Search results for: fault analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28193

Search results for: fault analysis

27863 New Two-Way Map-Reduce Join Algorithm: Hash Semi Join

Authors: Marwa Hussein Mohamed, Mohamed Helmy Khafagy, Samah Ahmed Senbel

Abstract:

Map Reduce is a programming model used to handle and support massive data sets. Rapidly increasing in data size and big data are the most important issue today to make an analysis of this data. map reduce is used to analyze data and get more helpful information by using two simple functions map and reduce it's only written by the programmer, and it includes load balancing , fault tolerance and high scalability. The most important operation in data analysis are join, but map reduce is not directly support join. This paper explains two-way map-reduce join algorithm, semi-join and per split semi-join, and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating unused records as early as possible and apply join using hash table rather than using map function to match join key with other data table in the second phase but using hash tables isn't affecting on memory size because we only save matched records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm has higher performance than two other algorithms while increasing the data size from 10 million records to 500 million and running time are increased according to the size of joined records between two tables.

Keywords: map reduce, hadoop, semi join, two way join

Procedia PDF Downloads 513
27862 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: fault detection, health monitoring, unmanned aerial vehicles, vibration analysis

Procedia PDF Downloads 262
27861 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays

Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal

Abstract:

Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).

Keywords: fault tolerance, FPGA, single event upset, approximate computing

Procedia PDF Downloads 198
27860 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131
27859 Determination of Hydrocarbon Path Migration from Gravity Data Analysis (Ghadames Basin, Southern Tunisia, North Africa)

Authors: Mohamed Dhaoui, Hakim Gabtni

Abstract:

The migration of hydrocarbons is a fairly complicated process that depends on several parameters, both structural and sedimentological. In this study, we will try to determine secondary migration paths which convey hydrocarbon from their main source rock to the largest reservoir of the Paleozoic petroleum system of the Tunisian part of Ghadames basin. In fact, The Silurian source rock is the main source rock of the Paleozoic petroleum system of the Ghadames basin. However, the most solicited reservoir in this area is the Triassic reservoir TAGI (Trias Argilo-Gréseux Inférieur). Several geochemical studies have confirmed that oil products TAGI come mainly from the Tannezuft Silurian source rock. That being said that secondary migration occurs through the fault system which affects the post-Silurian series. Our study is based on analysis and interpretation of gravity data. The gravity modeling was conducted in the northern part of Ghadames basin and the Telemzane uplift. We noted that there is a close relationship between the location of producing oil fields and gravity gradients which separate the positive and negative gravity anomalies. In fact, the analysis and transformation of the Bouguer anomaly map, and the residual gravity map allowed as understanding the architecture of the Precambrian in the study area, thereafter gravimetric models were established allowed to determine the probable migration path.

Keywords: basement, Ghadames, gravity, hydrocarbon, migration path

Procedia PDF Downloads 367
27858 Geomorphology of Karst Features of Shiraz City and Arjan Plain and Development Limitations

Authors: Meysam Jamali, Ebrahim Moghimi, Zean Alabden Jafarpour

Abstract:

Karst term is the determiner of a variety of areas or landforms and unique perspectives that have been formed in result of the ingredients dissolution of rocks constituter by natural waters. Shiraz area with an area of 5322km2 is located in the simple folded belt in the southern part of Zagros Mountain of Fars, and is surrounded with Limestone Mountains (Asmari formation). Shiraz area is located in Calcareous areas. The Infrastructure of this city is lime and absorbing wells that the city has, can influence on the Limestone dissolution and those accelerate its rate and increases the cavitation below the surface. Dasht-e Arjan is a graben, which has been created as the result of activity of two normal faults in its east and west sides. It is a complete sample of Karst plains (Polje) which has been created with the help of tectonic forces (fault) and dissolution process of water in Asmari limestone formation. It is located 60km. off south west of Shiraz (on Kazeroon-Shiraz road). In 1971, UNESCO has recognized this plain as a reserve of biosphere. It is considered as one of the world’s most beautiful geological phenomena, so that most of the world’s geologists are interested in visiting this place. The purpose of this paper is to identify and introduce landscapes of Karst features shiraz city and Dasht-e Arjan including Karst dissolution features (Lapiez, Karst springs, dolines, caves, underground caves, ponors, and Karst valleys), anticlines and synclines, and Arjan Lake, which are studied in this paper.

