Search results for: machine and plant engineering
8698 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 758697 Integrating Deterministic and Probabilistic Safety Assessment to Decrease Risk & Energy Consumption in a Typical PWR
Authors: Ebrahim Ghanbari, Mohammad Reza Nematollahi
Abstract:
Integrating deterministic and probabilistic safety assessment (IDPSA) is one of the most commonly used issues in the field of safety analysis of power plant accident. It has also been recognized today that the role of human error in creating these accidents is not less than systemic errors, so the human interference and system errors in fault and event sequences are necessary. The integration of these analytical topics will be reflected in the frequency of core damage and also the study of the use of water resources in an accident such as the loss of all electrical power of the plant. In this regard, the SBO accident was simulated for the pressurized water reactor in the deterministic analysis issue, and by analyzing the operator's behavior in controlling the accident, the results of the combination of deterministic and probabilistic assessment were identified. The results showed that the best performance of the plant operator would reduce the risk of an accident by 10%, as well as a decrease of 6.82 liters/second of the water sources of the plant.Keywords: IDPSA, human error, SBO, risk
Procedia PDF Downloads 1298696 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology
Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando
Abstract:
Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry
Procedia PDF Downloads 1518695 Determination of Morphological Characteristics of Brassica napus, Sinapis arvensis, Sinapis alba and Camelina sativa
Authors: Betül Gıdık, Fadul Önemli
Abstract:
The Brassicaceae (Cruciferae) is an important family of plants that include many economically important vegetable production, industrial oilseed, spice, fodder crop species and energy production. Canola and mustard species that are in Brassicaceae family have too high contribution to world herbal production. In this study, genotypes of two kinds of (Caravel and Excalibul) canola (Brassica napus), wild mustard (Sinapis arvensis), white mustard (Sinapis alba) and Camelina (Camelina sativa) were grown in the experimental field, and their morphological characteristics were determined. According to the results of the research; plant length was varied between 76.75 cm and 151.50 cm, and the longest plant was belonging to species of Sinapis arvensis. The number of branches varied from 3.75 piece/plant to 17.75 piece/plant and the most numerous branch was counted in species of Sinapis alba. It was determined that the number of grains in one capsule was between 3.75 piece/capsule and 35.75 piece/capsule and the largest amount of grains in the one capsule was in the Excalibul variety of species of Brassica napus. In our research, it has been determined that the plant of Sinapis arvensis is a potential plant for industrial of oil production; such as Brassica napus, Sinapis alba and Camelina (Camelina sativa).Keywords: Brassica napus, Camelina sativa, canola, Sinapis alba, Sinapis arvensis, wild mustard
Procedia PDF Downloads 1988694 Nucleotide Based Validation of the Endangered Plant Diospyros mespiliformis (Ebenaceae) by Evaluating Short Sequence Region of Plastid rbcL Gene
Authors: Abdullah Alaklabi, Ibrahim A. Arif, Sameera O. Bafeel, Ahmad H. Alfarhan, Anis Ahamed, Jacob Thomas, Mohammad A. Bakir
Abstract:
Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. The close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D. brandisiana and demonstrated nucleotide variations in 3 different sites (645G>T; 663A>C; 710C>G). Although D. mespiliformis (EU980712) and D. brandisiana (EU980656) are very closely related species (99.4%); however, studied specimen showed 100% sequence homology with D. mespiliformis and 99.6% with D. brandisiana. The present findings showed that rbcL short sequence region (664 bp) of plastid rbcL gene, amplified by primer-pair rbcL1F-rbcL724R, can be used for authenticating samples of D. mespiliforformis and may provide help in authentic identification and management process of this medicinally valuable endangered plant species.Keywords: Diospyros mespiliformis, endangered plant, identification partial rbcL
Procedia PDF Downloads 4328693 Applications of AI, Machine Learning, and Deep Learning in Cyber Security
Authors: Hailyie Tekleselase
Abstract:
Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data
Procedia PDF Downloads 1268692 Phytochemical Investigation of Berries of the Embelia schimperi Plant
Authors: Tariku Nefo Duke
Abstract:
Embelia is a genus of climbing shrubs in the family Myrsinaceae. Embelia schimperi is as important in traditional medicine as the other species in the genus. The plant has been much known as a local medicine for the treatment of tapeworms. In this project, extraction, phytochemical screening tests, isolation, and characterization of berries of the Embelia schimperi plant have been conducted. The chemical investigations of methanol and ethyl acetate (1:1) ratio extracts of the berries lead to the isolation of three new compounds. The compounds were identified to be alkaloids coded as AD, AN, and AG. Structural elucidations of the isolated compounds were accomplished using spectroscopic methods (IR, UV, ¹H NMR, ¹³C NMR, DEPT and 2D NMR, HPLC, and LC-MS). The alkaloid coded as (AN) has a wide MIC range of 6.31-25.46 mg/mL against all tested bacteria strains.Keywords: Embelia schimper, HPLC, alkaloids, 2D NMR, MIC
