Search results for: models synthesis
8502 Easy Method of Synthesis and Functionalzation of Zno Nanoparticules With 3 Aminopropylthrimethoxysilane (APTES)
Authors: Haythem Barrak, Gaetan Laroche, Adel M’nif, Ahmed Hichem Hamzaoui
Abstract:
The use of semiconductor oxides, as chemical or biological, requires their functionalization with appropriate dependent molecules of the substance to be detected. generally, the support materials used are TiO2 and SiO2. In the present work, we used zinc oxide (ZnO) known for its interesting physical properties. The synthesis of nano scale ZnO was performed by co-precipitation at low temperature (60 ° C).To our knowledge, the obtaining of this material at this temperature was carried out for the first time. This shows the low cost of this operation. On the other hand, the surface functionalization of ZnO was performed with (3-aminopropyl) triethoxysilane (APTES) by using a specific method using ethanol for the first time. In addition, the duration of this stage is very low compared to literature. The samples obtained were analyzed by XRD, TEM, DLS, FTIR, and TGA shows that XPS that the operation of grafting of APTES on our support was carried out with success.Keywords: functionalization, nanoparticle, ZnO, APTES, caractérisation
Procedia PDF Downloads 3618501 Synthesis and Use of Bio Polyols in Rigid Polyurethane Foam Production
Authors: A. Esra Pişkin, L. Yusuf Yivlik
Abstract:
Polyurethane consumption in the world increases every year. Polyetherpolyol, which is the main raw material of polyurethane, is produced from petroleum, and bioresources are needed in polyol production due to the damage it causes to the environment and the consumption of too much energy during the production phase. In this present work, bio polyol was synthesized with castor oil and soybean oil, and its use in rigid polyurethane systems was investigated. Transesterification and ring opening methods were applied for polyol synthesis, and the obtained bio polyols were compared with polyols derived petroleum. The goal of the present study was to synthesize biopolyols and to investigate the mechanical, thermal, and chemical properties of the synthesized polyurethane in terms of bio polyols.Keywords: polyurethane, polyol, biopolyol, vegetable oil, foam, rigid polyurethane foam, ring opening, transesterification
Procedia PDF Downloads 4658500 Comparison Of Data Mining Models To Predict Future Bridge Conditions
Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed
Abstract:
Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models
Procedia PDF Downloads 1918499 Social Entrepreneurship on Islamic Perspective: Identifying Research Gap
Authors: Mohd Adib Abd Muin, Shuhairimi Abdullah, Azizan Bahari
Abstract:
Problem: The research problem is lacking of model on social entrepreneurship that focus on Islamic perspective. Objective: The objective of this paper is to analyse the existing model on social entrepreneurship and to identify the research gap on Islamic perspective from existing models. Research Methodology: The research method used in this study is literature review and comparative analysis from 6 existing models of social entrepreneurship. Finding: The research finding shows that 6 existing models on social entrepreneurship has been analysed and it shows that the existing models on social entrepreneurship do not emphasize on Islamic perspective.Keywords: social entrepreneurship, Islamic perspective, research gap, business management
Procedia PDF Downloads 3568498 Synthesis, Characterization and Gas Sensing Applications of Perovskite CaZrO3 Nanoparticles
Authors: B. M. Patil
Abstract:
Calcium Zirconate (CaZrO3) has high protonic conductivities at elevated temperature in water or hydrogen atmosphere. Undoped calcium zirconate acts as a p-type semiconductor in air. In this paper, we reported synthesis of CaZrO3 nanoparticles via modified molecular precursor method. The precursor calcium zirconium oxalate (CZO) was synthesized by exchange reaction between freshly generated aqueous solution of sodium zirconyl oxalate and calcium acetate at room temperature. The controlled pyrolysis of CZO in air at 700°C for one hour resulted in the formation nanocrystalline CaZrO3 powder. CaZrO3 obtained by the present method was characterized by Simultaneous thermogravimetry and differential thermogravimetry (TG-DTA), X-ray diffraction (XRD), infra-red spectroscopy and transmission electron microscopy (TEM). The pellets of synthesized CaZrO3 fabricated, sintered at 1000°C for 5 hr and tested as sensors for NO2 and NH3 gases.Keywords: CaZrO3, CZO, NO2, NH3
Procedia PDF Downloads 1678497 A-Score, Distress Prediction Model with Earning Response during the Financial Crisis: Evidence from Emerging Market
Authors: Sumaira Ashraf, Elisabete G.S. Félix, Zélia Serrasqueiro
Abstract:
Traditional financial distress prediction models performed well to predict bankrupt and insolvent firms of the developed markets. Previous studies particularly focused on the predictability of financial distress, financial failure, and bankruptcy of firms. This paper contributes to the literature by extending the definition of financial distress with the inclusion of early warning signs related to quotation of face value, dividend/bonus declaration, annual general meeting, and listing fee. The study used five well-known distress prediction models to see if they have the ability to predict early warning signs of financial distress. Results showed that the predictive ability of the models varies over time and decreases specifically for the sample with early warning signs of financial distress. Furthermore, the study checked the differences in the predictive ability of the models with respect to the financial crisis. The results conclude that the predictive ability of the traditional financial distress prediction models decreases for the firms with early warning signs of financial distress and during the time of financial crisis. The study developed a new model comprising significant variables from the five models and one new variable earning response. This new model outperforms the old distress prediction models before, during and after the financial crisis. Thus, it can be used by researchers, organizations and all other concerned parties to indicate early warning signs for the emerging markets.Keywords: financial distress, emerging market, prediction models, Z-Score, logit analysis, probit model
Procedia PDF Downloads 2428496 Effect of Oil Shale Alkylresorcinols on Physico-Chemical and Thermal Properties of Polycondensation Resins
Authors: Ana Jurkeviciute, Larisa Grigorieva, Ksenia Moskvinа
Abstract:
Oil shale alkylresorcinols are formed as a by-product in oil shale processing. They are unique raw material for chemical industry. Polycondensation resins obtaining is one of the worthwhile directions of oil shale alkylresorcinols use. These resins are widely applied in many branches of industry such as wood-working, metallurgic, tire, rubber products, construction etc. Possibility of resins obtaining using overall alkylresorcinols will allow to cheapen finished products on their base and to widen the range of resins offered on the market. Synthesis of polycondensation resins on the basis of alkylresorcinols was conducted by several methods in the process of investigations. In the formulations a part of resorcinol was replaced by fractions of oil shale alkylresorcinols containing different amount of 5-methylresorcinol (40-80 mass %). Some resins were modified by aromatic alkene at the stage of synthesis. Thermal stability and degradation behavior of resins were investigated by thermogravimetric analysis (TGA) method both in an inert nitrogen environment and in an oxidative environment of air. TGA integral curves were obtained and processed in dynamic mode for interval of temperatures from 25 to 830 °C. Rate of temperature rise was 5°C/min, gas flow rate - 50 ml/min. Resins power for carbonization was evaluated by carbon residue. Physical-chemical parameters of the resins were determined. Content of resorcinol and 5-methylresorcinol not reacted in the process of synthesis were determined by gas chromatography method.Keywords: resorcinol, oil shale alkylresorcinols, aromatic alkene, polycondensation resins, modified resins
Procedia PDF Downloads 1978495 Intelligent Diagnostic System of the Onboard Measuring Devices
Authors: Kyaw Zin Htut
Abstract:
In this article, the synthesis of the efficiency of intelligent diagnostic system in the aircraft measuring devices is described. The technology developments of the diagnostic system are considered based on the model errors of the gyro instruments, which are used to measure the parameters of the aircraft. The synthesis of the diagnostic intelligent system is considered on the example of the problem of assessment and forecasting errors of the gyroscope devices on the onboard aircraft. The result of the system is to detect of faults of the aircraft measuring devices as well as the analysis of the measuring equipment to improve the efficiency of its work.Keywords: diagnostic, dynamic system, errors of gyro instruments, model errors, assessment, prognosis
Procedia PDF Downloads 4008494 Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles
Authors: Ayed S. Al-Shihri, Abul Kalam, Abdullah G. Al-Sehemi, Gaohui Du, Tokeer Ahmad, Ahmad Irfan
Abstract:
We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields.Keywords: BET surface area analysis, electron microscopy, optical properties, X-ray techniques
Procedia PDF Downloads 3968493 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis
Authors: H. Jung, N. Kim, B. Kang, J. Choe
Abstract:
History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.Keywords: history matching, principal component analysis, reservoir modelling, support vector machine
Procedia PDF Downloads 1608492 Kinematic Modelling and Task-Based Synthesis of a Passive Architecture for an Upper Limb Rehabilitation Exoskeleton
Authors: Sakshi Gupta, Anupam Agrawal, Ekta Singla
Abstract:
An exoskeleton design for rehabilitation purpose encounters many challenges, including ergonomically acceptable wearing technology, architectural design human-motion compatibility, actuation type, human-robot interaction, etc. In this paper, a passive architecture for upper limb exoskeleton is proposed for assisting in rehabilitation tasks. Kinematic modelling is detailed for task-based kinematic synthesis of the wearable exoskeleton for self-feeding tasks. The exoskeleton architecture possesses expansion and torsional springs which are able to store and redistribute energy over the human arm joints. The elastic characteristics of the springs have been optimized to minimize the mechanical work of the human arm joints. The concept of hybrid combination of a 4-bar parallelogram linkage and a serial linkage were chosen, where the 4-bar parallelogram linkage with expansion spring acts as a rigid structure which is used to provide the rotational degree-of-freedom (DOF) required for lowering and raising of the arm. The single linkage with torsional spring allows for the rotational DOF required for elbow movement. The focus of the paper is kinematic modelling, analysis and task-based synthesis framework for the proposed architecture, keeping in considerations the essential tasks of self-feeding and self-exercising during rehabilitation of partially healthy person. Rehabilitation of primary functional movements (activities of daily life, i.e., ADL) is routine activities that people tend to every day such as cleaning, dressing, feeding. We are focusing on the feeding process to make people independent in respect of the feeding tasks. The tasks are focused to post-surgery patients under rehabilitation with less than 40% weakness. The challenges addressed in work are ensuring to emulate the natural movement of the human arm. Human motion data is extracted through motion-sensors for targeted tasks of feeding and specific exercises. Task-based synthesis procedure framework will be discussed for the proposed architecture. The results include the simulation of the architectural concept for tracking the human-arm movements while displaying the kinematic and static study parameters for standard human weight. D-H parameters are used for kinematic modelling of the hybrid-mechanism, and the model is used while performing task-based optimal synthesis utilizing evolutionary algorithm.Keywords: passive mechanism, task-based synthesis, emulating human-motion, exoskeleton
Procedia PDF Downloads 1378491 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts
Authors: Lin Cheng, Zijiang Yang
Abstract:
Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.Keywords: program synthesis, flow chart, specification, graph recognition, CNN
Procedia PDF Downloads 1198490 Combline Cavity Bandpass Filter Design and Implementation Using EM Simulation Tool
Authors: Taha Ahmed Özbey, Sedat Nazlıbilek, Alparslan Çağrı Yapıcı
Abstract:
Combline cavity filters have gained significant attention in recent years due to their exceptional narrowband characteristics, high unloaded Q, remarkable out-of-band rejection, and versatile post-manufacturing tuning capabilities. These filters play a vital role in various wireless communication systems, radar applications, and other advanced technologies where stringent frequency selectivity and superior performance are required. This paper represents combined cavity filter design and implementation by coupling matrix synthesis. Limited filter length, 50 dB out-of-band rejection, and agile design were aimed. To do so, CAD tools and intuitive methods were used.Keywords: cavity, band pass filter, cavity combline filter, coupling matrix synthesis
Procedia PDF Downloads 728489 Stability Analysis of Endemic State of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease Virus
Authors: Nurudeen Oluwasola Lasisi, Abdulkareem Afolabi Ibrahim
Abstract:
Newcastle disease is an infection of domestic poultry and other bird species with virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of modeling the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. We do a comparison of Vaccination, linear incident rate, and novel quarantine adjusted incident rate in the models. The dynamics of the models yield disease free and endemic equilibrium states. The effective reproduction numbers of the models are computed in order to measure the relative impact for the individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models, and we found that stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.Keywords: effective reproduction number, endemic state, mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis
Procedia PDF Downloads 2438488 Reservoir Fluids: Occurrence, Classification, and Modeling
Authors: Ahmed El-Banbi
Abstract:
Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.Keywords: PVT models, fluid types, PVT properties, fluids classification
Procedia PDF Downloads 728487 Theoretical Insight into Ligand Free Manganese Catalyzed C-O Coupling Protocol for the Synthesis of Biaryl Ethers
Authors: Carolin Anna Joy, Rohith K. R, Rehin Sulay, Parvathy Santhoshkumar, G.Anil Kumar, Vibin Ipe Thomas
Abstract:
Ullmann coupling reactions are gaining great relevance owing to their contribution in the synthesis of biologically and pharmaceutically important compounds. Palladium and many other heavy metals have proven their excellent ability in coupling reaction, but the toxicity matters. The first-row transition metal also possess toxicity, except in the case of iron and manganese. The suitability of manganese as a catalyst is achieving great interest in oxidation, reduction, C-H activation, coupling reaction etc. In this presentation, we discuss the thermo chemistry of ligand free manganese catalyzed C-O coupling reaction between phenol and aryl halide for the synthesis of biaryl ethers using Density functional theory techniques. The mechanism involves an oxidative addition-reductive elimination step. The transition state for both the step had been studied and confirmed using Intrinsic Reaction Coordinate (IRC) calculation. The barrier height for the reaction had also been calculated from the rate determining step. The possibility of other mechanistic way had also been studied. To achieve further insight into the mechanism, substrate having various functional groups is considered in our study to direct their effect on the feasibility of the reaction.Keywords: Density functional theory, Molecular Modeling, ligand free, biaryl ethers, Ullmann coupling
Procedia PDF Downloads 1468486 Synthesis of Functionalized-2-Aryl-2, 3-Dihydroquinoline-4(1H)-Ones via Fries Rearrangement of Azetidin-2-Ones
Authors: Parvesh Singh, Vipan Kumar, Vishu Mehra
Abstract:
Quinoline-4-ones represent an important class of heterocyclic scaffolds that have attracted significant interest due to their various biological and pharmacological activities. This heterocyclic unit also constitutes an integral component in drugs used for the treatment of neurodegenerative diseases, sleep disorders and in antibiotics viz. norfloxacin and ciprofloxacin. The synthetic accessibility and possibility of fictionalization at varied positions in quinoline-4-ones exemplifies an elegant platform for the designing of combinatorial libraries of functionally enriched scaffolds with a range of pharmacological profles. They are also considered to be attractive precursors for the synthesis of medicinally imperative molecules such as non-steroidal androgen receptor antagonists, antimalarial drug Chloroquine and martinellines with antibacterial activity. 2-Aryl-2,3-dihydroquinolin-4(1H)-ones are present in many natural and non-natural compounds and are considered to be the aza-analogs of favanones. The β-lactam class of antibiotics is generally recognized to be a cornerstone of human health care due to the unparalleled clinical efficacy and safety of this type of antibacterial compound. In addition to their biological relevance as potential antibiotics, β-lactams have also acquired a prominent place in organic chemistry as synthons and provide highly efficient routes to a variety of non-protein amino acids, such as oligopeptides, peptidomimetics, nitrogen-heterocycles, as well as biologically active natural and unnatural products of medicinal interest such as indolizidine alkaloids, paclitaxel, docetaxel, taxoids, cyptophycins, lankacidins, etc. A straight forward route toward the synthesis of quinoline-4-ones via the triflic acid assisted Fries rearrangement of N-aryl-βlactams has been reported by Tepe and co-workers. The ring expansion observed in this case was solely attributed to the inherent ring strain in β-lactam ring because -lactam failed to undergo rearrangement under reaction conditions. Theabovementioned protocol has been recently extended by our group for the synthesis of benzo[b]-azocinon-6-ones via a tandem Michael addition–Fries rearrangement of sorbyl anilides as well as for the single-pot synthesis of 2-aryl-quinolin-4(3H)-ones through the Fries rearrangement of 3-dienyl-βlactams. In continuation with our synthetic endeavours with the β-lactam ring and in view of the lack of convenient approaches for the synthesis of C-3 functionalized quinolin-4(1H)-ones, the present work describes the single-pot synthesis of C-3 functionalized quinolin-4(1H)-ones via the trific acid promoted Fries rearrangement of C-3 vinyl/isopropenyl substituted β-lactams. In addition, DFT calculations and MD simulations were performed to investigate the stability profles of synthetic compounds.Keywords: dihydroquinoline, fries rearrangement, azetidin-2-ones, quinoline-4-ones
