Search results for: panel data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42373

Search results for: panel data analysis

42043 The Impact of Digital Inclusive Finance on the High-Quality Development of China's Export Trade

Authors: Yao Wu

Abstract:

In the context of financial globalization, China has put forward the policy goal of high-quality development, and the digital economy, with its advantage of information resources, is driving China's export trade to achieve high-quality development. Due to the long-standing financing constraints of small and medium-sized export enterprises, how to expand the export scale of small and medium-sized enterprises has become a major threshold for the development of China's export trade. This paper firstly adopts the hierarchical analysis method to establish the evaluation system of high-quality development of China's export trade; secondly, the panel data of 30 provinces in China from 2011 to 2018 are selected for empirical analysis to establish the impact model of digital inclusive finance on the high-quality development of China's export trade; based on the analysis of heterogeneous enterprise trade model, a mediating effect model is established to verify the mediating role of credit constraint in the development of high-quality export trade in China. Based on the above analysis, this paper concludes that inclusive digital finance, with its unique digital and inclusive nature, alleviates the credit constraint problem among SMEs, enhances the binary marginal effect of SMEs' exports, optimizes their export scale and structure, and promotes the high-quality development of regional and even national export trade. Finally, based on the findings of this paper, we propose insights and suggestions for inclusive digital finance to promote the high-quality development of export trade.

Keywords: digital inclusive finance, high-quality development of export trade, fixed effects, binary marginal effects

Procedia PDF Downloads 93
42042 Predicting Factors of Hearing Protection Device Use of Workers in Kaolin Mineral Dressing Factories, Thailand

Authors: Watcharapong Yaowarat, Thanee Kaewthummanukul, Waruntorn Jongrungrotsakul

Abstract:

Noise-induced hearing loss, the most significant occupational and safety problem among the working population, can be effectively prevented through hearing protection devices (HPDs) use. This study aimed to examine whether the following factors, perceived benefits, perceived barriers, perceived self-efficacy, and interpersonal and situational influences about using hearing protection could predict HPD use among 132 qualified workers in production lines at Kaolin Mineral Dressing factories, Uttaradit and Lampang provinces. Data collection was undertaken from August to September 2020 according to the interview form developed by Yaruang et al. (2010), which was assured by a panel of experts and its reliability value was at an acceptable level. Data analysis was performed using logistic regression analysis. The results revealed that only the situational factor of using hearing protection could predict HPD use, which accounted for 21.80 percent of the total variance for HPD use. It was also found that the study sample who had a score for the situational factors on using hearing protection greater than or equal to the median was 4.16 times more likely to use HPDs than those who had lower median scores. (OR = 4.16, p < .05). The results, thus, indicate that organization policies addressing worker health along with enhancing a supportive environment for HPD use, in particular, the provision of various HPDs, are of great importance. Therefore, occupational health nurses and related health teams should enhance workers’ use of HPDs effectively through knowledge dissemination by adopting strategies appropriate to the workplace context leading to an achievement of worker health policy focusing on work safety.

Keywords: predicting factors, hearing protection device, factors predicting hearing protection device use, kaolin mineral dressing factories

Procedia PDF Downloads 139
42041 Challenges & Barriers for Neuro Rehabilitation in Developing Countries

Authors: Muhammad Naveed Babur, Maria Liaqat

Abstract:

Background & Objective: People with disabilities especially neurological disabilities have many unmet health and rehabilitation needs, face barriers in accessing mainstream health-care services, and consequently have poor health. There are not sufficient epidemiological studies from Pakistan which assess barriers to neurorehabilitation and ways to counter it. Objectives: The objective of the study was to determine the challenges and to evaluate the barriers for neuro-rehabilitation services in developing countries. Methods: This is Exploratory sequential qualitative study based on the Panel discussion forum in International rehabilitation sciences congress and national rehabilitation conference 2017. Panel group discussion has been conducted in February 2017 with a sample size of eight professionals including Rehabilitation medicine Physician, Physical Therapist, Speech Language therapist, Occupational Therapist, Clinical Psychologist and rehabilitation nurse working in multidisciplinary/Interdisciplinary team. A comprehensive audio-videography have been developed, recorded, transcripted and documented. Data was transcribed and thematic analysis along with characteristics was drawn manually. Data verification was done with the help of two separate coders. Results: After extraction of two separate coders following results are emerged. General category themes are disease profile, demographic profile, training and education, research, barriers, governance, global funding, informal care, resources and cultural beliefs and public awareness. Barriers identified at the level are high cost, stigma, lengthy course of recovery. Hospital related barriers are lack of social support and individually tailored goal setting processes. Organizational barriers identified are lack of basic diagnostic facilities, lack of funding and human resources. Recommendations given by panelists were investment in education, capacity building, infrastructure, governance support, strategies to promote communication and realistic goals. Conclusion: It is concluded that neurorehabilitation in developing countries need attention in following categories i.e. disease profile, demographic profile, training and education, research, barriers, governance, global funding, informal care, resources and cultural beliefs and public awareness. This study also revealed barriers at the level of patient, hospital, organization. Recommendations were also given by panelists.

Keywords: disability, neurorehabilitation, telerehabilitation, disability

Procedia PDF Downloads 191
42040 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 187
42039 Survival Analysis Based Delivery Time Estimates for Display FAB

Authors: Paul Han, Jun-Geol Baek

Abstract:

In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.

Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model

Procedia PDF Downloads 543
42038 Female Labor Force Participation in Iranian Rural Areas: An Inter-provincial Study

Authors: Zahra Mila Elmi, Mahsa Khanekheshi

Abstract:

Almost half of the population and potential manpower in the country and rural areas are women. Manpower especially educated people, plays an important role in the production and economic growth. Also, the potential of rural areas to create employment should not be overlooked. In this research, the effects of socio-economic and demographic factors on women's economic participation in rural areas of Iran's provinces will be studied. Therefore, this study was performed by using the results of the rural households income and expenditure surveys -has been taken in 2016- in the framework of pseudo panel data. This study used the logit model and the maximum likelihood method to study the rural women's participation, with 28,265 observations. Results show the inverted U-shaped relationship between age and the probability of female participation; In other words, young women are more likely to participate in labor markets more than the other groups. Divorced and single woman has more chance of participation in comparison with who was being married. With increasing the divorce rate and singleness in Iran, economic policymakers must provide appropriate solutions for this challenge in the coming years. On the base of the results, being a student and the presence of an infant under the age of 6 in the household has a negative effect on the possibility of women's participation in the labor market. The women's education level has a U-shaped relationship with their participation rate. Illiteracy and high education have a strong positive effect on the economic participation of rural women. This shows the dual labor market for women in Iran. Illiterate women are attracted to service jobs, and educated woman are more attracted to education and health jobs. Increasing household income has a small but positive and significant effect on the probability of rural female participation. In the overlook, due to the frequency of the women population in the age group of 25 to 35 years, and more willingness of women in the age 35 to 44 years to participate in the labor market, and studying ofa significant portion of the rural women, the increase of rural female participation is expected in the years ahead. Thus, it is expected policy maker to create new job opportunities for the employment of educated women and take the necessary plan to improve the current situation for women.

Keywords: female participation rate, rural area, provincial data, pseudo-panel data method

Procedia PDF Downloads 95
42037 Query Task Modulator: A Computerized Experimentation System to Study Media-Multitasking Behavior

Authors: Premjit K. Sanjram, Gagan Jakhotiya, Apoorv Goyal, Shanu Shukla

Abstract:

In psychological research, laboratory experiments often face the trade-off issue between experimental control and mundane realism. With the advent of Immersive Virtual Environment Technology (IVET), this issue seems to be at bay. However there is a growing challenge within the IVET itself to design and develop system or software that captures the psychological phenomenon of everyday lives. One such phenomena that is of growing interest is ‘media-multitasking’ To aid laboratory researches in media-multitasking this paper introduces Query Task Modulator (QTM), a computerized experimentation system to study media-multitasking behavior in a controlled laboratory environment. The system provides a computerized platform in conducting an experiment for experimenters to study media-multitasking in which participants will be involved in a query task. The system has Instant Messaging, E-mail, and Voice Call features. The answers to queries are provided on the left hand side information panel where participants have to search for it and feed the information in the respective communication media blocks as fast as possible. On the whole the system will collect multitasking behavioral data. To analyze performance there is a separate output table that records the reaction times and responses of the participants individually. Information panel and all the media blocks will appear on a single window in order to ensure multi-modality feature in media-multitasking and equal emphasis on all the tasks (thus avoiding prioritization to a particular task). The paper discusses the development of QTM in the light of current techniques of studying media-multitasking.

Keywords: experimentation system, human performance, media-multitasking, query-task

Procedia PDF Downloads 557
42036 Potential of Palm Oil Mill Effluent in Algae Cultivation for Biodiesel Production

Authors: Nur Azreena Idris, Soh Kheang Loh, Harrison Lau Lik Nang, Yuen May Choo, Eminour Muzalina Mustafa, Vijaysri Vello, Cheng Yau Tan, Siew Moi Phang

Abstract:

It is estimated that about 0.65-0.67 m3 of palm oil mill effluent (POME) is generated when one tonne of fresh fruit bunches is processed. Owning to the high content of nutrients in POME, it has high potential as a medium for microalgae growth. This study attempted determining the growth rate, biomass productivity and biochemical composition of microalgae (Chlorella sp.) grown in different POME concentrations i.e. 6.25%, 12.5%, 25% and 50% at outdoor conditions using a 200-mL capacity high rate algae pond (HRAP) and 2 closed photobioreactors (PBRs) i.e. annular and flat panel. The strain, Chlorella sp. grown on 12.5% of POME in flat panel PBR exhibited the highest specific growth rate of 0.32/day and biomass productivity (27.1 mg/L/day) followed by those in HRAP and annular PBR. It further showed that a good growth of Chlorella sp. in 12.5% of POME could sufficiently reduce the nutrients of POME such as phosphate (PO4), nitrate (NO3), nitrite (NO2) and chemical oxygen demand (COD). The extracted algal oil from POME culture showed that the saturated fatty acids decreased while polyunsaturated fatty acids increased compared to those cultured in standard culture medium (Bold’s Basal medium). The biochemical compositions of the algae grown in flat panel PBR were the highest with lipid, protein and carbohydrate productivity of 17.91 mg/L/day, 34.65 mg/L/day and 21.44 mg/L/day, respectively. The microalgae cultivation in diluted POME had not only shown potential as biodiesel feedstock based on the fatty acids profile but also the ability to reduce pollutants e.g. PO4, NO3, NO2 and COD in biological wastewater treatment.

Keywords: wastewater treatment, photobioreactors, biomass productivity, specific growth rate

Procedia PDF Downloads 266
42035 Learning at Workplace: Competences and Contexts in Sensory Evaluation

Authors: Ulriikka Savela-Huovinen, Hanni Muukkonen, Auli Toom

Abstract:

The development of workplace as a learning environment has been emphasized in research field of workplace learning. The prior literature on sensory performance emphasized the individual’s competences as assessor, while the competences in the collaborative interactional and knowledge creation practices as workplace learning method are not often mentioned. In the present study aims to find out what kinds of competences and contexts are central when assessor conducts food sensory evaluation in authentic professional context. The aim was to answer the following questions: first, what kinds of competences does sensory evaluation require according to assessors? And second, what kinds of contexts for sensory evaluation do assessors report? Altogether thirteen assessors from three Finnish food companies were interviewed by using semi-structural thematic interviews to map practices and development intentions as well as to explicate already established practices. The qualitative data were analyzed by following the principles of abductive and inductive content analysis. Analysis phases were combined and their results were considered together as a cross-analysis. When evaluated independently required competences were perception, knowledge of specific domains and methods and cognitive skills e.g. memory. Altogether, 42% of analysis units described individual evaluation contexts, 53% of analysis units described collaborative interactional contexts, and 5% of analysis units described collaborative knowledge creation contexts. Related to collaboration, analysis reviewed learning, sharing and reviewing both external and in-house consumer feedback, developing methods to moderate small-panel evaluation and developing product vocabulary collectively between the assessors. Knowledge creation contexts individualized from daily practices especially in cases product defects were sought and discussed. The study findings contribute to the explanation that sensory assessors learn extensively from one another in the collaborative interactional and knowledge creation context. Assessors learning and abilities to work collaboratively in the interactional and knowledge creation contexts need to be ensured in the development of the expertise.

Keywords: assessor, collaboration, competences, contexts, learning and practices, sensory evaluation

Procedia PDF Downloads 237
42034 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India

Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar

Abstract:

This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.

Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies

Procedia PDF Downloads 419
42033 Advanced Deployable/Retractable Solar Panel System for Satellite Applications

Authors: Zane Brough, Claudio Paoloni

Abstract:

Modern low earth orbit (LEO) satellites that require multi-mission flexibility are highly likely to be repositioned between different operational orbits. While executing this process the satellite may experience high levels of vibration and environmental hazards, exposing the deployed solar panel to dangerous stress levels, fatigue and space debris, hence it is desirable to retract the solar array before satellite repositioning to avoid damage or failure. Furthermore, to accommodate for today's technological world, the power demand of a modern LEO satellite is rapidly increasing, which consequently provides pressure upon the design of the satellites solar array system to conform to the strict volume and mass limitations. A novel concept of deployable/retractable hybrid solar array system, aimed to provide a greater power to volume ratio while dramatically reducing the disadvantages of system mass and cost is proposed. Taking advantage of the new lightweight technology in solar panels, a mechanical system composed of both rigid and flexible solar panels arranged within a petal formation is proposed to yield a stowed to deployment area ratio up to at least 1:7, which improves the power density dramatically. The system consists of five subsystems, the outer ones based on a novel eight-petal configuration that provides a large surface and supports the flexible solar panels. A single cable and spool based hinge mechanism were designed to synchronously deploy/retract the panels in a safe, simple and efficient manner while the mass compared to the previous systems is considerably reduced. The relevant challenge to assure a smooth movement is resolved by a proper minimization of the gearing system and the use of a micro-controller system. A prototype was designed by 3D simulators and successfully constructed and tested. Further design works are in progress to implement an epicyclical gear hinge mechanism, which will further reduce the volume, mass and complexity of the system significantly. The proposed system due to an effective and reliable mechanism provides a large active surface, whilst being very compact. It could be extremely advantageous for use as ground portable solar panel system.

Keywords: mechatronic engineering, satellite, solar panel, deployable/retractable mechanism

Procedia PDF Downloads 378
42032 Big Data Analysis with Rhipe

Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim

Abstract:

Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.

Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe

Procedia PDF Downloads 497
42031 The Relationship between Military Expenditure, Military Personnel, Economic Growth, and the Environment

Authors: El Harbi Sana, Ben Afia Neila

Abstract:

In this paper, we study the relationship between the military effort and pollution. A distinction is drawn between the direct and indirect impact of the military effort (military expenditure and military personnel) on pollution, which operates through the impact of military effort on per capita income and the resultant impact of income on pollution. Using the data of 121 countries covering the period 1980–2011, both the direct and indirect impacts of military effort on air pollution emissions are estimated. Our results show that the military effort is estimated to have a positive direct impact on per capita emissions. Indirect effects are found to be positive, the total effect of military effort on emissions is positive for all countries.

Keywords: military endeavor, income, emissions of CO2, panel data

Procedia PDF Downloads 345
42030 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 423
42029 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering

Authors: Yunus Doğan, Ahmet Durap

Abstract:

Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.

Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods

Procedia PDF Downloads 361
42028 Economic Forecasting Analysis for Solar Photovoltaic Application

Authors: Enas R. Shouman

Abstract:

Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.

Keywords: photovoltaic, financial methods, solar energy, economics, PV panel

Procedia PDF Downloads 109
42027 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios

Procedia PDF Downloads 324
42026 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder

Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen

Abstract:

Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.

Keywords: count data, meta-analytic prior, negative binomial, poisson

Procedia PDF Downloads 117
42025 Postmortem Genetic Testing to Sudden and Unexpected Deaths Using the Next Generation Sequencing

Authors: Eriko Ochiai, Fumiko Satoh, Keiko Miyashita, Yu Kakimoto, Motoki Osawa

Abstract:

Sudden and unexpected deaths from unknown causes occur in infants and youths. Recently, molecular links between a part of these deaths and several genetic diseases are examined in the postmortem. For instance, hereditary long QT syndrome and Burgada syndrome are occasionally fatal through critical ventricular tachyarrhythmia. There are a large number of target genes responsible for such diseases, the conventional analysis using the Sanger’s method has been laborious. In this report, we attempted to analyze sudden deaths comprehensively using the next generation sequencing (NGS) technique. Multiplex PCR to subject’s DNA was performed using Ion AmpliSeq Library Kits 2.0 and Ion AmpliSeq Inherited Disease Panel (Life Technologies). After the library was constructed by emulsion PCR, the amplicons were sequenced 500 flows on Ion Personal Genome Machine System (Life Technologies) according to the manufacture instruction. SNPs and indels were analyzed to the sequence reads that were mapped on hg19 of reference sequences. This project has been approved by the ethical committee of Tokai University School of Medicine. As a representative case, the molecular analysis to a 40 years old male who received a diagnosis of Brugada syndrome demonstrated a total of 584 SNPs or indels. Non-synonymous and frameshift nucleotide substitutions were selected in the coding region of heart disease related genes of ANK2, AKAP9, CACNA1C, DSC2, KCNQ1, MYLK, SCN1B, and STARD3. In particular, c.629T-C transition in exon 3 of the SCN1B gene, resulting in a leu210-to-pro (L210P) substitution is predicted “damaging” by the SIFT program. Because the mutation has not been reported, it was unclear if the substitution was pathogenic. Sudden death that failed in determining the cause of death constitutes one of the most important unsolved subjects in forensic pathology. The Ion AmpliSeq Inherited Disease Panel can amplify the exons of 328 genes at one time. We realized the difficulty in selection of the true source from a number of candidates, but postmortem genetic testing using NGS analysis deserves of a diagnostic to date. We now extend this analysis to SIDS suspected subjects and young sudden death victims.

Keywords: postmortem genetic testing, sudden death, SIDS, next generation sequencing

Procedia PDF Downloads 358
42024 Cyclic Loading Tests of Reinforced Concrete Frame Structures Strengthened by Externally-Anchored Precast Wall-Panel

Authors: Seung-Ho Choi, Jae Yuel Oh, Chi Sung Lim, Ho Seong Jung, Kang Su Kim

Abstract:

In recent years, various strengthening methods for buildings have been developed, but most of them require quite a long construction period during which the building users need to be patient on uncomfortable working environments including various lousy noises or even evacuation of the buildings. In this study, externally anchored precast wall-panel method (EPCW) for strengthening non-seismic reinforced concrete (RC) structures has been proposed, which is occupant-friendly technique because the strengthening walls are manufactured at factory and can be tightened to the members very quickly at the site. In order to investigate the structural performance of the specimens strengthened by the EPCW method, a total of four specimens were fabricated, and tested under axial and reversed cyclic lateral loads. The test results showed that the lateral resistances of the specimens strengthened by the EPCW method were greatly enhanced in both positive and negative directions, compared to the RC specimen having non-seismic details.

