Search results for: natural disaster forecasting
6376 Measuring Systems Interoperability: A Focal Point for Standardized Assessment of Regional Disaster Resilience
Authors: Joel Thomas, Alexa Squirini
Abstract:
The key argument of this research is that every element of systems interoperability is an enabler of regional disaster resilience, and arguably should become a focal point for standardized measurement of communities’ ability to work together. Few resilience research efforts have focused on the development and application of solutions that measurably improve communities’ ability to work together at a regional level, yet a majority of the most devastating and disruptive disasters are those that have had a regional impact. The key findings of the research include a unique theoretical, mathematical, and operational approach to tangibly and defensibly measure and assess systems interoperability required to support crisis information management activities performed by governments, the private sector, and humanitarian organizations. A most effective way for communities to measurably improve regional disaster resilience is through deliberately executed disaster preparedness activities. Developing interoperable crisis information management capabilities is a crosscutting preparedness activity that greatly affects a community’s readiness and ability to work together in times of crisis. Thus, improving communities’ human and technical posture to work together in advance of a crisis, with the ultimate goal of enabling information sharing to support coordination and the careful management of available resources, is a primary means by which communities may improve regional disaster resilience. This model describes how systems interoperability can be qualitatively and quantitatively assessed when characterized as five forms of capital: governance; standard operating procedures; technology; training and exercises; and usage. The unique measurement framework presented defines the relationships between systems interoperability, information sharing and safeguarding, operational coordination, community preparedness and regional disaster resilience, and offers a means by which to implement real-world solutions and measure progress over the course of a multi-year program. The model is being developed and piloted in partnership with the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T) and the North Atlantic Treaty Organization (NATO) Advanced Regional Civil Emergency Coordination Pilot (ARCECP) with twenty-three organizations in Bosnia and Herzegovina, Croatia, Macedonia, and Montenegro. The intended effect of the model implementation is to enable communities to answer two key questions: 'Have we measurably improved crisis information management capabilities as a result of this effort?' and, 'As a result, are we more resilient?'Keywords: disaster, interoperability, measurement, resilience
Procedia PDF Downloads 1466375 The Essence of Culture and Religion in Creating Disaster Resilient Societies through Corporate Social Responsibility
Authors: Repaul Kanji, Rajat Agrawal
Abstract:
In this era where issues like climate change and disasters are the topics of discussion at national and international forums, it is very often that humanity questions the causative role of corporates in such events. It is beyond any doubt that rapid industrialisation and development has taken a toll in the form of climate change and even disasters, in some case. Thus, demanding to fulfill a corporate's responsibilities in the form of rescue and relief in times of disaster, rehabilitation and even mitigation and preparedness to adapt to the oncoming changes is obvious. But how can the responsibilities of the corporates be channelised to ensure all this, i.e., develop a resilient society? More than that, which factors, when emphasised upon, can lead to the holistic development of the society. To answer this query, an extensive literature review was done to identify several enablers like legislations of a nation, the role of brand and reputation, ease of doing Corporate Social Responsibility, mission and vision of an organisation, religion and culture, etc. as a tool for building disaster resilience. A questionnaire survey, interviews with experts and academicians followed by interpretive structural modelling (ISM) were used to construct a multi-hierarchy model depicting the contextual relationship among the identified enablers. The study revealed that culture and religion are the most powerful driver, which affects other enablers either directly or indirectly. Taking cognisance of the fact that an idea of separation between religion and workplace (business) resides subconsciously within the society, the study tries to interpret the outcome of the ISM through the lenses of past researches (The Integrating Box) and explores how it can be leveraged to build a resilient society.Keywords: corporate social responsibility, interpretive structural modelling, disaster resilience and risk reduction, the integration box (TIB)
Procedia PDF Downloads 2116374 A Network Optimization Study of Logistics for Enhancing Emergency Preparedness in Asia-Pacific
Authors: Giuseppe Timperio, Robert De Souza
Abstract:
