Search results for: image inpainting
2450 The Resistance Reader Program Based on Image Processing
Authors: Janpen Srijan, Nahathai Tanmang, Thanit Purathanang, Anun Dowchern, Saksit Summart, Seangduan Kampimpa
Abstract:
This paper presents the resistance reader program based on image processing by using MATLAB. The proposed program is divided into six parts; the first part is the web camera; the second part is a watt selection before shooting the resistor; the third part is a part of finding the position of the color on the mid-point of resistor; the fourth part is a part of identifying color code of the resistor; the fifth part is a part of taking the number of values for each color for resistance calculation and the last part is a part of displaying result of resistance value. The experimental result of the resistance reader program based on image processing was able to display the resistance value of resistor. The accuracy of proposed program is 85 percent for 1 watt resistor. It has 15 percent of reading error because a problem with the color code of some resistor was too bright.Keywords: resistance reader program, image processing, resistor, MATLAB
Procedia PDF Downloads 3902449 Retrieving Similar Segmented Objects Using Motion Descriptors
Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou
Abstract:
The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.Keywords: fuzzy object, fuzzy image segmentation, motion descriptors, MRI imaging, object-based image retrieval
Procedia PDF Downloads 3782448 Nation Branding: Guidelines for Identity Development and Image Perception of Thailand Brand in Health and Wellness Tourism
Authors: Jiraporn Prommaha
Abstract:
The purpose of this research is to study the development of Thailand Brand Identity and the perception of its image in order to find any guidelines for the identity development and the image perception of Thailand Brand in Health and Wellness Tourism. The paper is conducted through mixed methods research, both the qualitative and quantitative researches. The qualitative focuses on the in-depth interview of executive administrations from public and private sectors involved scholars and experts in identity and image issue, main 11 people. The quantitative research was done by the questionnaires to collect data from foreign tourists 800; Chinese tourists 400 and UK tourists 400. The technique used for this was the Exploratory Factor Analysis (EFA), this was to determine the relation between the structures of the variables by categorizing the variables into group by applying the Varimax rotation technique. This technique showed recognition the Thailand brand image related to the 2 countries, China and UK. The results found that guidelines for brand identity development and image perception of health and wellness tourism in Thailand; as following (1) Develop communication in order to understanding of the meaning of the word 'Health and beauty tourism' throughout the country, (2) Develop human resources as a national agenda, (3) Develop awareness rising in the conservation and preservation of natural resources of the country, (4) Develop the cooperation of all stakeholders in Health and Wellness Businesses, (5) Develop digital communication throughout the country and (6) Develop safety in Tourism.Keywords: brand identity, image perception, nation branding, health and wellness tourism, mixed methods research
Procedia PDF Downloads 2012447 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy
Authors: Chhabi Nigam, S. Ramakrishnan
Abstract:
This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR
Procedia PDF Downloads 2182446 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 792445 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 2062444 Low-Cost Image Processing System for Evaluating Pavement Surface Distress
Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa
Abstract:
Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means
Procedia PDF Downloads 1822443 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN
Procedia PDF Downloads 1322442 Heuristic Spatial-Spectral Hyperspectral Image Segmentation Using Bands Quartile Box Plot Profiles
Authors: Mohamed A. Almoghalis, Osman M. Hegazy, Ibrahim F. Imam, Ali H. Elbastawessy
Abstract:
This paper presents a new hyperspectral image segmentation scheme with respect to both spatial and spectral contexts. The scheme uses the 8-pixels spatial pattern to build a weight structure that holds the number of outlier bands for each pixel among its neighborhood windows in different directions. The number of outlier bands for a pixel is obtained using bands quartile box plots profile among spatial 8-pixels pattern windows. The quartile box plot weight structure represents the spatial-spectral context in the image. Instead of starting segmentation process by single pixels, the proposed methodology starts by pixels groups that proved to share the same spectral features with respect to their spatial context. As a result, the segmentation scheme starts with Jigsaw pieces that build a mosaic image. The following step builds a model for each Jigsaw piece in the mosaic image. Each Jigsaw piece will be merged with another Jigsaw piece using KNN applied to their bands' quartile box plots profiles. The scheme iterates till required number of segments reached. Experiments use two data sets obtained from Earth Observer 1 (EO-1) sensor for Egypt and France. Initial results qualitative analysis showed encouraging results compared with ground truth. Quantitative analysis for the results will be included in the final paper.Keywords: hyperspectral image segmentation, image processing, remote sensing, box plot