Keywords: precast wall, seismic strengthening, reinforced concrete, externally-anchored

Procedia PDF Downloads 299
42023 LORA: A Learning Outcome Modelling Approach for Higher Education

Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga

Abstract:

To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.

Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling

Procedia PDF Downloads 187
42022 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: string classification, data quality, feature selection, probability distribution, string length

Procedia PDF Downloads 318
42021 Corporate Governance and Audit Report Lag: The Case of Tunisian Listed Companies

Authors: Lajmi Azhaar, Yab Mdallelah

Abstract:

This study examines the Tunisian market in which recent events, notably financial scandals, provide an appropriate framework for studying the impact of corporate governance on the audit report lag. Moreover, very little research has been done to examine this relationship in this context. The objective of this work is, therefore, to understand the factors influencing audit report lag, drawing primarily on agency theory (Jensen and Meckling, 1976), which shows that the characteristics of the board of directors have an impact on the report lag (independence, diligence, and size). In addition, the characteristics of the committee also have an impact on the audit report lag (size, independence, diligence, and expertise). Therefore, our research provides empirical evidence on the impact of governance mechanisms attributes on audit report lag. Using a sample of forty-seven (47) Tunisian companies listed on the Tunis Stock Exchange (BVMT) during the period from 2014 to 2019, and basing on the GMM method of the dynamic panel, multivariate analysis shows that most corporate governance attributes have a significant effect on audit report lag. Specifically, the audit committee diligence and the audit committee expertise have a significant and positive effect on audit report lag. But the diligence of the board has a significant and negative effect on audit report lag. However, this study finds no evidence that the audit committee independence, the size, independence, and diligence of the director’s board are associated with the audit report lag. In addition, the results of this study also show that there is a significant effect of some control variables. Finally, we are contributing to this study by using the GMM method of the dynamic panel. We are also using an emerging context that is very poorly developed and exploited by previous studies.

Keywords: governance mechanisms, audit committee, board of directors, audit report lag

Procedia PDF Downloads 174
42020 Microarray Data Visualization and Preprocessing Using R and Bioconductor

Authors: Ruchi Yadav, Shivani Pandey, Prachi Srivastava

Abstract:

Microarrays provide a rich source of data on the molecular working of cells. Each microarray reports on the abundance of tens of thousands of mRNAs. Virtually every human disease is being studied using microarrays with the hope of finding the molecular mechanisms of disease. Bioinformatics analysis plays an important part of processing the information embedded in large-scale expression profiling studies and for laying the foundation for biological interpretation. A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. One of the most popular platforms for microarray analysis is Bioconductor, an open source and open development software project based on the R programming language. This paper describes specific procedures for conducting quality assessment, visualization and preprocessing of Affymetrix Gene Chip and also details the different bioconductor packages used to analyze affymetrix microarray data and describe the analysis and outcome of each plots.

Keywords: microarray analysis, R language, affymetrix visualization, bioconductor

Procedia PDF Downloads 480
42019 Technical and Practical Aspects of Sizing a Autonomous PV System

Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba

Abstract:

The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.

Keywords: solar panel, solar radiation, inverter, optimization

Procedia PDF Downloads 608
42018 Representative Concentration Pathways Approach on Wolbachia Controlling Dengue Virus in Aedes aegypti

Authors: Ida Bagus Mandhara Brasika, I Dewa Gde Sathya Deva

Abstract:

Wolbachia is recently developed as the natural enemy of Dengue virus (DENV). It inhibits the replication of DENV in Aedes aegypti. Both DENV and its vector, Aedes aegypty, are sensitive to climate factor especially temperature. The changing of climate has a direct impact on temperature which means changing the vector transmission. Temperature has been known to effect Wolbachia density as it has an ideal temperature to grow. Some scenarios, which are known as Representative Concentration Pathways (RCPs), have been developed by Intergovernmental Panel on Climate Change (IPCC) to predict the future climate based on greenhouse gases concentration. These scenarios are applied to mitigate the future change of Aedes aegypti migration and how Wolbachia could control the virus. The prediction will determine the schemes to release Wolbachia-injected Aedes aegypti to reduce DENV transmission.