Keywords: Dasht-eArjan, fault, Karst features, polje, Shiraz city, Zagros

Procedia PDF Downloads 420
27857 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi

Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham

Abstract:

Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.

Keywords: dam site, fault, geophysic, investigation, Meskiana

Procedia PDF Downloads 88
27856 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid

Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong

Abstract:

Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.

Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function

Procedia PDF Downloads 100
27855 Identification of Failures Occurring on a System on Chip Exposed to a Neutron Beam for Safety Applications

Authors: S. Thomet, S. De-Paoli, F. Ghaffari, J. M. Daveau, P. Roche, O. Romain

Abstract:

In this paper, we present a hardware module dedicated to understanding the fail reason of a System on Chip (SoC) exposed to a particle beam. Impact of Single-Event Effects (SEE) on processor-based SoCs is a concern that has increased in the past decade, particularly for terrestrial applications with automotive safety increasing requirements, as well as consumer and industrial domains. The SEE created by the impact of a particle on an SoC may have consequences that can end to instability or crashes. Specific hardening techniques for hardware and software have been developed to make such systems more reliable. SoC is then qualified using cosmic ray Accelerated Soft-Error Rate (ASER) to ensure the Soft-Error Rate (SER) remains in mission profiles. Understanding where errors are occurring is another challenge because of the complexity of operations performed in an SoC. Common techniques to monitor an SoC running under a beam are based on non-intrusive debug, consisting of recording the program counter and doing some consistency checking on the fly. To detect and understand SEE, we have developed a module embedded within the SoC that provide support for recording probes, hardware watchpoints, and a memory mapped register bank dedicated to software usage. To identify CPU failure modes and the most important resources to probe, we have carried out a fault injection campaign on the RTL model of the SoC. Probes are placed on generic CPU registers and bus accesses. They highlight the propagation of errors and allow identifying the failure modes. Typical resulting errors are bit-flips in resources creating bad addresses, illegal instructions, longer than expected loops, or incorrect bus accesses. Although our module is processor agnostic, it has been interfaced to a RISC-V by probing some of the processor registers. Probes are then recorded in a ring buffer. Associated hardware watchpoints are allowing to do some control, such as start or stop event recording or halt the processor. Finally, the module is also providing a bank of registers where the firmware running on the SoC can log information. Typical usage is for operating system context switch recording. The module is connected to a dedicated debug bus and is interfaced to a remote controller via a debugger link. Thus, a remote controller can interact with the monitoring module without any intrusiveness on the SoC. Moreover, in case of CPU unresponsiveness, or system-bus stall, the recorded information can still be recovered, providing the fail reason. A preliminary version of the module has been integrated into a test chip currently being manufactured at ST in 28-nm FDSOI technology. The module has been triplicated to provide reliable information on the SoC behavior. As the primary application domain is automotive and safety, the efficiency of the module will be evaluated by exposing the test chip under a fast-neutron beam by the end of the year. In the meantime, it will be tested with alpha particles and electromagnetic fault injection (EMFI). We will report in the paper on fault-injection results as well as irradiation results.

Keywords: fault injection, SoC fail reason, SoC soft error rate, terrestrial application

Procedia PDF Downloads 229
27854 Data-Driven Simulations Tools for Der and Battery Rich Power Grids

Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili

Abstract:

Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.

Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools

Procedia PDF Downloads 104
27853 Characterization of Double Shockley Stacking Fault in 4H-SiC Epilayer

Authors: Zhe Li, Tao Ju, Liguo Zhang, Zehong Zhang, Baoshun Zhang

Abstract:

In-grow stacking-faults (IGSFs) in 4H-SiC epilayers can cause increased leakage current and reduce the blocking voltage of 4H-SiC power devices. Double Shockley stacking fault (2SSF) is a common type of IGSF with double slips on the basal planes. In this study, a 2SSF in the 4H-SiC epilayer grown by chemical vaper deposition (CVD) is characterized. The nucleation site of the 2SSF is discussed, and a model for the 2SSF nucleation is proposed. Homo-epitaxial 4H-SiC is grown on a commercial 4 degrees off-cut substrate by a home-built hot-wall CVD. Defect-selected-etching (DSE) is conducted with melted KOH at 500 degrees Celsius for 1-2 min. Room temperature cathodoluminescence (CL) is conducted at a 20 kV acceleration voltage. Low-temperature photoluminescence (LTPL) is conducted at 3.6 K with the 325 nm He-Cd laser line. In the CL image, a triangular area with bright contrast is observed. Two partial dislocations (PDs) with a 20-degree angle in between show linear dark contrast on the edges of the IGSF. CL and LTPL spectrums are conducted to verify the IGSF’s type. The CL spectrum shows the maximum photoemission at 2.431 eV and negligible bandgap emission. In the LTPL spectrum, four phonon replicas are found at 2.468 eV, 2.438 eV, 2.420 eV and 2.410 eV, respectively. The Egx is estimated to be 2.512 eV. A shoulder with a red-shift to the main peak in CL, and a slight protrude at the same wavelength in LTPL are verified as the so called Egx- lines. Based on the CL and LTPL results, the IGSF is identified as a 2SSF. Back etching by neutral loop discharge and DSE are conducted to track the origin of the 2SSF, and the nucleation site is found to be a threading screw dislocation (TSD) in this sample. A nucleation mechanism model is proposed for the formation of the 2SSF. Steps introduced by the off-cut and the TSD on the surface are both suggested to be two C-Si bilayers height. The intersections of such two types of steps are along [11-20] direction from the TSD, while a four-bilayer step at each intersection. The nucleation of the 2SSF in the growth is proposed as follows. Firstly, the upper two bilayers of the four-bilayer step grow down and block the lower two at one intersection, and an IGSF is generated. Secondly, the step-flow grows over the IGSF successively, and forms an AC/ABCABC/BA/BC stacking sequence. Then a 2SSF is formed and extends by the step-flow growth. In conclusion, a triangular IGSF is characterized by CL approach. Base on the CL and LTPL spectrums, the estimated Egx is 2.512 eV and the IGSF is identified to be a 2SSF. By back etching, the 2SSF nucleation site is found to be a TSD. A model for the 2SSF nucleation from an intersection of off-cut- and TSD- introduced steps is proposed.

Keywords: cathodoluminescence, defect-selected-etching, double Shockley stacking fault, low-temperature photoluminescence, nucleation model, silicon carbide

Procedia PDF Downloads 316
27852 Direct Transient Stability Assessment of Stressed Power Systems

Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara

Abstract:

This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.

Keywords: power system, transient stability, critical trajectory method, energy function method

Procedia PDF Downloads 386
27851 Statistical Tools for SFRA Diagnosis in Power Transformers

Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava

Abstract:

For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.

Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)

Procedia PDF Downloads 697
27850 Investigation of Subsurface Structures within Bosso Local Government for Groundwater Exploration Using Magnetic and Resistivity Data

Authors: Adetona Abbassa, Aliyu Shakirat B.

Abstract:

The study area is part of Bosso local Government, enclosed within Longitude 6.25’ to 6.31’ and Latitude 9.35’ to 9.45’, an area of 16x8 km², within the basement region of central Nigeria. The region is a host to Nigerian Airforce base 12 (NAF 12quick response) and its staff quarters, the headquarters of Bosso local government, the Independent National Electoral Commission’s two offices, four government secondary schools, six primary schools and Minna international airport. The area suffers an acute shortage of water from November when rains stop to June when rains commence within North Central Nigeria. A way of addressing this problem is a reconnaissance method to delineate possible fractures and fault lines that exists within the region by sampling the Aeromagnetic data and using an appropriate analytical algorithm to delineate these fractures. This is followed by an appropriate ground truthing method that will confirm if the fracture is connected to underground water movement. The first vertical derivative for structural analysis, reveals a set of lineaments labeled AA’, BB’, CC’, DD’, EE’ and FF’ all trending in the Northeast – Southwest directions. AA’ is just below latitude 9.45’ above Maikunkele village, cutting off the upper part of the field, it runs through Kangwo, Nini, Lawo and other communities. BB’ is at Latitude 9.43’ it truncated at about 2Km before Maikunkele and Kuyi. CC’ is around 9.40’ sitting below Maikunkele runs down through Nanaum. DD’ is from Latitude 9.38’; interestingly no community within this region where the fault passes through. A result from the three sites where Vertical Electrical Sounding was carried out reveals three layers comprised of topsoil, intermediate Clay formation and weathered/fractured or fresh basement. The depth to basement map was also produced, depth to the basement from the ground surface with VES A₂, B5, D₂ and E₁ to be relatively deeper with depth values range between 25 to 35 m while the shallower region of the area has a depth range value between 10 to 20 m. Hence, VES A₂, A₅, B₄, B₅, C₂, C₄, D₄, D₅, E₁, E₃, and F₄ are high conductivity zone that are prolific for groundwater potential. The depth range of the aquifer potential zones is between 22.7 m to 50.4 m. The result from site C is quite unique though the 3 layers were detected in the majority of the VES points, the maximum depth to the basement in 90% of the VES points is below 8 km, only three VES points shows considerably viability, which are C₆, E₂ and F₂ with depths of 35.2 m and 38 m respectively but lack of connectivity will be a big challenge of chargeability.