Procedia PDF Downloads 988691 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment
Authors: Elena Puica
Abstract:
This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM
Procedia PDF Downloads 1168690 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: ensembles, false positives, feature selection, one side class algorithm
Procedia PDF Downloads 2928689 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry
Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim
Abstract:
An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant
Procedia PDF Downloads 3108688 Screening and Isolation of Lead Molecules from South Indian Plant Extracts against NDM-1 Producing Escherichia coli
Authors: B. Chandar, M. K. Ramasamy, P. Madasamy
Abstract:
The discovery and development of newer antibiotics are limited with the increase in resistance of such multi-drug resistant bacteria creating the need for alternative new therapeutic agents. The recently discovered New Delhi Metallo-betalactamase-1 (NDM-1), which confers antibiotic resistance to most of the currently available β-lactams, except colistin and tigecycline, is a global concern. Several antibacterial drugs approved are natural products or their semisynthetic derivatives, but plant extracts remain to be explored to find molecules that are effective against NDM-1 bacteria. Therefore, it is necessary to explore the possibility of finding new and effective antibacterial compounds against NDM-1 bacteria. In the present study, we have screened a diverse set South Indian plant species, and report most plant species as a potential source for antimicrobial compounds against NDM-1 bacteria. Ethanol extracts from the leaves of taxonomically diverse South Indian medicinal plants were screened for antibacterial activity against NDM-1 E. coli using streak plate method. Among the plant screened against NDM-1 E. coli, the ethanol extracts from many plant extracts showed minimum bactericidal concentration between 5 and 15 mg /ml and MIC between 2.54 and 5.12 mg/ml. These extracts also showed a potent synergistic effect when combined with antibiotics colistin and tetracycline. Combretum albidum that was effective was taken for further analysis. At 5mg/L concentration, these extracts inhibited the NDM-1 enzyme in vitro, and residual activity for Combretum albidum was 33.09%. Treatment of NDM-1 E. coli with the extracts disrupted the cell wall integrity and caused 89.7% cell death. The plant extract of Combretum albidum that was effective was subjected to fractionation and the fraction was further subjected to HPLC, LC-MS for identification of antibacterial compound.Keywords: antibacterial activity, combretum albidum, Escherichia coli, NDM-1
Procedia PDF Downloads 4558687 Device for Thermo-Magnetic Depolymerisation of Plant Biomass Prior to Methane Fermentation
Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski
Abstract:
This publication presents a device for depolymerisation of plant substrates applicable to agricultural biogas plants and closed-chamber sewage treatment plants where sludge fermentation is bolstered with plant mass. The device consists of a tank with a cover equipped with a heating system, an inlet for the substrate, and an outlet for the depolymerised substrate. Within the tank, a magnet shaft encased in a spiral casing is attached, equipped on its upper end with an internal magnetic disc. A motoreducer is mounted on an external magnetic disc located on the centre of the cover. Depolymerisation of the plant substrate allows for substrate destruction at much lower power levels than by conventional means. The temperature within the reactor can be lowered by 40% in comparison to existing designs. During the depolymerisation process, free radicals are generated within the magnetic field, oxidizing the conditioned substrate and promoting biodegradation. Thus, the fermentation time in the fermenters is reduced by approximately 20%.Keywords: depolymerisation, pre-treatment, biomass, fermentation
Procedia PDF Downloads 5178686 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances
Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun
Abstract:
In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.Keywords: hydropower, high order neural network, Kalman filter, optimal control
Procedia PDF Downloads 2978685 Evaluation of Automated Analyzers of Polycyclic Aromatic Hydrocarbons and Black Carbon in a Coke Oven Plant by Comparison with Analytical Methods
Authors: L. Angiuli, L. Trizio, R. Giua, A. Digilio, M. Tutino, P. Dambruoso, F. Mazzone, C. M. Placentino
Abstract:
In the winter of 2014 a series of measurements were performed to evaluate the behavior of real-time PAHs and black carbon analyzers in a coke oven plant located in Taranto, a city of Southern Italy. Data were collected both insides than outside the plant, at air quality monitoring sites. Contemporary measures of PM2.5 and PM1 were performed. Particle-bound PAHs were measured by two methods: (1) aerosol photoionization using an Ecochem PAS 2000 analyzer, (2) PM2.5 and PM1 quartz filter collection and analysis by gas chromatography/mass spectrometry (GC/MS). Black carbon was determined both in real-time by Magee Aethalometer AE22 analyzer than by semi-continuous Sunset Lab EC/OC instrument. Detected PM2.5 and PM1 levels were higher inside than outside the plant while PAHs real-time values were higher outside than inside. As regards PAHs, inside the plant Ecochem PAS 2000 revealed concentrations not significantly different from those determined on the filter during low polluted days, but at increasing concentrations the automated instrument underestimated PAHs levels. At the external site, Ecochem PAS 2000 real-time concentrations were steadily higher than those on the filter. In the same way, real-time black carbon values were constantly lower than EC concentrations obtained by Sunset EC/OC in the inner site, while outside the plant real-time values were comparable to Sunset EC values. Results showed that in a coke plant real-time analyzers of PAHs and black carbon in the factory configuration provide qualitative information, with no accuracy and leading to the underestimation of the concentration. A site specific calibration is needed for these instruments before their installation in high polluted sites.Keywords: black carbon, coke oven plant, PAH, PAS, aethalometer