Procedia PDF Downloads 6052441 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction
Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong
Abstract:
The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm
Procedia PDF Downloads 1512440 Dark and Bright Envelopes for Dehazing Images
Authors: Zihan Yu, Kohei Inoue, Kiichi Urahama
Abstract:
We present a method for de-hazing images. A dark envelope image is derived with the bilateral minimum filter and a bright envelope is derived with the bilateral maximum filter. The ambient light and transmission of the scene are estimated from these two envelope images. An image without haze is reconstructed from the estimated ambient light and transmission.Keywords: image dehazing, bilateral minimum filter, bilateral maximum filter, local contrast
Procedia PDF Downloads 2652439 The Image of a Flight Attendant Career: A Case Study of High School Students in Bangkok, Thailand
Authors: Kevin Wongleedee
Abstract:
The purposes of this research were to study the image of a flight attendant career from the perspective of high school students in Bangkok and to study the level of interest to pursue a flight attendant career. A probability random sampling of 400 students was utilized. Half the sample group came from private high schools and the other half came from public high schools. A questionnaire was used to collect the data and small in-depth interviews were also used to get their opinions about the image and their level of interest in the flight attendant career. The findings revealed that the majority of respondents had a medium level of interest in the flight attendant career. High school students who majored in Math-English were more interested in a flight attendant career than high school students who majored in Science-Math with a 0.05 level of significance. The image of flight attendant career was rated as a good career with a chance to travel to many countries. The image of flight attendance career can be ranked as follows: a career with a chance to travel, a career with ability to speak English, a career that requires punctuality, a career with a good service mind, and a career with an understanding of details. The findings from the in-depth interviews revealed that the major obstacles that prevented high school students from choosing a flight attendant as a career were their ability to speak English, their body proportions, and lack of information.Keywords: flight attendant, high school students, image, media engineering
Procedia PDF Downloads 3702438 ICanny: CNN Modulation Recognition Algorithm
Authors: Jingpeng Gao, Xinrui Mao, Zhibin Deng
Abstract:
Aiming at the low recognition rate on the composite signal modulation in low signal to noise ratio (SNR), this paper proposes a modulation recognition algorithm based on ICanny-CNN. Firstly, the radar signal is transformed into the time-frequency image by Choi-Williams Distribution (CWD). Secondly, we propose an image processing algorithm using the Guided Filter and the threshold selection method, which is combined with the hole filling and the mask operation. Finally, the shallow convolutional neural network (CNN) is combined with the idea of the depth-wise convolution (Dw Conv) and the point-wise convolution (Pw Conv). The proposed CNN is designed to complete image classification and realize modulation recognition of radar signal. The simulation results show that the proposed algorithm can reach 90.83% at 0dB and 71.52% at -8dB. Therefore, the proposed algorithm has a good classification and anti-noise performance in radar signal modulation recognition and other fields.Keywords: modulation recognition, image processing, composite signal, improved Canny algorithm
Procedia PDF Downloads 1912437 Image Analysis for Obturator Foramen Based on Marker-controlled Watershed Segmentation and Zernike Moments
Authors: Seda Sahin, Emin Akata
Abstract:
Obturator foramen is a specific structure in pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as obturator foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template, on hip radiographs to detect obturator foramen accurately with integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor. Marker-controlled Watershed segmentation is applied to seperate obturator foramen from the background effectively. Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for obturator foramens for final extraction. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results represent that our method is able to segment obturator foramens with % 96 accuracy.Keywords: medical image analysis, segmentation of bone structures on hip radiographs, marker-controlled watershed segmentation, zernike moment feature descriptor