Keywords: lithology, aeromagnetic, aquifer, geoelectric, iso-resistivity, basement, vertical electrical sounding(VES)

Procedia PDF Downloads 139
27849 Ontology based Fault Detection and Diagnosis system Querying and Reasoning examples

Authors: Marko Batic, Nikola Tomasevic, Sanja Vranes

Abstract:

One of the strongholds in the ubiquitous efforts related to the energy conservation and energy efficiency improvement is represented by the retrofit of high energy consumers in buildings. In general, HVAC systems represent the highest energy consumers in buildings. However they usually suffer from mal-operation and/or malfunction, causing even higher energy consumption than necessary. Various Fault Detection and Diagnosis (FDD) systems can be successfully employed for this purpose, especially when it comes to the application at a single device/unit level. In the case of more complex systems, where multiple devices are operating in the context of the same building, significant energy efficiency improvements can only be achieved through application of comprehensive FDD systems relying on additional higher level knowledge, such as their geographical location, served area, their intra- and inter- system dependencies etc. This paper presents a comprehensive FDD system that relies on the utilization of common knowledge repository that stores all critical information. The discussed system is deployed as a test-bed platform at the two at Fiumicino and Malpensa airports in Italy. This paper aims at presenting advantages of implementation of the knowledge base through the utilization of ontology and offers improved functionalities of such system through examples of typical queries and reasoning that enable derivation of high level energy conservation measures (ECM). Therefore, key SPARQL queries and SWRL rules, based on the two instantiated airport ontologies, are elaborated. The detection of high level irregularities in the operation of airport heating/cooling plants is discussed and estimation of energy savings is reported.

Keywords: airport ontology, knowledge management, ontology modeling, reasoning

Procedia PDF Downloads 537
27848 Novel Formal Verification Based Coverage Augmentation Technique

Authors: Surinder Sood, Debajyoti Mukherjee

Abstract:

Formal verification techniques have become widely popular in pre-silicon verification as an alternate to constrain random simulation based techniques. This paper proposed a novel formal verification-based coverage augmentation technique in verifying complex RTL functional verification faster. The proposed approach relies on augmenting coverage analysis coming from simulation and formal verification. Besides this, the functional qualification framework not only helps in improving the coverage at a faster pace but also aids in maturing and qualifying the formal verification infrastructure. The proposed technique has helped to achieve faster verification sign-off, resulting in faster time-to-market. The design picked had a complex control and data path and had many configurable options to meet multiple specification needs. The flow is generic, and tool independent, thereby leveraging across the projects and design will be much easier

Keywords: COI (cone of influence), coverage, formal verification, fault injection

Procedia PDF Downloads 124
27847 Sync Consensus Algorithm: Trying to Reach an Agreement at Full Speed

Authors: Yuri Zinchenko

Abstract:

Recently, distributed storage systems have been used more and more in various aspects of everyday life. They provide such necessary properties as Scalability, Fault Tolerance, Durability, and others. At the same time, not only reliable but also fast data storage remains one of the most pressing issues in this area. That brings us to the consensus algorithm as one of the most important components that has a great impact on the functionality of a distributed system. This paper is the result of an analysis of several well-known consensus algorithms, such as Paxos and Raft. The algorithm it offers, called Sync, promotes, but does not insist on simultaneous writing to the nodes (which positively affects the overall writing speed) and tries to minimize the system's inactive time. This allows nodes to reach agreement on the system state in a shorter period, which is a critical factor for distributed systems. Also when developing Sync, a lot of attention was paid to such criteria as simplicity and intuitiveness, the importance of which is difficult to overestimate.