The combination of factors such as temperamental climate change, rampant urbanization of risk exposed areas, political and social instabilities, is posing an alarming base for the further growth of number and magnitude of humanitarian crises worldwide. Given the unique features of humanitarian supply chain such as unpredictability of demand in space, time, and geography, spike in the number of requests for relief items in the first days after the calamity, uncertain state of logistics infrastructures, large volumes of unsolicited low-priority items, a proactive approach towards design of disaster response operations is needed to achieve high agility in mobilization of emergency supplies in the immediate aftermath of the event. This paper is an attempt in that direction, and it provides decision makers with crucial strategic insights for a more effective network design for disaster response. Decision sciences and ICT are integrated to analyse the robustness and resilience of a prepositioned network of emergency strategic stockpiles for a real-life case about Indonesia, one of the most vulnerable countries in Asia-Pacific, with the model being built upon a rich set of quantitative data. At this aim, a network optimization approach was implemented, with several what-if scenarios being accurately developed and tested. Findings of this study are able to support decision makers facing challenges related with disaster relief chains resilience, particularly about optimal configuration of supply chain facilities and optimal flows across the nodes, while considering the network structure from an end-to-end in-country distribution perspective.Keywords: disaster preparedness, humanitarian logistics, network optimization, resilience
Procedia PDF Downloads 1776373 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques
Authors: Gurmail Singh
Abstract:
Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility
Procedia PDF Downloads 1316372 Technology Futures in Global Militaries: A Forecasting Method Using Abstraction Hierarchies
Authors: Mark Andrew
Abstract:
Geopolitical tensions are at a thirty-year high, and the pace of technological innovation is driving asymmetry in force capabilities between nation states and between non-state actors. Technology futures are a vital component of defence capability growth, and investments in technology futures need to be informed by accurate and reliable forecasts of the options for ‘systems of systems’ innovation, development, and deployment. This paper describes a method for forecasting technology futures developed through an analysis of four key systems’ development stages, namely: technology domain categorisation, scanning results examining novel systems’ signals and signs, potential system-of systems’ implications in warfare theatres, and political ramifications in terms of funding and development priorities. The method has been applied to several technology domains, including physical systems (e.g., nano weapons, loitering munitions, inflight charging, and hypersonic missiles), biological systems (e.g., molecular virus weaponry, genetic engineering, brain-computer interfaces, and trans-human augmentation), and information systems (e.g., sensor technologies supporting situation awareness, cyber-driven social attacks, and goal-specification challenges to proliferation and alliance testing). Although the current application of the method has been team-centred using paper-based rapid prototyping and iteration, the application of autonomous language models (such as GPT-3) is anticipated as a next-stage operating platform. The importance of forecasting accuracy and reliability is considered a vital element in guiding technology development to afford stronger contingencies as ideological changes are forecast to expand threats to ecology and earth systems, possibly eclipsing the traditional vulnerabilities of nation states. The early results from the method will be subjected to ground truthing using longitudinal investigation.Keywords: forecasting, technology futures, uncertainty, complexity
Procedia PDF Downloads 1176371 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution
Authors: Ulrike Dowie, Ralph Grothmann
Abstract:
Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management
Procedia PDF Downloads 1956370 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 1146369 The Strategies to Develop Post-Disaster Multi-Mode Transportation System from the Perspective of Traffic Resilience
Authors: Yuxiao Jiang, Lingjun Meng, Mengyu Zhan, Lichunyi Zhang, Yingxia Yun
Abstract:
On August 8th of 2015, a serious explosion occurred in Binhai New Area of Tianjin. This explosion led to the suspension of Tianjin-Binhai Light Rail Line 9 which was an important transportation mean connecting the old and new urban areas and the suspension causes inconvenience to commuters traveling from Tianjin to Binhai or Binhai to Tianjin and residents living by Line 9. On this regard, this paper intends to give suggestions on how to develop multi-mode transportation system rapidly and effectively after a disaster and tackle with the problems in terms of transportation infrastructure facilities. The paper proposes the idea of traffic resilience which refers to the city’s ability to restore its transportation system and reduce risks when the transportation system is destroyed by a disaster. By doing questionnaire research, on the spot study and collecting data from the internet, a GIS model is established so as to analyze the alternative traffic means used by different types of residents and study the transportation supply and demand. The result shows that along the Line 9, there is a larger demand for alternative traffic means in the place which is nearer to the downtown area. Also, the distribution of bus stations is more reasonable in the place nearer to downtown area, however, the traffic speed in the area is slower. Based on traffic resilience, the paper raises strategies to develop post-disaster multi-mode transportation system such as establishing traffic management mechanism timely and effectively, building multi-mode traffic networks, improving intelligent traffic systems and so on.Keywords: traffic resilience, multi-mode transportation system, public traffic, transportation demand
