. The popular multidimensional item response theory model, multidimensional two-parameter logistic model, is assumed to fit the response data of MCAT. The proposed method uses the least absolute shrinkage and selection operator (LASSO) to detect item-trait patterns of replenished items based on the essential information of item responses and ability estimates of examinees collected from a designed MCAT procedure. Several advantages of the proposed method are outlined. First, the proposed method does not strictly depend on the relative order between the replenished items and the selected operational items, so it allows the replenished items to be mixed into the operational items in reasonable order such as considering content constraints or other test requirements. Second, the LASSO used in this research improves the interpretability of the multidimensional replenished items in MCAT. Third, the proposed method can exert the advantage of shrinkage method idea for variable selection, so it can help to check item quality and key dimension features of replenished items and saves more costs of time and labors in response data collection than traditional factor analysis method. Moreover, the proposed method makes sure the dimensions of replenished items are recognized to be consistent with the dimensions of operational items in MCAT item pool. Simulation studies are conducted to investigate the performance of the proposed method under different conditions for varying dimensionality of item pool, latent trait correlation, item discrimination, test lengths and item selection criteria in MCAT. Results show that the proposed method can accurately detect the item-trait patterns of the replenished items in the two-dimensional and the three-dimensional item pool. Selecting enough operational items from the item pool consisting of high discriminating items by Bayesian A-optimality in MCAT can improve the recognition accuracy of item-trait patterns of replenished items for the proposed method. The pattern recognition accuracy for the conditions with correlated traits is better than those with independent traits especially for the item pool consisting of comparatively low discriminating items. To sum up, the proposed data-driven method based on the LASSO can accurately and efficiently detect the item-trait patterns of replenished items in MCAT.Keywords: item-trait pattern recognition, least absolute shrinkage and selection operator, multidimensional computerized adaptive testing, variable selection
Procedia PDF Downloads 1302329 Simplifying the Migration of Architectures in Embedded Applications Introducing a Pattern Language to Support the Workforce
Authors: Farha Lakhani, Michael J. Pont
Abstract:
There are two main architectures used to develop software for modern embedded systems: these can be labelled as “event-triggered” (ET) and “time-triggered” (TT). The research presented in this paper is concerned with the issues involved in migration between these two architectures. Although TT architectures are widely used in safety-critical applications they are less familiar to developers of mainstream embedded systems. The research presented in this paper began from the premise that–for a broad class of systems that have been implemented using an ET architecture–migration to a TT architecture would improve reliability. It may be tempting to assume that conversion between ET and TT designs will simply involve converting all event-handling software routines into periodic activities. However, the required changes to the software architecture are, in many cases rather more profound. The main contribution of the work presented in this paper is to identify ways in which the significant effort involved in migrating between existing ET architectures and “equivalent” (and effective) TT architectures could be reduced. The research described in this paper has taken an innovative step in this regard by introducing the use of ‘Design patterns’ for this purpose for the first time.Keywords: embedded applications, software architectures, reliability, pattern
Procedia PDF Downloads 3292328 Dynamic Evaluation of Shallow Lake Habitat Quality Based on InVEST Model: A Case in Baiyangdian Lake
Authors: Shengjun Yan, Xuan Wang
Abstract:
Water level changes in a shallow lake always introduce dramatic land pattern changes. To achieve sustainable ecosystem service, it is necessary to evaluate habitat quality dynamic and its spatio-temporal variation resulted from water level changes, which can provide a scientific basis for protection of biodiversity and planning of wetland ecological system. Landsat data in the spring was chosen to obtain landscape data at different times based on the high, moderate and low water level of Baiyangdian Shallow Lake. We used the InVEST to evaluate the habitat quality, habitat degradation, and habitat scarcity. The result showed that: 1) the water level of shallow lake changes from high to low lead to an obvious landscape pattern changes and habitat degradation, 2) the most change area occurred in northwestward and southwest of Baiyangdian Shallow Lake, which there was a 21 percent of suitable habitat and 42 percent of moderately suitable habitat lost. Our findings show that the changes of water level in the shallow lake would have a strong relationship with the habitat quality.Keywords: habitat quality, habitat degradation, water level changes, shallow lake