Procedia PDF Downloads 2508485 Modeling Curriculum for High School Students to Learn about Electric Circuits
Authors: Meng-Fei Cheng, Wei-Lun Chen, Han-Chang Ma, Chi-Che Tsai
Abstract:
Recent K–12 Taiwan Science Education Curriculum Guideline emphasize the essential role of modeling curriculum in science learning; however, few modeling curricula have been designed and adopted in current science teaching. Therefore, this study aims to develop modeling curriculum on electric circuits to investigate any learning difficulties students have with modeling curriculum and further enhance modeling teaching. This study was conducted with 44 10th-grade students in Central Taiwan. Data collection included a students’ understanding of models in science (SUMS) survey that explored the students' epistemology of scientific models and modeling and a complex circuit problem to investigate the students’ modeling abilities. Data analysis included the following: (1) Paired sample t-tests were used to examine the improvement of students’ modeling abilities and conceptual understanding before and after the curriculum was taught. (2) Paired sample t-tests were also utilized to determine the students’ modeling abilities before and after the modeling activities, and a Pearson correlation was used to understand the relationship between students’ modeling abilities during the activities and on the posttest. (3) ANOVA analysis was used during different stages of the modeling curriculum to investigate the differences between the students’ who developed microscopic models and macroscopic models after the modeling curriculum was taught. (4) Independent sample t-tests were employed to determine whether the students who changed their models had significantly different understandings of scientific models than the students who did not change their models. The results revealed the following: (1) After the modeling curriculum was taught, the students had made significant progress in both their understanding of the science concept and their modeling abilities. In terms of science concepts, this modeling curriculum helped the students overcome the misconception that electric currents reduce after flowing through light bulbs. In terms of modeling abilities, this modeling curriculum helped students employ macroscopic or microscopic models to explain their observed phenomena. (2) Encouraging the students to explain scientific phenomena in different context prompts during the modeling process allowed them to convert their models to microscopic models, but it did not help them continuously employ microscopic models throughout the whole curriculum. The students finally consistently employed microscopic models when they had help visualizing the microscopic models. (3) During the modeling process, the students who revised their own models better understood that models can be changed than the students who did not revise their own models. Also, the students who revised their models to explain different scientific phenomena tended to regard models as explanatory tools. In short, this study explored different strategies to facilitate students’ modeling processes as well as their difficulties with the modeling process. The findings can be used to design and teach modeling curricula and help students enhance their modeling abilities.Keywords: electric circuits, modeling curriculum, science learning, scientific model
Procedia PDF Downloads 4608484 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models
Authors: R. Hellmuth
Abstract:
The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.Keywords: building information modeling, digital factory model, factory planning, maintenance
Procedia PDF Downloads 1108483 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education
Authors: Yoko Yamada, Chizumi Yamada
Abstract:
Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.Keywords: illness narrative, mediation, psychology, model, medical education
Procedia PDF Downloads 4098482 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity
Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien
Abstract:
This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.Keywords: CFD, experimental, mathematical models, parabolic trough, radiation
Procedia PDF Downloads 4228481 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models
Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand
Abstract:
Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias
Procedia PDF Downloads 858480 Improvement of Process Competitiveness Using Intelligent Reference Models
Authors: Julio Macedo
Abstract:
Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics
Procedia PDF Downloads 878479 Synthesis, Structure and Spectroscopic Properties of Oxo-centered Carboxylate-Bridged Triiron Complexes and a Deca Ferric Wheel
Authors: K. V. Ramanaiah, R. Jagan, N. N. Murthy
Abstract:
Trinuclear oxo-centered carboxylate-bridged iron complexes, [Fe3(µ3-O)(µ2-O2CR)L¬3]+/0 (where R = alkyl or aryl; L = H2O, ROH, Py, solvent) have attracted tremendous attention because of their interesting structural and magnetic properties, exhibit mixed-valent trapped and de-trapped states, and have bioinorganic relevance. The presence of a trinuclear iron binding center has been implicated in the formation of both bacterial and human iron storage protein, Ft. They are used as precursors for the synthesis of models for the active-site structures of non-heme proteins, hemerythrin (Hr), methane monooxygenase (MMO) and polyiron storage protein, ferritin (Ft). Used as important building blocks for the design and synthesis of supramolecules this can exhibit single molecular magnetism (SMM). Such studies have often employed simple and compact carboxylate ligands and the use of bulky carboxylates is scarce. In the present study, we employed two different type of sterically hindered carboxylates and synthesized a series of novel oxo-centered, carboxylate-bridged triiron complexes of general formula [Fe3(O)(O2CCPh3)6L3]X (L = H2O, 1; py, 2; 4-NMe2py, 3; X = ClO4; L = CH3CN, 4; X = FeCl4) and [Fe3(O)(O2C-anth)6L3]X (L = H2O, 5; X = ClO4; L = CH3OH, 6; X = Cl). Along with complex [Fe(OMe)2(O2CCPh3)]10, 7 was prepared by the self-assemble of anhydrous FeCl3, sodium triphenylacetate and sodium methoxide at ratio of 1:1:2 in CH3OH. The Electronic absorption spectra of these complexes 1-6, in CH2Cl2 display weak bands at near FTIR region (970-1135 nm, ε > 15M-1cm-1). For complex 7, one broad band centered at ~670nm and also an additional intense charge transfer (L→M or O→M) bands between 300 to 550nm observed for all the complexes. Paramagnetic 1H NMR is introduced as a good probe for the characterization of trinuclear oxo - cantered iron compounds in solution when the L ligand coordinated to iron varies as: H2O, py, 4-NMe2py, and CH3OH. The solution state magnetic moment values calculated by using Evans method for all the complexes and also solid state magnetic moment value of complex, 7 was calculated by VSM method, which is comparable with solution state value. These all magnetic moment values indicate there is a spin exchange process through oxo and carboxylate bridges in between two irons (d5). The ESI-mass data complement the data obtained from single crystal X-ray structure. Further purity of the compounds was confirmed by elemental analysis. Finally, structural determination of complexes 1, 3, 4, 5, 6 and 7 were unambiguously conformed by single crystal x-ray studies.Keywords: decanuclear, paramagnetic NMR, trinuclear, uv-visible
Procedia PDF Downloads 3488478 [Keynote Talk]: Ultrasound Assisted Synthesis of ZnO of Different Morphologies by Solvent Variation
Authors: Durata Haciu, Berti Manisa, Ozgur Birer
Abstract:
ZnO nanoparticles have been synthesized by ultrasonic irradiation from simple linear alcohols and water/ethanolic mixtures, at 50 oC. By changing the composition of the solvent, the shape could be altered. While no product was obtained from methanolic solutions, in ethanol, sheet like lamellar structures prevail.n-propanol and n-butanol resulted in needle like structures. The morphology of ZnO could be thus tailored in a simple way, by varying the solvent, under ultrasonic irradiation, in a relatively less time consuming method. Variation of the morphology and size of Zn also provides a means for modulating the band-gap. Although the chemical effects of ultrasound do not come from direct interaction with molecular species, the high energy derived from acoustic cavitation creates a unique interaction of energy and matter with great potential for synthesis.Keywords: ultrasound, ZnO, linear alcohols, morphology
Procedia PDF Downloads 2428477 Bulk Amounts of Linear and Cyclic Polypeptides on Our Hand within a Short Time
Abstract:
Polypeptides with defined peptide sequences illustrate the power of remarkable applications in drug delivery, tissue engineering, sensing and catalysis. Especially the cyclic polypeptides, the distinctive topological architecture imparts many characteristic properties comparing to linear polypeptides. Here, a facile and highly efficient strategy for the synthesis of linear and cyclic polypeptides is reported using N-heterocyclic carbenes (NHCs)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA) in the presence or absence of primary amine initiator. The polymerization proceeds rapidly in a quasi-living manner, allowing access to linear and cyclic polypeptides of well-defined chain length and narrow polydispersity, as evidenced by nuclear magnetic resonance spectrum (1H NMR and 13C NMR spectra) and size exclusion chromatography (SEC) analysis. The cyclic architecture of the polypeptides was further verified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra (MALDI-TOF MS) and electrospray ionization (ESI) mass spectra, as well as viscosity studies. This approach can also simplify workup procedures and make bulk scale synthesis possible, which thereby opens avenues for practical uses in diverse areas, opening up the new generation of polypeptide synthesis.Keywords: α-amino acid N-carboxyanhydrides, living polymerization, polypeptides, N-heterocyclic carbenes, ring-opening polymerization