Procedia PDF Downloads 3526368 A Challenge to Acquire Serious Victims’ Locations during Acute Period of Giant Disasters
Authors: Keiko Shimazu, Yasuhiro Maida, Tetsuya Sugata, Daisuke Tamakoshi, Kenji Makabe, Haruki Suzuki
Abstract:
In this paper, we report how to acquire serious victims’ locations in the Acute Stage of Large-scale Disasters, in an Emergency Information Network System designed by us. The background of our concept is based on the Great East Japan Earthquake occurred on March 11th, 2011. Through many experiences of national crises caused by earthquakes and tsunamis, we have established advanced communication systems and advanced disaster medical response systems. However, Japan was devastated by huge tsunamis swept a vast area of Tohoku causing a complete breakdown of all the infrastructures including telecommunications. Therefore, we noticed that we need interdisciplinary collaboration between science of disaster medicine, regional administrative sociology, satellite communication technology and systems engineering experts. Communication of emergency information was limited causing a serious delay in the initial rescue and medical operation. For the emergency rescue and medical operations, the most important thing is to identify the number of casualties, their locations and status and to dispatch doctors and rescue workers from multiple organizations. In the case of the Tohoku earthquake, the dispatching mechanism and/or decision support system did not exist to allocate the appropriate number of doctors and locate disaster victims. Even though the doctors and rescue workers from multiple government organizations have their own dedicated communication system, the systems are not interoperable.Keywords: crisis management, disaster mitigation, messing, MGRS, military grid reference system, satellite communication system
Procedia PDF Downloads 2376367 Improving the Performance of Requisition Document Online System for Royal Thai Army by Using Time Series Model
Authors: D. Prangchumpol
Abstract:
This research presents a forecasting method of requisition document demands for Military units by using Exponential Smoothing methods to analyze data. The data used in the forecast is an actual data requisition document of The Adjutant General Department. The results of the forecasting model to forecast the requisition of the document found that Holt–Winters’ trend and seasonality method of α=0.1, β=0, γ=0 is appropriate and matches for requisition of documents. In addition, the researcher has developed a requisition online system to improve the performance of requisition documents of The Adjutant General Department, and also ensuring that the operation can be checked.Keywords: requisition, holt–winters, time series, royal thai army
Procedia PDF Downloads 3126366 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques
Authors: Umit Cali
Abstract:
The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids
Procedia PDF Downloads 5216365 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 146364 Ethical 'Spaces': A Critical Analysis of the Medical, Ethical and Legal Complexities in the Treatment and Care of Unidentified and Critically Incapacitated Victims Following a Disaster
Authors: D. Osborn, L. Easthope
Abstract:
The increasing threat of ‘marauding terror,' utilising improvised explosive devices and firearms, has focused the attention of policy makers and emergency responders once again on the treatment of the critically injured patient in a highly volatile scenario. Whilst there have been significant improvements made in the response and lessons learned from recent disasters in the international disaster community there still remain areas of uncertainty and a lack of clarity in the care of the critically injured. This innovative, longitudinal study has at its heart the aim of using ethnographic methods to ‘slow down’ the journey such patients will take and make visible the ethical complexities that 2017 technologies, expectations and over a decade of improved combat medicine techniques have brought. The primary researcher, previously employed in the hospital emergency management environment, has closely followed responders as they managed casualties with life-threatening injuries. Ethnographic observation of Exercise Unified Response in March 2016, exposed the ethical and legal 'vacuums' within a mass casualty and fatality setting, specifically the extrication, treatment and care of critically injured patients from crushed and overturned train carriages. This article highlights a gap in the debate, evaluation, planning and response to an incident of this nature specifically the incapacitated, unidentified patients and the ethics of submitting them to the invasive ‘Disaster Victim Identification’ process. Using a qualitative ethnographic analysis, triangulating observation, interviews and documentation, this analysis explores the gaps and highlights the next stages in the researcher’s pathway as she continues to explore with emergency practitioners some of this century’s most difficult questions in relation to the medico-legal and ethical challenges faced by emergency services in the wake of new and emerging threats and medical treatment expectations.Keywords: ethics, disaster, Disaster Victim Identification (DVI), legality, unidentified