Procedia PDF Downloads 2552327 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction
Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky
Abstract:
The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel
Procedia PDF Downloads 3942326 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 1532325 A Theoretical Model for Pattern Extraction in Large Datasets
Authors: Muhammad Usman
Abstract:
Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.Keywords: association rule mining, data mining, data warehouses, visualization of association rules
Procedia PDF Downloads 2232324 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection
Procedia PDF Downloads 1692323 Impact of Ethnic and Religious Identity on Coping Behavior in Young Adults: Cross-Cultural Research
Authors: Yuliya Kovalenko
Abstract:
Given the social nature of people, it is interesting to explore strategies of responding to psycho-traumatic situations in individuals of different ethnic and religious identity. This would allow to substantially expand the idea of human behavior in general, and coping behavior, in particular. This paper investigated the weighted impact of ethnic and religious identities on the patterns of coping behavior. This cross-cultural research empirically revealed intergroup differences in coping strategies and behavior in the samples of young students and teachers of different ethnic identities (Egyptians N=216 and Ukrainians N=109) and different religious identities (Egyptian Muslims N=147 and Christians, including Egyptian Christians N=68 and Ukrainian Christians N = 109). The empirical data were obtained using the questionnaires SACS and COPE. Statistical analysis and interpretation of the results were performed with IBM SPSS-23.0. It was found that, compared to the religious identity, the ethnic identity of the subjects appeared more predictive of coping behavior. It was shown that the constant exchange of information and the unity of biological and social contributed to a more homogeneous picture in the society where Christians and Muslims were integrated into a single cultural space. It was concluded that depending on their ethnic identity, individuals would form a specific hierarchy of coping strategies resulting in a specific pattern of coping with certain stressors. The Egyptian subjects revealed the following pattern of coping with various kinds of academic stress: 'seeking social support', 'problem solving', 'adapting', 'seeking information'. The coping pattern demonstrated by the Ukrainian subjects could be presented as 'seeking information', 'adapting', 'seeking social support', 'problem solving'. There was a tendency in the group of Egyptians to engage in more collectivist coping strategies (with the predominant coping strategy 'religious coping'), in contrast to the Ukrainians who displayed more individualistic coping strategies (with 'planning' and 'active coping' as the mostly used coping strategies). At the same time, it was obvious that Ukrainians should not be unambiguously attributed to the individualistic coping behavior due to their reliance on 'seeking social support' and 'social contact'. The final conclusion was also drawn from the peculiarities of developing religious identity, including religiosity, in Egyptians (formal religious education of both Muslims and Christians) and Ukrainians (more spontaneous process): Egyptians seem to learn to resort to the religious coping, which could be an indication that, in principle, it is possible and necessary to train individuals in desirable coping behavior.Keywords: coping behavior, cross-cultural research, ethnic and religious identity, hierarchical pattern of coping
Procedia PDF Downloads 1622322 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System
Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli
Abstract:
This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.Keywords: feature selection, genetic algorithm, optimization, wood recognition system
Procedia PDF Downloads 5452321 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan
Authors: Sumaira Zafar, Arjumand Zaidi
Abstract:
During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization
Procedia PDF Downloads 5082320 Rhetorical Features of Research Article Abstracts of Non-Native English-Speaking Novice Student Researchers
Authors: Rita Darmayanti
Abstract:
This study aims at investigating the discourse pattern and structure of research article abstracts. The characteristics of the language used in abstracts written by non-native English-speaking (NNES) novice researchers are mainly examined in terms of rhetorical moves and the degree of variability of the rhetorical features as indicated by the structure of clauses and the linguistic features of the text. To this end, 20 abstracts written by undergraduate students of the accounting department at the State Polytechnic of Malang in 2018-2019 were employed as the data of this study. Findings showed that the most frequently used pattern of the rhetorical move is I(Introduction)-P(Purpose)-M(Method)-Pr(Product or Result)-C(Conclusion) with the significant use of active sentence and present and past tense. The findings of the study are projected to be utilized for evaluating the quality of students’ abstracts and generating a pedagogical proposal of ESP writing course or at least providing a critical review of current practices in ESP program intended for non-native English students at tertiary level.Keywords: rhetorical features, rhetorical moves, non-native English-speaking novice researchers, research abstract