Procedia PDF Downloads 1678476 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models
Authors: Suriya
Abstract:
Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar
Procedia PDF Downloads 488475 Preparation and Characterization of a Nickel-Based Catalyst Supported by Silica Promoted by Cerium for the Methane Steam Reforming Reaction
Authors: Ali Zazi, Ouiza Cherifi
Abstract:
Natural gas currently represents a raw material of choice for the manufacture of a wide range of chemical products via synthesis gas, among the routes of transformation of methane into synthesis gas The reaction of the oxidation of methane by gas vapor 'water. This work focuses on the study of the effect of cerieum on the nickel-based catalyst supported by silica for the methane vapor reforming reaction, with a variation of certain parameters of the reaction. The reaction temperature, the H₂O / CH₄ ratio and the flow rate of the reaction mixture (CH₄-H₂O). Two catalysts were prepared by impregnation of Degussa silica with a solution of nickel nitrates and a solution of cerium nitrates [Ni (NO₃) 2 6H₂O and Ce (NO₃) 3 6H₂O] so as to obtain the 1.5% nickel concentrations. For both catalysts and plus 1% cerium for the second catalyst. These Catalysts have been characterized by physical and chemical analysis techniques: BET technique, Atomic Absorption, IR Spectroscopy, X-ray diffraction. These characterizations indicated that the nitrates had impregnated the silica. And that the NiO and Ce₂O3 phases are present and Ni°(after reaction). The BET surface of the silica decreases without being affected. The catalytic tests carried out on the two catalysts for the steam reforming reactions show that the addition of cerium to the nickel improves the catalytic performances of the nickel. And that these performances also depend on the parameters of the reaction, namely the temperature, the rate of the reaction mixture, and the ratio (H₂O / CH₄).Keywords: heterogeneous catalysis, steam reforming, Methane, Nickel, Cerium, synthesis gas, hydrogen
Procedia PDF Downloads 1658474 Synthesis and Characterization of Hydroxyapatite from Biowaste for Potential Medical Application
Authors: M. D. H. Beg, John O. Akindoyo, Suriati Ghazali, Nitthiyah Jeyaratnam
Abstract:
Over the period of time, several approaches have been undertaken to mitigate the challenges associated with bone regeneration. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. The former three techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Synthetic routes remain the only feasible alternative option for treatment of bone defects. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are either expensive, complicated or environmentally unfriendly. Interestingly, extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment friendly. In this research, HA was synthesized from bio-waste: namely bovine bones through three different methods which are hydrothermal chemical processes, ultrasound assisted synthesis and ordinary calcination techniques. Structure and property analysis of the HA was carried out through different characterization techniques such as TGA, FTIR, and XRD. All the methods applied were able to produce HA with similar compositional properties to biomaterials found in human calcified tissues. Calcination process was however observed to be more efficient as it eliminated all the organic components from the produced HA. The HA synthesized is unique for its minimal cost and environmental friendliness. It is also perceived to be suitable for tissue and bone engineering applications.Keywords: hydroxyapatite, bone, calcination, biowaste
Procedia PDF Downloads 2498473 Statistical Analysis for Overdispersed Medical Count Data
Authors: Y. N. Phang, E. F. Loh
Abstract:
Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling over-dispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling over-dispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling over-dispersed medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling over-dispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian, and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling over-dispersed medical count data when ZIP and ZINB are inadequate.Keywords: zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit
Procedia PDF Downloads 542