Procedia PDF Downloads 1946363 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System
Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin
Abstract:
A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts
Procedia PDF Downloads 1356362 Developing Improvements to Multi-Hazard Risk Assessments
Authors: A. Fathianpour, M. B. Jelodar, S. Wilkinson
Abstract:
This paper outlines the approaches taken to assess multi-hazard assessments. There is currently confusion in assessing multi-hazard impacts, and so this study aims to determine which of the available options are the most useful. The paper uses an international literature search, and analysis of current multi-hazard assessments and a case study to illustrate the effectiveness of the chosen method. Findings from this study will help those wanting to assess multi-hazards to undertake a straightforward approach. The paper is significant as it helps to interpret the various approaches and concludes with the preferred method. Many people in the world live in hazardous environments and are susceptible to disasters. Unfortunately, when a disaster strikes it is often compounded by additional cascading hazards, thus people would confront more than one hazard simultaneously. Hazards include natural hazards (earthquakes, floods, etc.) or cascading human-made hazards (for example, Natural Hazard Triggering Technological disasters (Natech) such as fire, explosion, toxic release). Multi-hazards have a more destructive impact on urban areas than one hazard alone. In addition, climate change is creating links between different disasters such as causing landslide dams and debris flows leading to more destructive incidents. Much of the prevailing literature deals with only one hazard at a time. However, recently sophisticated multi-hazard assessments have started to appear. Given that multi-hazards occur, it is essential to take multi-hazard risk assessment under consideration. This paper aims to review the multi-hazard assessment methods through articles published to date and categorize the strengths and disadvantages of using these methods in risk assessment. Napier City is selected as a case study to demonstrate the necessity of using multi-hazard risk assessments. In order to assess multi-hazard risk assessments, first, the current multi-hazard risk assessment methods were described. Next, the drawbacks of these multi-hazard risk assessments were outlined. Finally, the improvements to current multi-hazard risk assessments to date were summarised. Generally, the main problem of multi-hazard risk assessment is to make a valid assumption of risk from the interactions of different hazards. Currently, risk assessment studies have started to assess multi-hazard situations, but drawbacks such as uncertainty and lack of data show the necessity for more precise risk assessment. It should be noted that ignoring or partial considering multi-hazards in risk assessment will lead to an overestimate or overlook in resilient and recovery action managements.Keywords: cascading hazards, disaster assessment, mullti-hazards, risk assessment
Procedia PDF Downloads 1156361 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 686360 Improving Exchange Rate Forecasting Accuracy Using Ensemble Learning Techniques: A Comparative Study
Authors: Gokcen Ogruk-Maz, Sinan Yildirim
Abstract:
Introduction: Exchange rate forecasting is pivotal for informed financial decision-making, encompassing risk management, investment strategies, and international trade planning. However, traditional forecasting models often fail to capture the complexity and volatility of currency markets. This study explores the potential of ensemble learning techniques such as Random Forest, Gradient Boosting, and AdaBoost to enhance the accuracy and robustness of exchange rate predictions. Research Objectives The primary objective is to evaluate the performance of ensemble methods in comparison to traditional econometric models such as Uncovered Interest Rate Parity, Purchasing Power Parity, and Monetary Models. By integrating advanced machine learning techniques with fundamental macroeconomic indicators, this research seeks to identify optimal approaches for predicting exchange rate movements across major currency pairs. Methodology: Using historical exchange rate data and economic indicators such as interest rates, inflation, money supply, and GDP, the study develops forecasting models leveraging ensemble techniques. Comparative analysis is performed against traditional models and hybrid approaches incorporating Facebook Prophet, Artificial Neural Networks, and XGBoost. The models are evaluated using statistical metrics like Mean Squared Error, Theil Ratio, and Diebold-Mariano tests across five currency pairs (JPY to USD, AUD to USD, CAD to USD, GBP to USD, and NZD to USD). Preliminary Results: Results indicate that ensemble learning models consistently outperform traditional methods in predictive accuracy. XGBoost shows the strongest performance among the techniques evaluated, achieving significant improvements in forecast precision with consistently low p-values and Theil Ratios. Hybrid models integrating macroeconomic fundamentals into machine learning frameworks further enhance predictive accuracy. Discussion: The findings show the potential of ensemble methods to address the limitations of traditional models by capturing non-linear relationships and complex dynamics in exchange rate movements. While Random Forest and Gradient Boosting are effective, the superior performance of XGBoost suggests that its capacity for handling sparse and irregular data offers a distinct advantage in financial forecasting. Conclusion and Implications: This research demonstrates that ensemble learning techniques, particularly when combined with traditional macroeconomic fundamentals, provide a robust framework for improving exchange rate forecasting. The study offers actionable insights for financial practitioners and policymakers, emphasizing the value of integrating machine learning approaches into predictive modeling for monetary economics.Keywords: exchange rate forecasting, ensemble learning, financial modeling, machine learning, monetary economics, XGBoost