Procedia PDF Downloads 1312319 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition
Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou
Abstract:
In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks
Procedia PDF Downloads 6182318 Effectiveness of Physiotherapy in Hand Dysfunction of Leukemia Patients with Chronic Musculoskeletal Graft versus Host Disease Post Bone Marrow Transplant
Authors: Mohua Chatterjee, Rajib De
Abstract:
Introduction: Bone Marrow Transplant (BMT) is often performed to treat patients with various types of leukemia. A majority of these patients develop complications like chronic musculoskeletal GVHD post-BMT where patients get scleroderma, pain and restricted range of motion of joints of hand. If not treated early, it may cause permanent deformity of hand. This study was done to find the effectiveness of physiotherapy in hand dysfunction caused due to chronic musculoskeletal GVHD of leukemia patients after BMT. Methodology: 23 patients diagnosed with leukemia and having musculoskeletal GVHD were treated with a set of exercises including active exercises and stretching. The outcome was measured by Cochin Hand Function Scale (CHFS) at baseline and after four weeks of intervention. Results: Two patients were not able to carry out exercises beyond two weeks due to relapse of disease and one patient defaulted. It was found that all the patients who received physiotherapy had significant improvement in hand function. Mean CHFS decreased from 63.67 to 27.43 (P value < 0.001) indicating improvement in hand function after four weeks of physiotherapy. Conclusion: Early intervention of physiotherapy is effective in reducing hand dysfunction of leukemia patients with musculoskeletal GVHD post-BMT.Keywords: bone marrow transplant, hand dysfunction, leukemia, musculoskeletal graft versus host disease, physiotherapy
Procedia PDF Downloads 2402317 Translation of the Verbal Nouns (Masadars) Originating from Three-Letter Verbs in the Holy Quran: Verbal Noun with More than One Pattern (Wazn) As a Model
Authors: Montasser Mohamed Abdelwahab Mahmoud, Abdelwahab Saber Esawi
Abstract:
The language of the Qur’an has a wide range of understanding, reflection, and meanings. Therefore, translation of the Qur’an is inevitably nothing but a translation of the interpretation of the meanings of the Qur’an. It requires special competencies and skills for translators so that they can get close to the intended meaning of the verse of the Qur’an and convey it with precision. In the Arabic language, the verbal noun “AlMasdar” is a very important derivative that properly expresses the verbal idea in the form of a noun. It sounds the same as the base form of the verb with minor changes in the vowel pattern. It is one of the important topics in morphology. The morphologists divided verbal nouns into auditory and analogical, and they stated that that the verbal nouns (Masadars) originating from three-letter verbs are auditory, although they set controls for some of them in order to preserve them. As for the lexicographers, they mentioned the verbal nouns while talking about the lexical materials, and in some cases, their explanation of them exceeded that made by the morphologists, especially in their discussion of structures that the morphologists did not refer to in their books. The verb kafara (disbelief), for example, has three patterns, namely: al-kufْr, al-kufrān, and al-kufūr, and it was mentioned in the Holy Qur’an with different connotations. The verb ṣāma (fasted) with his two patterns (al-ṣaūm and al-ṣīām) was mentioned in the Holy Qur’an while their semantic meaning is different. The problem discussed in this research paper lied in the "linguistic loss" committed by translators when dealing with Islamic religious texts, especially the Qur'an. The study tried to identify the strategy adopted by translators of the Holy Qur'an in translating words that were classified as verbal nouns through analyzing the translation rendered by five translations of the Qur’an into English: Yusuf Ali, Pickthall, Mohsin Khan, Muhammad Sarwar, and Shakir. This study was limited to the verbal nouns in the Quraan that originate from three-letter verbs and have different semantic meanings.Keywords: pattern, three-letter verbs, translation of the Quran, verbal nouns
Procedia PDF Downloads 1612316 First Survey of Seasonal Abundance and Daily Activity of Stomoxys calcitrans: In Zaouiet Sousse, the Sahel Area of Tunisia
Authors: Amira Kalifa, Faïek Errouissi
Abstract:
The seasonal changes and the daily activity of Stomoxys calcitrans (Diptera: Muscidae) were examined, using Vavoua traps, in a dairy cattle farm in Zaouiet Sousse, the Sahel area of Tunisia during May 2014 to October 2014. Over this period, a total of 4366 hematophagous diptera were captured and Stomoxys calcitrans was the most commonly trapped species (96.52%). Analysis of the seasonal activity, showed that S.calcitrans is bivoltine, with two peaks: a significant peak is recorded in May-June, during the dry season, and a second peak at the end of October, which is quite weak. This seasonal pattern would depend on climatic factors, particularly the temperature of the manure and that of the air. The activity pattern of Stomoxys calcitrans was diurnal with seasonal variations. The daily rhythm shows a peak between 11:00 am to 15:00 pm in May and between 11:00 am to 17:00 pm in June. These vector flies are important pests of livestock in Tunisia, where they are known as a mechanical vector of several pathogens and have a considerable economic and health impact on livestock. A better knowledge of their ecology is a prerequisite for more efficient control measures.Keywords: cattle farm, daily rhythm, Stomoxys calcitrans, seasonal activity
Procedia PDF Downloads 2722315 Charge Transport in Biological Molecules
Authors: E. L. Albuquerque, U. L. Fulco, G. S. Ourique
Abstract:
The focus of this work is on the numerical investigation of the charge transport properties of the de novo-designed alpha3 polypeptide, as well as in its variants, all of them probed by gene engineering. The theoretical framework makes use of a tight-binding model Hamiltonian, together with ab-initio calculations within quantum chemistry simulation. The alpha3 polypeptide is a 21-residue with three repeats of the seven-residue amino acid sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala, forming an alpha–helical bundle structure. Its variants are obtained by Ala→Gln substitution at the e (5th) and g (7th) position, respectively, of the alpha3 polypeptide amino acid sequence. Using transmission electron microscopy and atomic force microscopy, it was observed that the alpha3 polypeptide and one of its variant do have the ability to form fibrous assemblies, while the other does not. Our main aim is to investigate whether or not the biased alpha3 polypeptide and its variants can be also identified by quantum charge transport measurements through current-voltage (IxV) curves as a pattern to characterize their fibrous assemblies. It was observed that each peptide has a characteristic current pattern, which may be distinguished by charge transport measurements, suggesting that it might be a useful tool for the development of biosensors.Keywords: charge transport properties, electronic transmittance, current-voltage characteristics, biological sensor
Procedia PDF Downloads 6652314 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband
Procedia PDF Downloads 2262313 A Comparative Study between Behaviour Activation, Rational Emotive Behaviour Therapy and Waiting List Control for Major Depressive Disorder
Authors: Shweta Jha, Digambar Darekar, Krishna Kadam
Abstract:
Major Depressive Disorder (MDD) is one of the most common of psychiatric disorders. It has a wide range of symptoms, aetiologies and risk factors, and these reasons make MDD affect not only the primary patient, but also their family, caregivers and associates; by negatively impacting their self dignity, economic condition and self-confidence. Thus, it is important to help individuals suffering from MDD learn adaptive mechanism and deal effectively with their environment, with that aim this study focused on a comparative therapeutic intervention using Behaviour Activation (BA), Rational Emotive Behaviour Therapy (REBT) and Waiting list control (WLC) for management of MDD. This study apart from enhancing personal skills will also help us understand which therapeutic method would be more beneficial in treating and prolonging relapse in patients with MDD in Indian population. Fifteen individuals following application of inclusion and exclusion criteria were selected as study samples. They were randomly assigned to three treatment groups. Ten sessions of therapy, forty-five minutes each according to the proposed sessions plan were conducted for each group. The individuals selected as samples were re–assessed after 2 months and 6 months post intervention. The overall result showed that individuals treated with BA and REBT showed more improvement in comparison to those in WLC.Keywords: behaviour activation, major depressive disorder, rational emotive behaviour therapy, therapeutic intervention
Procedia PDF Downloads 2542312 CFD Analysis of a Two-Sided Windcatcher Inlet/Outlet Ducts’ Height in Ventilation Flow through a Three Dimensional Room
Authors: Amirreza Niktash, B. P. Huynh
Abstract:
A windcatcher is a structure fitted on the roof of a building for providing natural ventilation by using wind power; it exhausts the inside stale air to the outside and supplies the outside fresh air into the interior space of the building working by pressure difference between outside and inside of the building and using ventilation principles of passive stacks and wind tower, respectively. In this paper, the effect of different heights of inlet/outlets’ ducts of a two-sided windcatcher on the flow rate, flow velocity and flow pattern through a three-dimensional room fitted with the windcatcher are investigated and analysed by using RANS CFD technique and applying standard K-ε turbulence model via a commercial computational fluid dynamics (CFD) software package. The achieved results show that the inlet/outlet ducts height strongly affects flow rate, flow velocity and flow pattern especially in the living area of the room when the wind velocity is not too low. The results are confirmed by the experimental test for constructed scaled model in the laboratory and it develops the two-sided windcatcher’s performance in ventilation applications.Keywords: CFD, RANS, ventilation, windcatcher
Procedia PDF Downloads 4292311 A Prediction Method of Pollutants Distribution Pattern: Flare Motion Using Computational Fluid Dynamics (CFD) Fluent Model with Weather Research Forecast Input Model during Transition Season
Authors: Benedictus Asriparusa, Lathifah Al Hakimi, Aulia Husada
Abstract:
A large amount of energy is being wasted by the release of natural gas associated with the oil industry. This release interrupts the environment particularly atmosphere layer condition globally which contributes to global warming impact. This research presents an overview of the methods employed by researchers in PT. Chevron Pacific Indonesia in the Minas area to determine a new prediction method of measuring and reducing gas flaring and its emission. The method emphasizes advanced research which involved analytical studies, numerical studies, modeling, and computer simulations, amongst other techniques. A flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process releases emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the chemical composition of air and environment around the boundary layer mainly during transition season. Transition season in Indonesia is absolutely very difficult condition to predict its pattern caused by the difference of two air mass conditions. This paper research focused on transition season in 2013. A simulation to create the new pattern of the pollutants distribution is needed. This paper has outlines trends in gas flaring modeling and current developments to predict the dominant variables in the pollutants distribution. A Fluent model is used to simulate the distribution of pollutants gas coming out of the stack, whereas WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. Based on the running model, the most influence factor was wind speed. The goal of the simulation is to predict the new pattern based on the time of fastest wind and slowest wind occurs for pollutants distribution. According to the simulation results, it can be seen that the fastest wind (last of March) moves pollutants in a horizontal direction and the slowest wind (middle of May) moves pollutants vertically. Besides, the design of flare stack in compliance according to EPA Oil and Gas Facility Stack Parameters likely shows pollutants concentration remains on the under threshold NAAQS (National Ambient Air Quality Standards).Keywords: flare motion, new prediction, pollutants distribution, transition season, WRF model
Procedia PDF Downloads 5562310 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding
Procedia PDF Downloads 3612309 Improved Dynamic Bayesian Networks Applied to Arabic On Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology. This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data. Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables. In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization. The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, computer vision
Procedia PDF Downloads 4282308 Effect of Gamma Irradiation on the Physicochemical Properties of Starches Extracted from Newly Released Rice Varieties Grown in North Temperate Regions of India
Authors: Bilal Ahmad Ashwar, Asima Shah, S. A. Rather, Asir Gani, S.M. Wani, I.D. Wani, F. A. Masoodi, Adil Gani
Abstract:
Starches isolated from two newly released rice varieties (K-322 & K-448) were subject to irradiation at 0, 5, 10, and 20 kGy doses. Comparative study between native (not irradiated) and irradiated starch samples was carried out to evaluate the changes in physicochemical, morphological and pasting properties due to gamma irradiation. Significant decrease was found in apparent amylose content, pH, swelling power, syneresis, and pasting properties, whereas carboxyl content, water absorption capacity, transmittance and solubility were found to increase with the increase in irradiation dose. Granule morphology of native and irradiated starches under scanning electron microscope revealed that granules were polygonal or irregular in shape. The starch granules were somewhat deformed by gamma irradiation. X-ray diffraction pattern showed A type of pattern in native as well as irradiated starches.Keywords: rice starch, gamma irradiation, morphological properties, pasting properties, physicochemical properties.
Procedia PDF Downloads 4742307 Nasopharyngeal Cancer in Children and Adolescents: Experience of Emir Abdelkader Cancer Center of Oran Algeria
Authors: Taleb L., Benarbia M., Brahmi M., Belmiloud H., Boukerche A.