Keywords: sync, consensus algorithm, distributed system, leader-based, synchronization.

Procedia PDF Downloads 62
27846 Estimation of Seismic Ground Motion and Shaking Parameters Based on Microtremor Measurements at Palu City, Central Sulawesi Province, Indonesia

Authors: P. S. Thein, S. Pramumijoyo, K. S. Brotopuspito, J. Kiyono, W. Wilopo, A. Furukawa, A. Setianto

Abstract:

In this study, we estimated the seismic ground motion parameters based on microtremor measurements at Palu City. Several earthquakes have struck along the Palu-Koro Fault during recent years. The USGS epicenter, magnitude Mw 6.3 event that occurred on January 23, 2005 caused several casualties. We conducted a microtremor survey to estimate the strong ground motion distribution during the earthquake. From this survey we produced a map of the peak ground acceleration, velocity, seismic vulnerability index and ground shear strain maps in Palu City. We performed single observations of microtremor at 151 sites in Palu City. We also conducted 8-site microtremors array investigation to gain a representative determination of the soil condition of subsurface structures in Palu City. From the array observations, Palu City corresponds to relatively soil condition with Vs ≤ 300 m/s, the predominant periods due to horizontal vertical ratios (HVSRs) are in the range of 0.4 to 1.8 s and the frequency are in the range of 0.7 to 3.3 Hz. Strong ground motions of the Palu area were predicted based on the empirical stochastic green’s function method. Peak ground acceleration and velocity becomes more than 400 gal and 30 kine in some areas, which causes severe damage for buildings in high probability. Microtremor survey results showed that in hilly areas had low seismic vulnerability index and ground shear strain, whereas in coastal alluvium was composed of material having a high seismic vulnerability and ground shear strain indication.

Keywords: Palu-Koro fault, microtremor, peak ground acceleration, peak ground velocity, seismic vulnerability index

Procedia PDF Downloads 405
27845 Model-Based Diagnostics of Multiple Tooth Cracks in Spur Gears

Authors: Ahmed Saeed Mohamed, Sadok Sassi, Mohammad Roshun Paurobally

Abstract:

Gears are important machine components that are widely used to transmit power and change speed in many rotating machines. Any breakdown of these vital components may cause severe disturbance to production and incur heavy financial losses. One of the most common causes of gear failure is the tooth fatigue crack. Early detection of teeth cracks is still a challenging task for engineers and maintenance personnel. So far, to analyze the vibration behavior of gears, different approaches have been tried based on theoretical developments, numerical simulations, or experimental investigations. The objective of this study was to develop a numerical model that could be used to simulate the effect of teeth cracks on the resulting vibrations and hence to permit early fault detection for gear transmission systems. Unlike the majority of published papers, where only one single crack has been considered, this work is more realistic, since it incorporates the possibility of multiple simultaneous cracks with different lengths. As cracks significantly alter the gear mesh stiffness, we performed a finite element analysis using SolidWorks software to determine the stiffness variation with respect to the angular position for different combinations of crack lengths. A simplified six degrees of freedom non-linear lumped parameter model of a one-stage gear system is proposed to study the vibration of a pair of spur gears, with and without tooth cracks. The model takes several physical properties into account, including variable gear mesh stiffness and the effect of friction, but ignores the lubrication effect. The vibration simulation results of the gearbox were obtained via Matlab and Simulink. The results were found to be consistent with the results from previously published works. The effect of one crack with different levels was studied and very similar changes in the total mesh stiffness and the vibration response, both were observed and compared to what has been found in previous studies. The effect of the crack length on various statistical time domain parameters was considered and the results show that these parameters were not equally sensitive to the crack percentage. Multiple cracks are introduced at different locations and the vibration response and the statistical parameters were obtained.