Procedia PDF Downloads 116359 A New Type Safety-Door for Earthquake Disaster Prevention: Part I
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
From the past earthquake events, many people get hurt at the exit while they are trying to go out of the buildings because of the exit doors are unable to be opened. The door is not opened because it deviates from its the original position. The aim of this research is to develop and evaluate a new type safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. The proposed door is composed of three components: outer frame joined to the wall, inner frame (door frame) and circular hollow section connected to the inner and outer frame which is used as seismic energy dissipating device.Keywords: safety-door, earthquake disaster, low yield point steel, passive energy dissipating device, FE analysis
Procedia PDF Downloads 5276358 Developing Methodology of Constructing the Unified Action Plan for External and Internal Risks in University
Authors: Keiko Tamura, Munenari Inoguchi, Michiyo Tsuji
Abstract:
When disasters occur, in order to raise the speed of each decision making and response, it is common that delegation of authority is carried out. This tendency is particularly evident when the department or branch of the organization are separated by the physical distance from the main body; however, there are some issues to think about. If the department or branch is too dependent on the head office in the usual condition, they might feel lost in the disaster response operation when they are face to the situation. Avoiding this problem, an organization should decide how to delegate the authority and also who accept the responsibility for what before the disaster. This paper will discuss about the method which presents an approach for executing the delegation of authority process, implementing authorities, management by objectives, and preparedness plans and agreement. The paper will introduce the examples of efforts for the three research centers of Niigata University, Japan to arrange organizations capable of taking necessary actions for disaster response. Each center has a quality all its own. One is the center for carrying out the research in order to conserve the crested ibis (or Toki birds in Japanese), the endangered species. The another is the marine biological laboratory. The third one is very unique because of the old growth forests maintained as the experimental field. Those research centers are in the Sado Island, located off the coast of Niigata Prefecture, is Japan's second largest island after Okinawa and is known for possessing a rich history and culture. It takes 65 minutes jetfoil (high-speed ferry) ride to get to Sado Island from the mainland. The three centers are expected to be easily isolated at the time of a disaster. A sense of urgency encourages 3 centers in the process of organizational restructuring for enhancing resilience. The research team from the risk management headquarters offer those procedures; Step 1: Offer the hazard scenario based on the scientific evidence, Step 2: Design a risk management organization for disaster response function, Step 3: Conduct the participatory approach to make consensus about the overarching objectives, Step 4: Construct the unified operational action plan for 3 centers, Step 5: Simulate how to respond in each phase based on the understanding the various phases of the timeline of a disaster. Step 6: Document results to measure performance and facilitate corrective action. This paper shows the result of verifying the output and effects.Keywords: delegation of authority, disaster response, risk management, unified command
Procedia PDF Downloads 1306357 Hospital Beds: Figuring and Forecasting Patient Population Arriving at Health Care Research Institute, Illustrating Roemer's Law
Authors: Karthikeyan Srinivasan, Ranjana Singh, Yatin Talwar, Karthikeyan Srinivasan
Abstract:
Healthcare services play a vital role in the life of human being. The Setup of Hospital varies in wide spectrum of cost, technology, and access. Hospital’s of Public sector satisfies need of a common man to poorer, which can differ at private owned hospitals on cost and treatment. Patient assessing hospital frequently assumes spending time at the hospital is miserable and not aware of what is happening around them. Mostly they are queued up round the clock waiting to be admitted on hospital beds. The idea here is to highlight the role in admitting patient population of Outdoor as well as Emergency entering the Post Graduate Institute of Medical Education and Research, Chandigarh with available hospital beds. This study emphasizes the trend forecasting and acquiring beds needed. The conception “if patient population increases’ likewise increasing hospital beds advertently perceived. If tend to increase the hospital beds, thereby exploring budget, Manpower, space, and infrastructure make compulsion. This survey ideally draws out planning and forecasting beds to cater patient population in and around neighboring state of Chandigarh for admission at territory healthcare and research institute on available hospital beds. Executing healthcare services for growing population needs to know Roemer’s law indicating "in an insured population, a hospital bed built is a filled bed".Keywords: admissions, average length of stay, bed days, hospital beds, occupancy rates