Procedia PDF Downloads 3448684 Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine
Authors: Jian Wang, Lu Yang, Jiong Peng
Abstract:
Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments in this paper were carried out. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption.Keywords: AMESim, energy-saving, injection molding machine, internal circulation
Procedia PDF Downloads 5508683 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis
Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales
Abstract:
This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis
Procedia PDF Downloads 1938682 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain
Authors: Juliza Hidayati, Sawarni Hasibuan
Abstract:
PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.Keywords: palm oil, value chain, value added, supply chain
Procedia PDF Downloads 3718681 A Technical and Economic Feasibility Study of the Use of Concentrating Solar Power (CSP) in Desalination Plants on the Kenyan Coast
Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu
Abstract:
Despite the implementation of a Feed in Tariff (FiT) for solar power plants in Kenya, the uptake and subsequent development of utility scale power plants has been slow. This paper, therefore, proposes a Concentrating Solar Power (CSP) plant configuration that can supply both power to the grid and operate a sea water desalination plant, thus providing an economically viable alternative to Independent Power Producers (IPPs). The largest city on the coast, Mombasa, has a chronic water shortage and authorities are looking to employ desalination plants to supply a deficit of up to 100 million cubic meters of fresh water per day. In this study the desalination plant technology was selected based on an analysis of operational costs in $/m3 of plants that are already running. The output of the proposed CSP plant, Net Present Value (NPV), plant capacity factor, thermal efficiency and quantity of CO2 emission avoided were simulated using Greenius software (Green energy system analysis tool) developed by the institute of solar research at the German Aerospace Center (DLR). Data on solar irradiance were derived from the Solar and Wind Energy Resource Assessment (SWERA) for Kenya.Keywords: desalination, feed in tariff, independent power producer, solar CSP
Procedia PDF Downloads 2858680 Support Vector Regression with Weighted Least Absolute Deviations
Authors: Kang-Mo Jung
Abstract:
Least squares support vector machine (LS-SVM) is a penalized regression which considers both fitting and generalization ability of a model. However, the squared loss function is very sensitive to even single outlier. We proposed a weighted absolute deviation loss function for the robustness of the estimates in least absolute deviation support vector machine. The proposed estimates can be obtained by a quadratic programming algorithm. Numerical experiments on simulated datasets show that the proposed algorithm is competitive in view of robustness to outliers.Keywords: least absolute deviation, quadratic programming, robustness, support vector machine, weight
Procedia PDF Downloads 5278679 Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant
Authors: Dimitrie Marinceu
Abstract:
The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability.Keywords: used fuel packing plant, robotic assembly cell, used fuel container, deep geological repository
Procedia PDF Downloads 2918678 Control Mechanisms for Sprayer Used in Turkey
Authors: Huseyin Duran, Yesim Benal Oztekin, Kazim Kubilay Vursavus, Ilker Huseyin Celen
Abstract:
There are two main approaches to manufacturing, market and usage of plant protection machinery in Turkey. The first approach is called as ‘Product Safety Approach’ and could be summarized as minimum health and safety requirements of consumer needs on plant protection equipment and machinery products. The second approach is the practices related to the Plant Protection Equipment and Machinery Directive. Product safety approach covers the plant protection machinery product groups within the framework of a new approach directive, Machinery Safety Directive (2006/42 / AT). The new directive is in practice in our country by 03.03.2009, parallel to the revision of the EU Regulation on the Directive (03.03.2009 dated and numbered 27158 published in the Official Gazette). ‘Pesticide Application for Machines’ paragraph is added to the 2006/42 / EC Machinery Safety Directive, which is, in particular, reveals the importance of primary health care and product safety issue, explaining the safety requirements for machines used in the application of plant protection products. The Ministry of Science, Industry and Technology is the authorized organizations in our country for the publication and implementation of this regulation. There is a