Abstract:
Introduction and purpose of the study: Cavum cancer in children and adolescents is rare and represents 8% of all nasopharyngeal cancers treated in our department. Our objective is to study its epidemiological, clinical, therapeutic, and evolutionary particularities. Material and methods: Retrospective study of 39 patients under 20 years old, treated for undifferentiated non-metastatic carcinoma of the nasopharynx at the Emir Abdelkader Cancer Center between 2014 and 2020. Results and statistical analysis: Median age was 14 years [7-19 years], with a sex ratio of 2.9. The median time to diagnosis was 5.6 months [1 to 14 months], the circumstances of the discovery of which were dominated by lymph node syndrome in 43.6% of cases (n=17) followed by a rhinological syndrome in 30.8% of cases (n=13). The tumor stage was T1 for two patients (5.1%), T2 for 8 (20.5%), T3 for 9 (23.1%), T4 for 20 (51.3%), N0 for 2 (5 .1%) N1 for 4 (10.3%), N2 for 28 (71.8%) and N3 for 5 (12.8%). All patients received induction chemotherapy followed by concomitant radiotherapy with cisplatin. The dose of irradiation delivered to the cavum and adenopathies was 66 Gy with fractionation of 2 Gy per session in 69.2% of cases (n=27) and 1.8 Gy in 30.8% of cases (n=12). With a median follow-up of 51 months (15 to 97 months), the locoregional, metastatic, specific, and overall relapse-free survival rates at five years were 91.1%, 73.5%, 66.1%, and 68.4, respectively. Conclusion: Chemotherapy and radiotherapy treatment of cavum cancer in children and adolescents has allowed excellent locoregional control despite the advanced stage of the disease. However, the frequency of metastatic relapses could justify the possible use of systemic maintenance treatment.Keywords: cancer, nasopharynx, radiotherapy, chemotherapy, survival
Procedia PDF Downloads 1112306 Exploring the Neural Correlates of Different Interaction Types: A Hyperscanning Investigation Using the Pattern Game
Authors: Beata Spilakova, Daniel J. Shaw, Radek Marecek, Milan Brazdil
Abstract:
Hyperscanning affords a unique insight into the brain dynamics underlying human interaction by simultaneously scanning two or more individuals’ brain responses while they engage in dyadic exchange. This provides an opportunity to observe dynamic brain activations in all individuals participating in interaction, and possible interbrain effects among them. The present research aims to provide an experimental paradigm for hyperscanning research capable of delineating among different forms of interaction. Specifically, the goal was to distinguish between two dimensions: (1) interaction structure (concurrent vs. turn-based) and (2) goal structure (competition vs cooperation). Dual-fMRI was used to scan 22 pairs of participants - each pair matched on gender, age, education and handedness - as they played the Pattern Game. In this simple interactive task, one player attempts to recreate a pattern of tokens while the second player must either help (cooperation) or prevent the first achieving the pattern (competition). Each pair played the game iteratively, alternating their roles every round. The game was played in two consecutive sessions: first the players took sequential turns (turn-based), but in the second session they placed their tokens concurrently (concurrent). Conventional general linear model (GLM) analyses revealed activations throughout a diffuse collection of brain regions: The cooperative condition engaged medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC); in the competitive condition, significant activations were observed in frontal and prefrontal areas, insula cortices and the thalamus. Comparisons between the turn-based and concurrent conditions revealed greater precuneus engagement in the former. Interestingly, mPFC, PCC and insulae are linked repeatedly to social cognitive processes. Similarly, the thalamus is often associated with a cognitive empathy, thus its activation may reflect the need to predict the opponent’s upcoming moves. Frontal and prefrontal activation most likely represent the higher attentional and executive demands of the concurrent condition, whereby subjects must simultaneously observe their co-player and place his own tokens accordingly. The activation of precuneus in the turn-based condition may be linked to self-other distinction processes. Finally, by performing intra-pair correlations of brain responses we demonstrate condition-specific patterns of brain-to-brain coupling in mPFC and PCC. Moreover, the degree of synchronicity in these neural signals related to performance on the game. The present results, then, show that different types of interaction recruit different brain systems implicated in social cognition, and the degree of inter-player synchrony within these brain systems is related to nature of the social interaction.Keywords: brain-to-brain coupling, hyperscanning, pattern game, social interaction
Procedia PDF Downloads 339