Search results for: carbon conversion efficiency (CCE)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9595

Search results for: carbon conversion efficiency (CCE)

9265 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture

Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani

Abstract:

The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated.  Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.

Keywords: carbon capture and storage, oxy-combustion, netpower cycle, oxy turbine cycles, zero emission, heat exchanger design, supercritical carbon dioxide, oxy-fuel power plant, pinch point analysis

Procedia PDF Downloads 185
9264 Mesoporous Carbon Sphere/Nickel Cobalt Sulfide Core-Shell Microspheres for Supercapacitor Electrode Material

Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim

Abstract:

The depletion of non-renewable sources had led to the continuous development of various energy storage systems in order to cope with the world’s demand in energy. Supercapacitors have attracted considerable attention because they can store more energy than conventional capacitors and have higher power density than batteries. The combination of carbon-based material and metal chalcogenides are now being considered in response to the search for active electrode materials exhibiting high electrochemical performance. In this study, a hierarchical mesoporous carbon sphere@nickel cobalt sulfide (CS@Ni-Co-S) core-shell was synthesized using a simple hydrothermal method. The CS@Ni-Co-S core-shell microstructures exhibited a high capacitance of 724.4 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. Good specific retention of 86.1% and high Coulombic efficiency of 97.9% was obtained after 2000 charge-discharge cycles. The electrode exhibited a high energy density of 58.0 Wh kg−1 (1440 W kg−1) and high power density of 7200 W kg−1 (34.2 Wh kg−1). The reaction involved green synthesis without further sulfurization or post-heat treatment. Through this study, a cost-effective and facile synthesis of CS@Ni-Co-S as an active electrode showed favorable electrochemical performance.

Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor

Procedia PDF Downloads 213
9263 The Effect of Hydrogen on the Magnetic Properties of ZnO: A Density Functional Tight Binding Study

Authors: M. A. Lahmer, K. Guergouri

Abstract:

The ferromagnetic properties of carbon-doped ZnO (ZnO:CO) and hydrogenated carbon-doped ZnO (ZnO:CO+H) are investigated using the density functional tight binding (DFTB) method. Our results reveal that CO-doped ZnO is a ferromagnetic material with a magnetic moment of 1.3 μB per carbon atom. The presence of hydrogen in the material in the form of CO-H complex decreases the total magnetism of the material without suppressing ferromagnetism. However, the system in this case becomes quickly antiferromagnetic when the C-C separation distance was increased.

Keywords: ZnO, carbon, hydrogen, ferromagnetism, density functional tight binding

Procedia PDF Downloads 265
9262 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode

Authors: Sh. Heidari, A. J. Andrews, A. Oberoi

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.

Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon

Procedia PDF Downloads 481
9261 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO Hydrodeoxygenation, DFT, liquid fuels, XPS, XTL

Procedia PDF Downloads 321
9260 Analysis of BSF Layer N-Gaas/P-Gaas/P+-Gaas Solar Cell

Authors: Abderrahmane Hemmani, Hamid Khachab, Dennai Benmoussa, Hassane Benslimane, Abderrachid Helmaoui

Abstract:

Back surface field GaAs with n -p-p+ structures are found to have better characteristics than the conventional solar cells. A theory, based on the transport of both minority carriers under the charge neutrality condition, has been developed in the present paper which explains behavior of the back surface field solar cells. That is reported with an efficiency of 25,05% (Jsc=33.5mA/cm2, Vco=0.87v and fill factor 86% under AM1.5 global conditions). We present the effect of technological parameters of the p+ layer on the conversion efficiency on the solar cell. Good agreement is achieved between our results and the simulation results given the variation of the equivalent recombination velocity to p+ layer as a function of BSF thickness and BSF doping.