special regulation, carried out by Ministry of Food, Agriculture and Livestock General Directorate of Food and Control, on the manufacture and sale of plant protection machinery. This regulation, prepared based on 5996 Veterinary Services, Plant Health, Food and Feed Law, is ‘Regulation on Plant Protection Equipment and Machinery’ (published on 02.04.2011 whit number 27893 in the Official Gazette). The purposes of this regulation are practicing healthy and reliable crop production, the preparation, implementation and dissemination of the integrated pest management programs and projects for the development of human health and environmentally friendly pest control methods. This second regulation covers: approval, manufacturing, licensing of Plant Protection Equipment and Machinery; duties and responsibilities of the dealers; principles and procedures related to supply and control of the market. There are no inspection procedures for the application of currently used plant protection machinery in Turkey. In this study, content and application principles of all regulation approaches currently used in Turkey are summarized.Keywords: plant protection equipment and machinery, product safety, market surveillance, inspection procedures
Procedia PDF Downloads 2588677 A Study of Permission-Based Malware Detection Using Machine Learning
Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud
Abstract:
Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.Keywords: android malware detection, machine learning, malware, malware analysis
Procedia PDF Downloads 1678676 Fabrication and Assessment of Poly (Butylene Succinate)/Poly (ԑ-Caprolactone)/Eucomis autumnalis Cellulose Bio-Composites for Tissue Engineering Applications
Authors: Kumalo F. I., Malimabe M. A., Gumede T. P., Mosoabisane M. F. T.
Abstract:
This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. During the solution casting method, 15 ml of chloroform was used to dissolve an overall mass of 0.5g of each polymer as well as the combination of their bio-nanocomposites. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD to assess morphological, thermal, and structural properties. Mechanical properties were not investigated due to the thin nature of the films. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlights the potential for sustainable and biocompatible materials in biomedical applications.Keywords: bio-nanocomposites, poly (butylene succinate), poly(ԑ-caprolactone), Eucomis autumnalis, medicinal plant
Procedia PDF Downloads 518675 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine
Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu
Abstract:
Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization
Procedia PDF Downloads 1618674 Application of Machine Learning Techniques in Forest Cover-Type Prediction
Authors: Saba Ebrahimi, Hedieh Ashrafi
Abstract:
Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset
Procedia PDF Downloads 2178673 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence
Procedia PDF Downloads 1428672 Multi-Perspective Learning in a Real Production Plant Using Experiential Learning in Heterogeneous Groups to Develop System Competencies for Production System Improvements
Authors: Marlies Achenbach
Abstract:
System competencies play a key role to ensure an effective and efficient improvement of production systems. Thus, there can be observed an increasing demand for developing system competencies in industry as well as in engineering education. System competencies consist of the following two main abilities: Evaluating the current state of a production system and developing a target state. The innovative course ‘multi-perspective learning in a real production plant (multi real)’ is developed to create a learning setting that supports the development of these system competencies. Therefore, the setting combines two innovative aspects: First, the Learning takes place in heterogeneous groups formed by students as well as professionals and managers from industry. Second, the learning takes place in a real production plant. This paper presents the innovative didactic concept of ‘multi real’ in detail, which will initially be implemented in October/November 2016 in the industrial engineering, logistics and mechanical master’s program at TU Dortmund University.Keywords: experiential learning, heterogeneous groups, improving production systems, system competencies
Procedia PDF Downloads 4268671 Hate Speech Detection Using Deep Learning and Machine Learning Models
Authors: Nabil Shawkat, Jamil Saquer
Abstract:
Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification
Procedia PDF Downloads 1368670 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 2088669 Highly Accurate Tennis Ball Throwing Machine with Intelligent Control
Authors: Ferenc Kovács, Gábor Hosszú
Abstract:
The paper presents an advanced control system for tennis ball throwing machines to improve their accuracy according to the ball impact points. A further advantage of the system is the much easier calibration process involving the intelligent solution of the automatic adjustment of the stroking parameters according to the ball elasticity, the self-calibration, the use of the safety margin at very flat strokes and the possibility to placing the machine to any position of the half court. The system applies mathematical methods to determine the exact ball trajectories and special approximating processes to access all points on the aimed half court.Keywords: control system, robot programming, robot control, sports equipment, throwing machine
Procedia PDF Downloads 397