Search results for: exponential time differencing method
32479 A Gradient Orientation Based Efficient Linear Interpolation Method
Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar
Abstract:
This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing
Procedia PDF Downloads 26132478 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition
Procedia PDF Downloads 33332477 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart
Authors: Yupaporn Areepong
Abstract:
The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).Keywords: average run length, optimal parameters, exponentially weighted moving average (EWMA), control chart
Procedia PDF Downloads 56032476 Incorporating Moving Authority Limits Into Driving Advice
Authors: Peng Zhou, Peter Pudney
Abstract:
Driver advice systems are used by many rail operators to help train drivers to improve timekeeping while minimising energy use. These systems typically operate independently of the safeworking system, because information on how far the train is allowed to travel -the “limit of authority"- is usually not available as real-time data that can be used when generating driving advice. This is not an issue when there is sufficient separation between trains. But on systems with low headways, driving advice could conflict with safeworking requirements. We describe a method for generating driving advice that takes into account a moving limit of authority that is communicated to the train in real-time. We illustrate the method with four simulated examples using data from the Zhengzhou Metro. The method will allow driver advice systems to be used more effectively on railways with low headways.Keywords: railway transportation, energy efficient train operation, optimal train control, safe separation
Procedia PDF Downloads 1432475 Self-Calibration of Fish-Eye Camera for Advanced Driver Assistance Systems
Authors: Atef Alaaeddine Sarraj, Brendan Jackman, Frank Walsh
Abstract:
Tomorrow’s car will be more automated and increasingly connected. Innovative and intuitive interfaces are essential to accompany this functional enrichment. For that, today the automotive companies are competing to offer an advanced driver assistance system (ADAS) which will be able to provide enhanced navigation, collision avoidance, intersection support and lane keeping. These vision-based functions require an accurately calibrated camera. To achieve such differentiation in ADAS requires sophisticated sensors and efficient algorithms. This paper explores the different calibration methods applicable to vehicle-mounted fish-eye cameras with arbitrary fields of view and defines the first steps towards a self-calibration method that adequately addresses ADAS requirements. In particular, we present a self-calibration method after comparing different camera calibration algorithms in the context of ADAS requirements. Our method gathers data from unknown scenes while the car is moving, estimates the camera intrinsic and extrinsic parameters and corrects the wide-angle distortion. Our solution enables continuous and real-time detection of objects, pedestrians, road markings and other cars. In contrast, other camera calibration algorithms for ADAS need pre-calibration, while the presented method calibrates the camera without prior knowledge of the scene and in real-time.Keywords: advanced driver assistance system (ADAS), fish-eye, real-time, self-calibration
Procedia PDF Downloads 25232474 Reliability Modeling on Drivers’ Decision during Yellow Phase
Authors: Sabyasachi Biswas, Indrajit Ghosh
Abstract:
The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.Keywords: decision-making decision, dilemma zone, surrogate model, Kriging
Procedia PDF Downloads 30932473 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: optimal control, stochastic systems, random dither, quantization
Procedia PDF Downloads 44632472 Comparative Study of Non-Identical Firearms with Priority to Repair Subject to Inspection
Authors: A. S. Grewal, R. S. Sangwan, Dharambir, Vikas Dhanda
Abstract:
The purpose of this paper is to develop and analyze two reliability models for a system of non-identical firearms – one is standard firearm (called as original unit) and the other is a country-made firearm (called as duplicate /substandard unit). There is a single server who comes immediately to do inspection and repair whenever needed. On the failure of standard firearm, the server inspects the operative country-made firearm to see whether the unit is capable of performing the desired function well or not. If country-made firearm is not capable to do so, the operation of the system is stopped and server starts repair of the standard firearms immediately. However, no inspection is done at the failure of the country-made firearm as the country-made firearm alone is capable of performing the given task well. In model I, priority to repair the standard firearm is given in case system fails completely and country-made firearm is already under repair, whereas in model II there is no such priority. The failure and repair times of each unit are assumed to be independent and uncorrelated random variables. The distributions of failure time of the units are taken as negative exponential while that of repair and inspection times are general. By using semi-Markov process and regenerative point technique some econo-reliability measures are obtained. Graphs are plotted to compare the MTSF (mean time to system failure), availability and profit of the models for a particular case.Keywords: non-identical firearms, inspection, priority to repair, semi-Markov process, regenerative point