Keywords: dynamic simulation, gear mesh stiffness, simultaneous tooth cracks, spur gear, vibration-based fault detection

Procedia PDF Downloads 211
27844 Discussion on the Impact Issues in Urban by Earthquake Disaster Cases

Authors: M. C. Teng, M. C. Ke, C. Y. Yang, S. S. Ke

Abstract:

There are more than one thousand times a year of felt earthquakes in Taiwan. Because earthquakes are disaster threats to urban infrastructure, they often disrupt infrastructure services. For example, the highway system is very important to transportation infrastructure; however, it is vulnerable to earthquakes and typhoons in Taiwan. When a highway system is damaged by disaster, it will create a major impact on post-disaster communications and emergency relief and affect disaster relief works. In a study case on September 18th, 2022, the Taitung Chihshang earthquake, with a magnitude of 6.8 on the Richter scale with a depth of 7 km, caused one death; 171 people were injured and had a significant urban infrastructure impact. Hualien and Taitung areas have a large number of surface ruptures, road disruptions due to the collapses, over ten cases of bridges failure or closed, partial railroad section service shutdown, building collapses, and casualties. Taitung Chihshang earthquake, the peak ground acceleration is 585 gal (cm/s²), and the seismic intensity is Level 6 Upper(6+)in Chishang, Taitung County. After the earthquakes, we conducted on-site disaster investigation works in the disaster area; the disaster investigation works included a public and private building survey, a transportation facility survey, a total of ten damaged bridges, and one railroad station damaged were investigated in this investigation. The results showed that the affected locations were mainly concentrated along the Chihshang fault and the Yuli fault in the Huatung Longitudinal Valley. We recorded and described the impact and assessed its influence region in terms of its susceptibility to and the consequences of earthquake attacks. In addition, a lesson is learned from this study regarding the key issues after the Taitung Chihshang earthquake.

Keywords: earthquake, infrastructure, disaster investigation, lesson learned

Procedia PDF Downloads 62
27843 Dem Based Surface Deformation in Jhelum Valley: Insights from River Profile Analysis

Authors: Syed Amer Mahmood, Rao Mansor Ali Khan

Abstract:

This study deals with the remote sensing analysis of tectonic deformation and its implications to understand the regional uplift conditions in the lower Jhelum and eastern Potwar. Identification and mapping of active structures is an important issue in order to assess seismic hazards and to understand the Quaternary deformation of the region. Digital elevation models (DEMs) provide an opportunity to quantify land surface geometry in terms of elevation and its derivatives. Tectonic movement along the faults is often reflected by characteristic geomorphological features such as elevation, stream offsets, slope breaks and the contributing drainage area. The river profile analysis in this region using SRTM digital elevation model gives information about the tectonic influence on the local drainage network. The steepness and concavity indices have been calculated by power law of scaling relations under steady state conditions. An uplift rate map is prepared after carefully analysing the local drainage network showing uplift rates in mm/year. The active faults in the region control local drainages and the deflection of stream channels is a further evidence of the recent fault activity. The results show variable relative uplift conditions along MBT and Riasi and represent a wonderful example of the recency of uplift, as well as the influence of active tectonics on the evolution of young orogens.

Keywords: quaternary deformation, SRTM DEM, geomorphometric indices, active tectonics and MBT

Procedia PDF Downloads 348
27842 Electromagnetic Simulation of Underground Cable Perforation by Nail

Authors: Ahmed Nour El Islam Ayad, Tahar Rouibah, Wafa Krika, Houari Boudjella, Larab Moulay, Farid Benhamida, Selma Benmoussa

Abstract:

The purpose of this study is to evaluate the electromagnetic field of an underground cable of very high voltage perforated by nail. The aim of this work shows a numerical simulation of the electromagnetic field of 400 kV line after perforation through a ferrous nail in four positions for the pinch pin at different distances. From results for a longitudinal section, we observe and evaluate the distribution and the variation of the electromagnetic field in the cable and the earth. When the nail approaches the underground power cable, the distribution of the magnetic field changes and takes several forms, the magnetic field increase and become very important when the nail breaks the metal screen and will produce a significant leak of the electric field, characterized by a large electric arc and or electric discharge to earth and then a fault in the electrical network. These electromagnetic analysis results help to detect defects in underground cables.

Keywords: underground, electromagnetic, nail, defect

Procedia PDF Downloads 231
27841 Seismic Hazard Analysis for a Multi Layer Fault System: Antalya (SW Turkey) Example

Authors: Nihat Dipova, Bulent Cangir

Abstract:

This article presents the results of probabilistic seismic hazard analysis (PSHA) for Antalya (SW Turkey). South west of Turkey is characterized by large earthquakes resulting from the continental collision between the African, Arabian and Eurasian plates and crustal faults. Earthquakes around the study area are grouped into two; crustal earthquakes (D=0-50 km) and subduction zone earthquakes (50-140 km). Maximum observed magnitude of subduction earthquakes is Mw=6.0. Maximum magnitude of crustal earthquakes is Mw=6.6. Sources for crustal earthquakes are faults which are related with Isparta Angle and Cyprus Arc tectonic structures. A new earthquake catalogue for Antalya, with unified moment magnitude scale has been prepared and seismicity of the area around Antalya city has been evaluated by defining ‘a’ and ‘b’ parameters of the Gutenberg-Richter recurrence relationship. The Standard Cornell-McGuire method has been used for hazard computation utilizing CRISIS2007 software. Attenuation relationships proposed by Chiou and Youngs (2008) has been used for 0-50 km earthquakes and Youngs et. al (1997) for deep subduction earthquakes. Finally, Seismic hazard map for peak horizontal acceleration on a uniform site condition of firm rock (average shear wave velocity of about 1130 m/s) at a hazard level of 10% probability of exceedance in 50 years has been prepared.

Keywords: Antalya, peak ground acceleration, seismic hazard assessment, subduction

Procedia PDF Downloads 371
27840 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models

Authors: Yahia. Kourd, N. Guersi D. Lefebvre

Abstract:

In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.

Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor

Procedia PDF Downloads 636
27839 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 158
27838 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability

Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto

Abstract:

Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.

Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT

Procedia PDF Downloads 795
27837 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate

Authors: Susan Diamond

Abstract:

Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare. 

Keywords: deep learning, machine learning, cognitive computing, model training

Procedia PDF Downloads 209
27836 The Genesis of the Anomalous Sernio Fan (Valtellina, Northern Italy)

Authors: Erika De Finis, Paola Gattinoni, Laura Scesi

Abstract:

Massive rock avalanches formed some of the largest landslide deposits on Earth and they represent one of the major geohazards in high-relief mountains. This paper interprets a very large sedimentary fan (the Sernio fan, Valtellina, Northern Italy), located 20 Km SW from Val Pola Rock avalanche (1987), as the deposit of a partial collapse of a Deep Seated Gravitational Slope Deformation (DSGSD), afterwards eroded and buried by debris flows. The proposed emplacement sequence has been reconstructed based on geomorphological, structural and mechanical evidences. The Sernio fan is actually considered anomalous with reference to the very high ratio between the fan area (about 4.5km2) and the basin area (about 3km2). The morphology of the fan area is characterised by steep slopes (dip about 20%) and the fan apex is extended for 1.8 km inside the small catchment basin. This sedimentary fan was originated by a landslide that interested a part of a large deep-seated gravitational slope deformation, involving a wide area of about 55 km². The main controlling factor is tectonic and it is related to the proximity to regional fault systems and the consequent occurrence of fault weak rocks (GSI locally lower than 10 with compressive stress lower than 20MPa). Moreover, the fan deposit shows sedimentary evidences of recent debris flow events. The best current explanation of the Sernio fan involves an initial failure of some hundreds of Mm3. The run-out was quite limited because of the morphology of Valtellina’s valley floor, and the deposit filled the main valley forming a landslide dam, as confirmed by the lacustrine deposits detected upstream the fan. Nowadays the debris flow events represent the main hazard in the study area.

Keywords: anomalous sedimentary fans, deep seated gravitational slope deformation, Italy, rock avalanche

Procedia PDF Downloads 476
27835 Mega Development Projects Problems and Challenges From a Social Science Perspective: A Critical Review

Authors: Shakir Ullah

Abstract:

This article reviews social science understanding to explore the challenges megaprojects face before and after implementation. It also sheds light on the problems directly and indirectly caused by mega development projects in the project implemented areas. By Using a qualitative approach such as thematic analysis, the article uses recent literature such as published articles, government reports, and books to cite examples of different mega projects worldwide. The study report that mega development projects are a necessary element of the modern-day infrastructural development process as they represent the perfect example of urban socioeconomic development. They are introduced and implemented by multinational companies with the support of state authorities to produce the common good. However, they are not devoid of their critical challenges and bring implicit and explicit problems to the targeted localities. The article takes insights from social science research for suggestions on how to reduce the challenges faced by project implementers and problems received by local people due to the fault lines of such projects.

Keywords: development, mega-projects, challenges, problems

Procedia PDF Downloads 103
27834 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors

Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui

Abstract:

Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.

Keywords: data-driven method, process control, anomaly detection, dimensionality reduction

Procedia PDF Downloads 299