Procedia PDF Downloads 2846356 Study of Heat Transfer by Natural Convection in Overhead Storage Tank of LNG
Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed
Abstract:
During the period storage of liquefied natural gas, stability is necessarily affected by natural convection along the walls of the tank with thermal insulation is not perfectly efficient. In this paper, we present the numerical simulation of heat transfert by natural convection double diffusion,in unsteady laminar regime in a storage tank. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The gas is just on the surface of the liquid phase. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas
Procedia PDF Downloads 4866355 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework
Authors: Ilaria Lucrezia Amerise
Abstract:
Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.Keywords: interval forecasts, time series, electricity prices, reg-SARIMA methods
Procedia PDF Downloads 1366354 Water Saving in Electricity Generation System Considering Natural Gas Limitation
Authors: Mehdi Ganjkhani, Sobhan Badakhshan, Seyedvahid Hosseini
Abstract:
Power plants exploit striking proportion of underground water consumption. Correspondingly, natural gas-fired power plants need less water than the other conventional power plants. Therefore, shifting unit commitment planning toward these power plants would help to save water consumption. This paper discusses the impacts of water consumption limitation on natural gas consumption and vice versa as a short-term water consumption management solution. To do so, conventional unit commitment problem is extended by adding water consumption and natural gas constraints to the previous constrains. The paper presents the impact of water saving on natural gas demands as well as natural gas shortage on water demand. Correspondingly, the additional cost of electricity production according to the aforementioned constraints is evaluated. Finally, a test system is applied to investigate potentials and impacts of water saving and natural gas shortage. Different scenarios are conducted and the results are presented. The results of the study illustrate that in order to use less water for power production it needs to use more natural gas. Meanwhile, natural gas shortage causes to utilize more amount of water in aggregate.Keywords: electric energy generation system, underground water sources, unit commitment, water consumption saving, natural gas
Procedia PDF Downloads 1936353 Advances in Natural Fiber Surface Treatment Methodologies for Upgradation in Properties of Their Reinforced Composites
Authors: G. L. Devnani, Shishir Sinha
Abstract:
Natural fiber reinforced polymer composite is a very attractive area among the scientific community because of their low cost, eco-friendly and sustainable in nature. Among all advantages there are few issues which need to be addressed, those issues are the poor adhesion and compatibility between two opposite nature materials that is fiber and matrix and their relatively high water absorption. Therefore, natural fiber modifications are necessary to improve their adhesion with different matrices. Excellent properties could be achieved with the surface treatment of these natural fibers ultimately leads to property up-gradation of their reinforced composites with different polymer matrices. Lot of work is going on to improve the adhesion between reinforced fiber phase and polymer matrix phase to improve the properties of composites. Researchers have suggested various methods for natural fiber treatment like silane treatment, treatment with alkali, acetylation, acrylation, maleate coupling, etc. In this study a review is done on the different methods used for the surface treatment of natural fibers and what are the advance treatment methodologies for natural fiber surface treatment for property improvement of natural fiber reinforced polymer composites.Keywords: composites, acetylation, natural fiber, surface treatment
Procedia PDF Downloads 4156352 A Review Study on the Importance and Correlation of Crisis Literacy and Media Communications for Vulnerable Marginalized People During Crisis
Authors: Maryam Jabeen
Abstract:
In recent times, there has been a notable surge in attention towards diverse literacy concepts such as media literacy, information literacy, and digital literacy. These concepts have garnered escalating interest, spurring the emergence of novel approaches, particularly in the aftermath of the Covid-19 crisis. However, amidst discussions of crises, the domain of crisis literacy remains largely uncharted within academic exploration. Crisis literacy, also referred to as disaster literacy, denotes an individual's aptitude to not only comprehend but also effectively apply information, enabling well-informed decision-making and adherence to instructions about disaster mitigation, preparedness, response, and recovery. This theoretical and descriptive study seeks to transcend foundational literacy concepts, underscoring the urgency for an in-depth exploration of crisis literacy and its interplay with the realm of media communication. Given the profound impact of the pandemic experience and the looming uncertainty of potential future crises, there arises a pressing need to elevate crisis literacy, or disaster literacy, towards heightened autonomy and active involvement within the spheres of critical disaster preparedness, recovery initiatives, and media communication domains. This research paper is part of my ongoing Ph.D. research study, which explores on a broader level the Encoding and decoding of media communications in relation to crisis literacy. The primary objective of this research paper is to expound upon a descriptive, theoretical research endeavor delving into this domain. The emphasis lies in highlighting the paramount significance of media communications in literacy of crisis, coupled with an accentuated focus on its role in providing information to marginalized populations amidst crises. In conclusion, this research bridges the gap in crisis literacy correlation to media communications exploration, advocating for a comprehensive understanding of its dynamics and its symbiotic relationship with media communications. It intends to foster a heightened sense of crisis literacy, particularly within marginalized communities, catalyzing proactive participation in disaster preparedness, recovery processes, and adept media interactions.Keywords: covid-19, crisis literacy, crisis, marginalized, media and communications, pandemic, vulnerable people
Procedia PDF Downloads 696351 Sustainability and Awareness with Natural Dyes in Textile
Authors: Recep Karadag
Abstract:
Natural dyeing had started since pre-historical times for dyeing of textile materials. The natural dyeing had continued to beginning of 20th century. At the end of 19th century some synthetic dyes were synthesized. Although development of dyeing technologies and methods, natural dyeing was not developed in recent years. Despite rapid advances of synthetic dyestuff industries, natural dye processes have not developed. Therefore natural dyeing was not competed against synthetic dyes. At the same time, it was very difficult that large quantities of coloured textile was dyed with natural dyes And it was very difficult to get reproducible results in the natural dyeing using classical and traditional processes. However, natural dyeing has used slightly in the textile handicraft up to now. It is very important view that re-using of natural dyes to create awareness in textiles in recent years. Natural dyes have got many awareness and sustainability properties. Natural dyes are more eco-friendly than synthetic dyes. A lot of natural dyes have got antioxidant, antibacterial, antimicrobial, antifungal and anti –UV properties. It had been known that were obtained limited numbers colours with natural dyes in the past. On the contrary, colour scale is too wide with natural dyes. Except fluorescent colours, numerous colours can be obtained with natural dyes. Fastnesses of dyed textiles with natural dyes are good that there are light, washing, rubbing, etc. The fastness values can be improved depend on dyeing processes. Thanks to these properties mass production can be made with natural dyes in textiles. Therefore fabric dyeing machine was designed. This machine is too suitable for natural dyeing and mass production. Also any dyeing machine can be modified for natural dyeing. Although dye extraction and dyeing are made separately in the traditional natural dyeing processes and these procedures are become by designed this machine. Firstly, colouring compounds are extracted from natural dye resources, then dyeing is made with extracted colouring compounds. The colouring compounds are moderately dissolved in water. Less water is used in the extraction of colouring compounds from dye resources and dyeing with this new technique on the contrary much quantity water needs to use for dissolve of the colouring compounds in the traditional dyeing. This dyeing technique is very useful method for mass productions with natural dyes in traditional natural dyeing that use less energy, less dye materials, less water, etc. than traditional natural dyeing techniques. In this work, cotton, silk, linen and wool fabrics were dyed with some natural dye plants by the technique. According to the analysis very good results were obtained by this new technique. These results are shown sustainability and awareness of natural dyes for textiles.Keywords: antibacterial, antimicrobial, natural dyes, sustainability
Procedia PDF Downloads 5256350 Protecting the Cloud Computing Data Through the Data Backups
Authors: Abdullah Alsaeed
Abstract:
Virtualized computing and cloud computing infrastructures are no longer fuzz or marketing term. They are a core reality in today’s corporate Information Technology (IT) organizations. Hence, developing an effective and efficient methodologies for data backup and data recovery is required more than any time. The purpose of data backup and recovery techniques are to assist the organizations to strategize the business continuity and disaster recovery approaches. In order to accomplish this strategic objective, a variety of mechanism were proposed in the recent years. This research paper will explore and examine the latest techniques and solutions to provide data backup and restoration for the cloud computing platforms.Keywords: data backup, data recovery, cloud computing, business continuity, disaster recovery, cost-effective, data encryption.