Procedia PDF Downloads 42732471 Automated Method Time Measurement System for Redesigning Dynamic Facility Layout
Authors: Salam Alzubaidi, G. Fantoni, F. Failli, M. Frosolini
Abstract:
The dynamic facility layout problem is a really critical issue in the competitive industrial market; thus, solving this problem requires robust design and effective simulation systems. The sustainable simulation requires inputting reliable and accurate data into the system. So this paper describes an automated system integrated into the real environment to measure the duration of the material handling operations, collect the data in real-time, and determine the variances between the actual and estimated time schedule of the operations in order to update the simulation software and redesign the facility layout periodically. The automated method- time measurement system collects the real data through using Radio Frequency-Identification (RFID) and Internet of Things (IoT) technologies. Hence, attaching RFID- antenna reader and RFID tags enables the system to identify the location of the objects and gathering the time data. The real duration gathered will be manipulated by calculating the moving average duration of the material handling operations, choosing the shortest material handling path, and then updating the simulation software to redesign the facility layout accommodating with the shortest/real operation schedule. The periodic simulation in real-time is more sustainable and reliable than the simulation system relying on an analysis of historical data. The case study of this methodology is in cooperation with a workshop team for producing mechanical parts. Although there are some technical limitations, this methodology is promising, and it can be significantly useful in the redesigning of the manufacturing layout.Keywords: dynamic facility layout problem, internet of things, method time measurement, radio frequency identification, simulation
Procedia PDF Downloads 12232470 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime
Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.Keywords: data fusion, round types speed hump, speed hump detection, surface filter
Procedia PDF Downloads 51232469 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm
Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu
Abstract:
Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model
Procedia PDF Downloads 25132468 Green Extraction of Patchoulol from Patchouli Leaves Using Ultrasound-Assisted Ionic Liquids
Authors: G. C. Jadeja, M. A. Desai, D. R. Bhatt, J. K. Parikh
Abstract:
Green extraction techniques are fast paving ways into various industrial sectors due to the stringent governmental regulations leading to the banning of toxic chemicals’ usage and also due to the increasing health/environmental awareness. The present work describes the ionic liquids based sonication method for selectively extracting patchoulol from the leaves of patchouli. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and N,N,N,N’,N’,N’-Hexaethyl-butane-1,4-diammonium dibromide (dicationic ionic liquid - DIL) were selected for extraction. Ultrasound assisted ionic liquid extraction was employed considering concentration of ionic liquid (4–8 %, w/w), ultrasound power (50–150 W for [Bmim]BF4 and 20–80 W for DIL), temperature (30–50 oC) and extraction time (30–50 min) as major parameters influencing the yield of patchoulol. Using the Taguchi method, the parameters were optimized and analysis of variance (ANOVA) was performed to find the most influential factor in the selected extraction method. In case of [Bmim]BF4, the optimum conditions were found to be: 4 % (w/w) ionic liquid concentration, 50 W power, 30 oC temperature and extraction time of 30 min. The yield obtained under the optimum conditions was 3.99 mg/g. In case of DIL, the optimum conditions were obtained as 6 % (w/w) ionic liquid concentration, 80 W power, 30 oC temperature and extraction time of 40 min, for which the yield obtained was 4.03 mg/g. Temperature was found to be the most significant factor in both the cases. Extraction time was the insignificant parameter while extracting the product using [Bmim]BF4 and in case of DIL, power was found to be the least significant factor affecting the process. Thus, a green method of recovering patchoulol is proposed.Keywords: green extraction, ultrasound, patchoulol, ionic liquids
Procedia PDF Downloads 36432467 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media
Authors: Olayiwola Moruf Oyedunsi
Abstract:
This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation
Procedia PDF Downloads 32332466 A Semi-Implicit Phase Field Model for Droplet Evolution
Authors: M. H. Kazemi, D. Salac
Abstract:
A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method
Procedia PDF Downloads 48232465 Socratic Style of Teaching: An Analysis of Dialectical Method
Authors: Muhammad Jawwad, Riffat Iqbal
Abstract:
The Socratic method, also known as the dialectical method and elenctic method, has significant relevance in the contemporary educational system. It can be incorporated into modern-day educational systems theoretically as well as practically. Being interactive and dialogue-based in nature, this teaching approach is followed by critical thinking and innovation. The pragmatic value of the Dialectical Method has been discussed in this article, and the limitations of the Socratic method have also been highlighted. The interactive Method of Socrates can be used in many subjects for students of different grades. The Limitations and delimitations of the Method have also been discussed for its proper implementation. This article has attempted to elaborate and analyze the teaching method of Socrates with all its pre-suppositions and Epistemological character.Keywords: Socratic method, dialectical method, knowledge, teaching, virtue