Keywords: Aedes aegypti, climate change, dengue virus, Intergovernmental Panel on Climate Change, representative concentration pathways, Wolbachia

Procedia PDF Downloads 300
42017 Development of New Technology Evaluation Model by Using Patent Information and Customers' Review Data

Authors: Kisik Song, Kyuwoong Kim, Sungjoo Lee

Abstract:

Many global firms and corporations derive new technology and opportunity by identifying vacant technology from patent analysis. However, previous studies failed to focus on technologies that promised continuous growth in industrial fields. Most studies that derive new technology opportunities do not test practical effectiveness. Since previous studies depended on expert judgment, it became costly and time-consuming to evaluate new technologies based on patent analysis. Therefore, research suggests a quantitative and systematic approach to technology evaluation indicators by using patent data to and from customer communities. The first step involves collecting two types of data. The data is used to construct evaluation indicators and apply these indicators to the evaluation of new technologies. This type of data mining allows a new method of technology evaluation and better predictor of how new technologies are adopted.

Keywords: data mining, evaluating new technology, technology opportunity, patent analysis

Procedia PDF Downloads 377
42016 Reinforcing Fibre Reinforced Polymer (FRP) Bridge Decks with Steel Plates

Authors: M. Alpaslan Koroglu

Abstract:

Fibre reinforced polymer (FRP) bridge decks have become an innovative alternative, and they have offered many advantages, and this has been increasing attention for applications in not only reinforcement of existing bridges decks but also construction of new bridges decks. The advantages of these FRP decks are; lightweight, high-strength FRP materials, corrosion resistance. However, this high strength deck is not ductile. In this study, the behaviour of hybrid FRP-steel decks are investigated. All FRP decks was analysed with the commercial package ABAQUS. In the FE model, the webs and flanges were discretised by 4 nodes shell elements. A full composite action between the steel and the FRP composite was assumed in the FE analysis because the bond-slip behaviour was unknown at that time. The performance of the proposed hybrid FRP deck panel with steel plates was evaluated by means of FE analysis.

Keywords: FRP, deck, bridge, finite element

Procedia PDF Downloads 475
42015 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data

Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin

Abstract:

Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.

Keywords: big data, machine learning, ontology model, urban data model

Procedia PDF Downloads 418
42014 Evaluation of Environmental Disclosures on Financial Performance of Quoted Industrial Goods Manufacturing Sectors in Nigeria (2011 – 2020)

Authors: C. C. Chima, C. J. M. Anumaka

Abstract:

This study evaluates environmental disclosures on the financial performance of quoted industrial goods manufacturing sectors in Nigeria. The study employed a quasi-experimental research design to establish the relationship that exists between the environmental disclosure index and financial performance indices (return on assets - ROA, return on equity - ROE, and earnings per share - EPS). A purposeful sampling technique was employed to select five (5) industrial goods manufacturing sectors quoted on the Nigerian Stock Exchange. Secondary data covering 2011 to 2020 financial years were extracted from annual reports of the study sectors using a content analysis method. The data were analyzed using SPSS, Version 23. Panel Ordinary Least Squares (OLS) regression method was employed in estimating the unknown parameters in the study’s regression model after conducting diagnostic and preliminary tests to ascertain that the data set are reliable and not misleading. Empirical results show that there is an insignificant negative relationship between the environmental disclosure index (EDI) and the performance indices (ROA, ROE, and EPS) of the industrial goods manufacturing sectors in Nigeria. The study recommends that: only relevant information which increases the performance indices should appear on the disclosure checklist; environmental disclosure practices should be country-specific; and company executives in Nigeria should increase and monitor the level of investment (resources, time, and energy) in order to ensure that environmental disclosure has a significant impact on financial performance.

Keywords: earnings per share, environmental disclosures, return on assets, return on equity

Procedia PDF Downloads 85