Procedia PDF Downloads 946349 Onboard Heat, Pressure and Boil-Off Gas Treatment for Stacked NGH Tank Containers
Authors: Hee Jin Kang
Abstract:
Despite numerous studies on the reserves and availability of natural gas hydrates, the technology of transporting natural gas hydrates in large quantities to sea has not been put into practical use. Several natural gas hydrate transport technologies presented by the International Maritime Organization (IMO) are under preparation for commercialization. Among them, NGH tank container concept modularized transportation unit to prevent sintering effect during sea transportation. The natural gas hydrate can be vaporized in a certain part during the transportation. Unprocessed BOG increases the pressure inside the tank. Also, there is a risk of fire if you export the BOG out of the tank without proper handling. Therefore, in this study, we have studied the concept of technology to properly process BOG to modularize natural gas hydrate and to transport it to sea for long distance. The study is expected to contribute to the practical use of NGH tank container, which is a modular transport concept proposed to solve the sintering problem that occurs when transporting natural gas hydrate in the form of bulk cargo.Keywords: Natural gas hydrate, tank container, marine transportation, boil-off gas
Procedia PDF Downloads 3426348 A Stock Exchange Analysis in Turkish Logistics Sector: Modeling, Forecasting, and Comparison with Logistics Indices
Authors: Eti Mizrahi, Gizem İntepe
Abstract:
The geographical location of Turkey that stretches from Asia to Europe and Russia to Africa makes it an important logistics hub in the region. Although logistics is a developing sector in Turkey, the stock market representation is still low with only two companies listed in Turkey’s stock exchange since 2010. In this paper, we use the daily values of these two listed stocks as a benchmark for the logistics sector. After modeling logistics stock prices, an empirical examination is conducted between the existing logistics indices and these stock prices. The paper investigates whether the measures of logistics stocks are correlated with newly available logistics indices. It also shows the reflection of the economic activity in the logistics sector on the stock exchange market. The results presented in this paper are the first analysis of the behavior of logistics indices and logistics stock prices for Turkey.Keywords: forecasting, logistic stock exchange, modeling, Africa
Procedia PDF Downloads 5466347 Preparedness Level of Disaster Management Institutions in Context of Floods in Delhi
Authors: Aditi Madan, Jayant Kumar Routray
Abstract:
Purpose: Over the years flood related risks have compounded due to increasing vulnerability caused by rapid urbanisation and growing population. This increase is an indication of the need for enhancing the preparedness of institutions to respond to floods. The study describes disaster management structure and its linkages with institutions involved in managing disasters. It addresses issues and challenges associated with readiness of disaster management institutions to respond to floods. It suggests policy options for enhancing the current state of readiness of institutions to respond by considering factors like institutional, manpower, financial, technical, leadership & networking, training and awareness programs, monitoring and evaluation. Methodology: The study is based on qualitative data with statements and outputs from primary and secondary sources to understand the institutional framework for disaster management in India. Primary data included field visits, interviews with officials from institutions managing disasters and the affected community to identify the challenges faced in engaging national, state, district and local level institutions in managing disasters. For focus group discussions, meetings were held with district project officers and coordinators, local officials, community based organisation, civil defence volunteers and community heads. These discussions were held to identify the challenges associated with preparedness to respond of institutions to floods. Findings: Results show that disasters are handled by district authority and the role of local institutions is limited to a reactive role during disaster. Data also indicates that although the existing institutional setup is well coordinated at the district level but needs improvement at the local level. Wide variations exist in awareness and perception among the officials engaged in managing disasters. Additionally, their roles and responsibilities need to be clearly defined with adequate budget and dedicated permanent staff for managing disasters. Institutions need to utilise the existing manpower through proper delegation of work. Originality: The study suggests that disaster risk reduction needs to focus more towards inclusivity of the local urban bodies. Wide variations exist in awareness and perception among the officials engaged in managing disasters. In order to ensure community participation, it is important to address their social and economic problems since such issues can overshadow attempts made for reducing risks. Thus, this paper suggests development of direct linkages among institutions and community for enhancing preparedness to respond to floods.Keywords: preparedness, response, disaster, flood, community, institution
Procedia PDF Downloads 237