Procedia PDF Downloads 4342436 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection
Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid
Abstract:
Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.Keywords: features extraction, image segmentation, medical images, tumor detection
Procedia PDF Downloads 1682435 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 1082434 Maximum Entropy Based Image Segmentation of Human Skin Lesion
Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam
Abstract:
Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.Keywords: shannon, maximum entropy, Renyi, Tsallis entropy
Procedia PDF Downloads 4632433 Perceptual Image Coding by Exploiting Internal Generative Mechanism
Authors: Kuo-Cheng Liu
Abstract:
In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain
Procedia PDF Downloads 2482432 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner
Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura
Abstract:
Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.Keywords: EEG scanner, eye-detector, mammography, observers
Procedia PDF Downloads 2152431 Automatic Near-Infrared Image Colorization Using Synthetic Images
Authors: Yoganathan Karthik, Guhanathan Poravi
Abstract:
Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data
Procedia PDF Downloads 462430 Using Electrical Impedance Tomography to Control a Robot
Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi
Abstract:
Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography
Procedia PDF Downloads 2722429 Difference Expansion Based Reversible Data Hiding Scheme Using Edge Directions
Authors: Toshanlal Meenpal, Ankita Meenpal
Abstract:
A very important technique in reversible data hiding field is Difference expansion. Secret message as well as the cover image may be completely recovered without any distortion after data extraction process due to reversibility feature. In general, in any difference expansion scheme embedding is performed by integer transform in the difference image acquired by grouping two neighboring pixel values. This paper proposes an improved reversible difference expansion embedding scheme. We mainly consider edge direction for embedding by modifying the difference of two neighboring pixels values. In general, the larger difference tends to bring a degraded stego image quality than the smaller difference. Image quality in the range of 0.5 to 3.7 dB in average is achieved by the proposed scheme, which is shown through the experimental results. However payload wise it achieves almost similar capacity in comparisons with previous method.Keywords: information hiding, wedge direction, difference expansion, integer transform
Procedia PDF Downloads 4842428 Associations Between Positive Body Image, Physical Activity and Dietary Habits in Young Adults
Authors: Samrah Saeed
Abstract:
Introduction: This study considers a measure of positive body image and the associations between body appreciation, beauty ideals internalization, dietary habits, and physical activity in young adults. Positive body image is assessed by Body Appreciation Scale 2. It is used to assess a person's acceptance of the body, the degree of positivity, and respect for the body.Regular physical activity and healthy eating arebasically important for the body, and they play an important role in creating a positive image of the body. Objectives: To identify the associations between body appreciation and beauty ideals internalization. To compare body appreciation and body ideals internalization among students of different physical activity. To explore the associations between dietary habits (unhealthy, healthy), body appreciation and body ideals internalization. Research methods and organization: Study participants were young adult students, aged 18-35, both male and female.The research questionnaire consisted of four areas: body appreciation, beauty ideals internalization, dietary habits, and physical activity.The questionnaire was created in Google Forms online survey platform.The questionnaire was filled out anonymously Result and Discussion: Physical dissatisfaction, diet, eating disorders and exercise disorders are found in young adults all over the world.Thorough nutrition helps people understand who they are by reassuring them that they are okay without judging or accepting themselves. Social media can positively influence body image in many ways.A healthy body image is important because it affect self-esteem, self-acceptance, and your attitude towards food and exercise.Keywords: pysical activity, dietary habits, body image, beauty ideals internalization, body appreciation
Procedia PDF Downloads 982427 The Use of Sustainable Tourism, Decrease Performance Levels, and Change Management for Image Branding as a Contemporary Tool of Foreign Policy
Authors: Mehtab Alam
Abstract:
Sustainable tourism practices require to improve the decreased performance levels in phases of change management for image branding. This paper addresses the innovative approach of using sustainable tourism for image branding as a contemporary tool of foreign policy. The sustainable tourism-based foreign policy promotes cultural values, green tourism, economy, and image management for the avoidance of rising global conflict. The mixed-method approach (quantitative 382 surveys, qualitative 11 interviews at saturation point) implied for the data analysis. The research finding provides the potential of using sustainable tourism by implying skills and knowledge, capacity, and personal factors of change management in improving tourism-based performance levels. It includes the valuable tourism performance role for the success of a foreign policy through sustainable tourism. Change management in tourism-based foreign policy provides the destination readiness for international engagement and curbing of climate issues through green tourism. The research recommends the impact of change management in improving the tourism-based performance levels of image branding for a coercive foreign policy. The paper’s future direction for the immediate implementation of tourism-based foreign policy is to overcome the contemporary issues of travel marketing management, green infrastructure, and cross-border regulation.Keywords: decrease performance levels, change management, sustainable tourism, image branding, foreign policy
Procedia PDF Downloads 1242426 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity
Authors: Kavita Bodke
Abstract:
Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification
Procedia PDF Downloads 392425 Barrier Lowering in Contacts between Graphene and Semiconductor Materials
Authors: Zhipeng Dong, Jing Guo
Abstract:
Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided.Keywords: graphene, semiconductor materials, schottky barrier, image charge, contacts
Procedia PDF Downloads 3042424 Satellite Image Classification Using Firefly Algorithm
Authors: Paramjit Kaur, Harish Kundra
Abstract:
In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.Keywords: image classification, firefly algorithm, satellite image classification, terrain classification
Procedia PDF Downloads 4012423 Branding Tourism Destinations; The Trending Initiatives for Edifice Image Choices of Foreign Policy
Authors: Mehtab Alam, Mudiarasan Kuppusamy, Puvaneswaran Kunaserkaran
Abstract:
The purpose of this paper is to bridge the gap and complete the relationship between tourism destinations and image branding as a choice of edifice foreign policy. Such options became a crucial component for individuals interested in leisure and travel activities. The destination management factors have been evaluated and analyzed using the primary and secondary data in a mixed-methods approach (quantitative sample of 384 and qualitative 8 semi-structured interviews at saturated point). The study chose the Environmental Management Accounting (EMA) and Image Restoration (IR) theories, along with a schematic diagram and an analytical framework supported by NVivo software 12, for two locations in Abbottabad, KPK, Pakistan: Shimla Hill and Thandiani. This incorporates the use of PLS-SEM model for assessing validity of data while SPSS for data screening of descriptive statistics. The results show that destination management's promotion of tourism has significantly improved Pakistan's state image. The use of institutional setup, environmental drivers, immigration, security, and hospitality as well as recreational initiatives on destination management is encouraged. The practical ramifications direct the heads of tourism projects, diplomats, directors, and policymakers to complete destination projects before inviting people to Pakistan. The paper provides the extent of knowledge for academic tourism circles to use tourism destinations as brand ambassadors.Keywords: tourism, management, state image, foreign policy, image branding
Procedia PDF Downloads 692422 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network
Authors: Hui Wei, Zheng Dong
Abstract:
Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.Keywords: biological model, feature extraction, multi-layer neural network, object recognition
Procedia PDF Downloads 5442421 Transmogrification of the Danse Macabre Image: Capturing the Journey towards Creativity
Authors: Javaria Farooqui
Abstract:
This study, “Transmogrification of the Danse Macabre Image: Capturing the Journey towards Creativity,” traces the evolution of the concept of Danse Macabre. In Every man death takes away the sinful when they least expect it, in Solyman and Perseda everyone falls prey to death irrespective of their deeds and in Tauba-tun-Nasuh, the sinner is plagued. The climatic point in this brief research comes with the Modern texts, The Moon and Sixpence, Roohe-e-Insani and Amédéé, ou Comment s’en débarrasser, when Danse Macabre extends its boundaries, uniting the idea of creativity with death. Similarly in the visual context, Danse Macabre image, initially a horrifying idea, becomes a part of the present day comics and serves an entertaining rather than a cathartic purpose.Keywords: Danse macabre, transmogrification, Medieval, death, character
Procedia PDF Downloads 520