Procedia PDF Downloads 13532464 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application
Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon
Abstract:
This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI
Procedia PDF Downloads 34832463 Real-Time Detection of Space Manipulator Self-Collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: space manipulator, collision detection, self-collision, the real-time collision detection
Procedia PDF Downloads 47032462 Life Cycle Analysis of the Antibacterial Gel Product Using Iso 14040 and Recipe 2016 Method
Authors: Pablo Andres Flores Siguenza, Noe Rodrigo Guaman Guachichullca
Abstract:
Sustainable practices have received increasing attention from academics and companies in recent decades due to, among many factors, the market advantages they generate, global commitments, and policies aimed at reducing greenhouse gas emissions, addressing resource scarcity, and rethinking waste management. The search for ways to promote sustainability leads industries to abandon classical methods and resort to the use of innovative strategies, which in turn are based on quantitative analysis methods and tools such as life cycle analysis (LCA), which is the basis for sustainable production and consumption, since it is a method that analyzes objectively, methodically, systematically, and scientifically the environmental impact caused by a process/product during its entire life cycle. The objective of this study is to develop an LCA of the antibacterial gel product throughout its entire supply chain (SC) under the methodology of ISO 14044 with the help of Gabi software and the Recipe 2016 method. The selection of the case study product was made based on its relevance in the current context of the COVID-19 pandemic and its exponential increase in production. For the development of the LCA, data from a Mexican company are used, and 3 scenarios are defined to obtain the midpoint and endpoint environmental impacts both by phases and globally. As part of the results, the most outstanding environmental impact categories are climate change, fossil fuel depletion, and terrestrial ecotoxicity, and the stage that generates the most pollution in the entire SC is the extraction of raw materials. The study serves as a basis for the development of different sustainability strategies, demonstrates the usefulness of an LCA, and agrees with different authors on the role and importance of this methodology in sustainable development.Keywords: sustainability, sustainable development, life cycle analysis, environmental impact, antibacterial gel
Procedia PDF Downloads 5732461 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Mixed Integration Method: Stability Aspects and Computational Efficiency
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
In order to reduce numerical computations in the nonlinear dynamic analysis of seismically base-isolated structures, a Mixed Explicit-Implicit time integration Method (MEIM) has been proposed. Adopting the explicit conditionally stable central difference method to compute the nonlinear response of the base isolation system, and the implicit unconditionally stable Newmark’s constant average acceleration method to determine the superstructure linear response, the proposed MEIM, which is conditionally stable due to the use of the central difference method, allows to avoid the iterative procedure generally required by conventional monolithic solution approaches within each time step of the analysis. The main aim of this paper is to investigate the stability and computational efficiency of the MEIM when employed to perform the nonlinear time history analysis of base-isolated structures with sliding bearings. Indeed, in this case, the critical time step could become smaller than the one used to define accurately the earthquake excitation due to the very high initial stiffness values of such devices. The numerical results obtained from nonlinear dynamic analyses of a base-isolated structure with a friction pendulum bearing system, performed by using the proposed MEIM, are compared to those obtained adopting a conventional monolithic solution approach, i.e. the implicit unconditionally stable Newmark’s constant acceleration method employed in conjunction with the iterative pseudo-force procedure. According to the numerical results, in the presented numerical application, the MEIM does not have stability problems being the critical time step larger than the ground acceleration one despite of the high initial stiffness of the friction pendulum bearings. In addition, compared to the conventional monolithic solution approach, the proposed algorithm preserves its computational efficiency even when it is adopted to perform the nonlinear dynamic analysis using a smaller time step.Keywords: base isolation, computational efficiency, mixed explicit-implicit method, partitioned solution approach, stability
Procedia PDF Downloads 27932460 Numerical Investigation of Turbulent Inflow Strategy in Wind Energy Applications
Authors: Arijit Saha, Hassan Kassem, Leo Hoening
Abstract:
Ongoing climate change demands the increasing use of renewable energies. Wind energy plays an important role in this context since it can be applied almost everywhere in the world. To reduce the costs of wind turbines and to make them more competitive, simulations are very important since experiments are often too costly if at all possible. The wind turbine on a vast open area experiences the turbulence generated due to the atmosphere, so it was of utmost interest from this research point of view to generate the turbulence through various Inlet Turbulence Generation methods like Precursor cyclic and Kaimal Spectrum Exponential Coherence (KSEC) in the computational simulation domain. To be able to validate computational fluid dynamic simulations of wind turbines with the experimental data, it is crucial to set up the conditions in the simulation as close to reality as possible. This present work, therefore, aims at investigating the turbulent inflow strategy and boundary conditions of KSEC and providing a comparative analysis alongside the Precursor cyclic method for Large Eddy Simulation within the context of wind energy applications. For the generation of the turbulent box through KSEC method, firstly, the constrained data were collected from an auxiliary channel flow, and later processing was performed with the open-source tool PyconTurb, whereas for the precursor cyclic, only the data from the auxiliary channel were sufficient. The functionality of these methods was studied through various statistical properties such as variance, turbulent intensity, etc with respect to different Bulk Reynolds numbers, and a conclusion was drawn on the feasibility of KSEC method. Furthermore, it was found necessary to verify the obtained data with DNS case setup for its applicability to use it as a real field CFD simulation.Keywords: Inlet Turbulence Generation, CFD, precursor cyclic, KSEC, large Eddy simulation, PyconTurb
Procedia PDF Downloads 9732459 Study on Measuring Method and Experiment of Arc Fault Detection Device
Authors: Yang Jian-Hong, Zhang Ren-Cheng, Huang Li
Abstract:
Arc fault is one of the main inducements of electric fires. Arc Fault Detection Device (AFDD) can detect arc fault effectively. Arc fault detections and unhooking standards are the keys to AFDD practical application. First, an arc fault continuous production system was developed, which could count the arc half wave number. Then, Combining with the UL1699 standard, ignition probability curve of cotton and unhooking time of various currents intensity were obtained by experiments. The combustion degree of arc fault could be expressed effectively by arc area. Experiments proved that electric fires would be misjudged or missed only using arc half wave number as AFDD unhooking basis. At last, Practical tests were carried out on the self-developed AFDD system. The result showed that actual AFDD unhooking time was the sum of arc half wave cycling number, Arc wave identification time and unhooking mechanical operation time And the first two shared shorter time. Unhooking time standard depended on the shortest mechanical operation time.Keywords: arc fault detection device, arc area, arc half wave, unhooking time, arc fault
Procedia PDF Downloads 51032458 High Accuracy Analytic Approximations for Modified Bessel Functions I₀(x)
Authors: Pablo Martin, Jorge Olivares, Fernando Maass
Abstract:
A method to obtain analytic approximations for special function of interest in engineering and physics is described here. Each approximate function will be valid for every positive value of the variable and accuracy will be high and increasing with the number of parameters to determine. The general technique will be shown through an application to the modified Bessel function of order zero, I₀(x). The form and the calculation of the parameters are performed with the simultaneous use of the power series and asymptotic expansion. As in Padé method rational functions are used, but now they are combined with other elementary functions as; fractional powers, hyperbolic, trigonometric and exponential functions, and others. The elementary function is determined, considering that the approximate function should be a bridge between the power series and the asymptotic expansion. In the case of the I₀(x) function two analytic approximations have been already determined. The simplest one is (1+x²/4)⁻¹/⁴(1+0.24273x²) cosh(x)/(1+0.43023x²). The parameters of I₀(x) were determined using the leading term of the asymptotic expansion and two coefficients of the power series, and the maximum relative error is 0.05. In a second case, two terms of the asymptotic expansion were used and 4 of the power series and the maximum relative error is 0.001 at x≈9.5. Approximations with much higher accuracy will be also shown. In conclusion a new technique is described to obtain analytic approximations to some functions of interest in sciences, such that they have a high accuracy, they are valid for every positive value of the variable, they can be integrated and differentiated as the usual, functions, and furthermore they can be calculated easily even with a regular pocket calculator.Keywords: analytic approximations, mathematical-physics applications, quasi-rational functions, special functions
Procedia PDF Downloads 25232457 Spectrophotometric Determination of Photohydroxylated Products of Humic Acid in the Presence of Salicylate Probe
Authors: Julide Hizal Yucesoy, Batuhan Yardimci, Aysem Arda, Resat Apak
Abstract:
Humic substances produce reactive oxygene species such as hydroxyl, phenoxy and superoxide radicals by oxidizing in a wide pH and reduction potential range. Hydroxyl radicals, produced by reducing agents such as antioxidants and/or peroxides, attack on salicylate probe, and form 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate and 2,5-dihydroxybenzoate species. These species are quantitatively determined by using HPLC Method. Humic substances undergo photodegradation by UV radiation. As a result of their antioxidant properties, they produce hydroxyl radicals. In the presence of salicylate probe, these hydroxyl radicals react with salicylate molecules to form hydroxylated products (dihidroxybenzoate isomers). In this study, humic acid was photodegraded in a photoreactor at 254 nm (400W), formed hydroxyl radicals were caught by salicylate probe. The total concentration of hydroxylated salicylate species was measured by using spectrophotometric CUPRAC Method. And also, using results of time dependent experiments, kinetic of photohydroxylation was determined at different pHs. This method has been applied for the first time to measure the concentration of hydroxylated products. It allows to achieve the results easier than HPLC Method.Keywords: CUPRAC method, humic acid, photohydroxylation, salicylate probe
Procedia PDF Downloads 20732456 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images
Authors: U. Datta
Abstract:
The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection
Procedia PDF Downloads 13632455 The Effect of Goal Setting on Psychological Status and Freestyle Swimming Performance in Young Competitive Swimmers
Authors: Sofiene Amara, Mohamed Ali Bahri, Sabri Gaied Chortane
Abstract:
The purpose of this study was to examine the effect of personal goal setting on psychological parameters (cognitive anxiety, somatic anxiety, and self-confidence) and the 50m freestyle performance. 30 young swimmers participated in this investigation, and was divided into three groups, the first group (G1, n = 10, 14 ± 0.7 years old) was prepared for the competition without a fixed target (method 1), the second group (G2, n = 10, 14 ± 0.9 years old) was oriented towards a vague goal 'Do your best' (method 2), while the third group (G3, n = 10, 14 ± 0, 5 years old) was invited to answer a goal that is difficult to reach according to a goal-setting interval (GST) (method 3). According to the statistical data of the present investigation, the cognitive and somatic anxiety scores in G1 and G3 were higher than in G2 (G1-G2, G3-G2: cognitive anxiety, P = 0.000, somatic anxiety: P = 0.000 respectively). On the other hand, the self-confidence score was lower in G1 compared with the other two groups (G1-G2, G3-G2: P = 0.02, P = 0.03 respectively). Our assessment also shows that the 50m freestyle time performance was improved better by method 3 (pre and post-Test: P = 0.006, -2.5sec, 7.83%), than by method 2 (pre and Post-Test: P = 0.03; -1sec; 3.24%), while, performance remained unchanged in G1 (P > 0.05). To conclude, the setting of a difficult goal by GST is more effective to improve the chronometric performance in the 50m freestyle, but at the same time increased the values of the cognitive and somatic anxiety. For this, the mental trainers and the staff technical, invited to develop models of mental preparation associated with this method of setting a goal to help swimmers on the psychological level.Keywords: cognitive anxiety, goal setting, performance of swimming freestyle, self-confidence, somatic anxiety
Procedia PDF Downloads 13032454 Structural Health Monitoring and Damage Structural Identification Using Dynamic Response
Authors: Reza Behboodian
Abstract:
Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures.Keywords: failure, time history analysis, dynamic response, strain energy
Procedia PDF Downloads 13532453 Availability Analysis of Milling System in a Rice Milling Plant
Authors: P. C. Tewari, Parveen Kumar
Abstract:
The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.Keywords: availability modeling, Markov process, milling system, rice milling plant
Procedia PDF Downloads 23532452 Analysis of Temporal Factors Influencing Minimum Dwell Time Distributions
Authors: T. Pedersen, A. Lindfeldt
Abstract:
The minimum dwell time is an important part of railway timetable planning. Due to its stochastic behaviour, the minimum dwell time should be considered to create resilient timetables. While there has been significant focus on how to determine and estimate dwell times, to our knowledge, little research has been carried out regarding temporal and running direction variations of these. In this paper, we examine how the minimum dwell time varies depending on temporal factors such as the time of day, day of the week and time of the year. We also examine how it is affected by running direction and station type. The minimum dwell time is estimated by means of track occupation data. A method is proposed to ensure that only minimum dwell times and not planned dwell times are acquired from the track occupation data. The results show that on an aggregated level, the average minimum dwell times in both running directions at a station are similar. However, when temporal factors are considered, there are significant variations. The minimum dwell time varies throughout the day with peak hours having the longest dwell times. It is also found that the minimum dwell times are influenced by weekday, and in particular, weekends are found to have lower minimum dwell times than most other days. The findings show that there is a potential to significantly improve timetable planning by taking minimum dwell time variations into account.Keywords: minimum dwell time, operations quality, timetable planning, track occupation data
Procedia PDF Downloads 19932451 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor
Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park
Abstract:
A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system
Procedia PDF Downloads 21832450 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)
Authors: Ali Pourkazemi
Abstract:
The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies
Procedia PDF Downloads 69