Keywords: back surface field, GaAs, solar cell, technological parameters

Procedia PDF Downloads 413
9259 Carbon Footprint of Educational Establishments: The Case of the University of Alicante

Authors: Maria R. Mula-Molina, Juan A. Ferriz-Papi

Abstract:

Environmental concerns are increasingly obtaining higher priority in sustainability agenda of educational establishments. This is important not only for its environmental performance in its own right as an organization, but also to present a model for its students. On the other hand, universities play an important role on research and innovative solutions for measuring, analyzing and reducing environmental impacts for different activities. The assessment and decision-making process during the activity of educational establishments is linked to the application of robust indicators. In this way, the carbon footprint is a developing indicator for sustainability that helps understand the direct impact on climate change. But it is not easy to implement. There is a large amount of considering factors involved that increases its complexity, such as different uses at the same time (research, lecturing, administration), different users (students, staff) or different levels of activity (lecturing, exam or holidays periods). The aim of this research is to develop a simplified methodology for calculating and comparing carbon emissions per user at university campus considering two main aspects for carbon accountings: Building operations and transport. Different methodologies applied in other Spanish university campuses are analyzed and compared to obtain a final proposal to be developed in this type of establishments. First, building operation calculation considers the different uses and energy sources consumed. Second, for transport calculation, the different users and working hours are calculated separately, as well as their origin and traveling preferences. For every transport, a different conversion factor is used depending on carbon emissions produced. The final result is obtained as an average of carbon emissions produced per user. A case study is applied to the University of Alicante campus in San Vicente del Raspeig (Spain), where the carbon footprint is calculated. While the building operation consumptions are known per building and month, it does not happen with transport. Only one survey about the habit of transport for users was developed in 2009/2010, so no evolution of results can be shown in this case. Besides, building operations are not split per use, as building services are not monitored separately. These results are analyzed in depth considering all factors and limitations. Besides, they are compared to other estimations in other campuses. Finally, the application of the presented methodology is also studied. The recommendations concluded in this study try to enhance carbon emission monitoring and control. A Carbon Action Plan is then a primary solution to be developed. On the other hand, the application developed in the University of Alicante campus cannot only further enhance the methodology itself, but also render the adoption by other educational establishments more readily possible and yet with a considerable degree of flexibility to cater for their specific requirements.

Keywords: building operations, built environment, carbon footprint, climate change, transport

Procedia PDF Downloads 268
9258 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space

Authors: Xin Chen

Abstract:

It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.

Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency

Procedia PDF Downloads 54
9257 Production of Natural Gas Hydrate by Using Air and Carbon Dioxide

Authors: Yun-Ho Ahn, Hyery Kang, Dong-Yeun Koh, Huen Lee

Abstract:

In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.

Keywords: air injection, carbon dioxide sequestration, hydrate production, natural gas hydrate

Procedia PDF Downloads 437
9256 Green Synthesis of Zinc Oxide Nano Particles Using Tomato (Lycopersicon esculentum) Extract and Its Application for Solar Cell

Authors: Prasanta Sutradhar, Mitali Saha

Abstract:

With an increasing awareness of green and clean energy, zinc oxide based solar cells were found to be suitable candidates for cost-effective and environmentally friendly energy conversion devices. In this work, we have reported the green synthesis of zinc oxide nanoparticles (ZnO) by thermal method and under microwave irradiation using the aqueous extract of tomatoes as non-toxic and ecofriendly reducing material. The synthesized ZnO nanoparticles were characterised by UV-Visible spectroscopy (UV-Vis), infra-red spectroscopy (IR), particle size analyser (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X- ray diffraction study (XRD). A series of ZnO nanocomposites with titanium dioxide nanoparticles (TiO2) and graphene oxide (GO) were prepared for photovoltaic application. Structural and morphological studies of these nanocomposites were carried out using UV-vis, SEM, XRD, and AFM. The current-voltage measurements of the nanocomposites demonstrated enhanced power conversion efficiency of 6.18% in case of ZnO/GO/TiO2 nanocomposite.

Keywords: ZnO, green synthesis, microwave, nanocomposites, I-V characteristics

Procedia PDF Downloads 379
9255 White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes

Authors: Manasa Perikala, Asha Bhardwaj

Abstract:

Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots.

Keywords: carbon dots, photoluminescence, size effects on emission in CDs, surface modification of carbon dots

Procedia PDF Downloads 113
9254 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.

Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system

Procedia PDF Downloads 282
9253 A Design Decision Framework for Net-Zero Carbon Buildings in Hot Climates: A Modeled Approach and Expert’s Feedback

Authors: Eric Ohene, Albert P. C. Chan, Shu-Chien HSU

Abstract:

The rising building energy consumption and related carbon emissions make it necessary to construct net-zero carbon buildings (NZCBs). The objective of net-zero buildings has raised the benchmark for building performance and will alter how buildings are designed and constructed. However, there have been growing concerns about uncertainty in net-zero building design and cost implications in decision-making. Lessons from practice have shown that a robust net-zero building design is complex, expensive, and time-consuming. Moreover, climate conditions have an enormous implication for choosing the best-optimal passive and active solutions to ensure building energy performance while ensuring the indoor comfort performance of occupants. It is observed that 20% of the design decisions made in the initial design phase influence 80% of all design decisions. To design and construct NZCBs, it is crucial to ensure adequate decision-making during the early design phases. Therefore, this study aims to explore practical strategies to design NZCBs and to offer a design framework that could help decision-making during the design stage of net-zero buildings. A parametric simulation approach was employed, and experts (i.e., architects, building designers) perspectives on the decision framework were solicited. The study could be helpful to building designers and architects to guide their decision-making during the design stage of NZCBs.

Keywords: net-zero, net-zero carbon building, energy efficiency, parametric simulation, hot climate

Procedia PDF Downloads 79
9252 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns

Procedia PDF Downloads 280
9251 Nondestructive Natural Gas Hydrate Production by Using Air and Carbon Dioxide

Authors: Ahn Yun-Ho, Hyery Kang, Koh Dong-Yeun, Huen Lee

Abstract:

In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.

Keywords: air injection, carbon dioxide sequestration, hydrate production, natural gas hydrate

Procedia PDF Downloads 551
9250 Modeling of Carbon Monoxide Distribution under the Sky-Train Stations

Authors: Suranath Chomcheon, Nathnarong Khajohnsaksumeth, Benchawan Wiwatanapataphee

Abstract:

Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds.

Keywords: air pollution, carbon monoxide, finite element, street canyon

Procedia PDF Downloads 103
9249 An Investigation on the Effect of Railway Track Elevation Project in Taichung Based on the Carbon Emissions

Authors: Kuo-Wei Hsu, Jen-Chih, Chao, Pei-Chen, Wu

Abstract:

With the rapid development of global economy, the increasing population, the highly industrialization, greenhouse gas emission and the ozone layer damage, the Global Warming happens. Facing the impact of global warming, the issue of “green transportation” began to be valued and promoted in each city. Taichung has been elected as the model of low-carbon city in Taiwan. To comply with international trends and the government policy, we tried to promote the energy saving and carbon reduction to create a “low-carbon Taichung with green life and eco-friendly economy”. To cooperate with the “green transportation” project, Taichung has promoted a number of public transports constructions and traffic policy in recent years like BRT, MRT, etc. The elevated railway is one of those important constructions. Cooperating with the green transport policy, elevated railway could help to achieve the carbon reduction for this low-carbon city. The current studies of the carbon emissions associated with railways and roads are focusing on the assessment on paving material, institutional policy and economic benefit. Except for changing the mode of transportation, elevated railways/roads also create space under the bridge. However, there is no research about the carbon emissions of the space underneath the elevated section up until now. This study investigated the effect of railway track elevation project in Taichung based on the carbon emissions and the factors that affect carbon emissions by research related theory and literature analysis. This study concluded that : railway track elevation increased the public transit, the bike lanes, the green areas and walking spaces. In the other hand it reduced the traffic congestions, the use of motorcycles as well as automobiles for carbon emissions.

Keywords: low-carbon city, green transportation, carbon emissions, Taichung, Taiwan

Procedia PDF Downloads 503
9248 Preparation of Activated Carbon from Lignocellulosic Precursor for Dyes Adsorption

Authors: H. Mokaddem, D. Miroud, N. Azouaou, F. Si-Ahmed, Z. Sadaoui

Abstract:

The synthesis and characterization of activated carbon from local lignocellulosic precursor (Algerian alfa) was carried out for the removal of cationic dyes from aqueous solutions. The effect of the production variables such as impregnation chemical agents, impregnation ratio, activation temperature and activation time were investigated. Carbon obtained using the optimum conditions (CaCl2/ 1:1/ 500°C/2H) was characterized by various analytical techniques scanning electron microscopy (SEM), infrared spectroscopic analysis (FTIR) and zero-point-of-charge (pHpzc). Adsorption tests of methylene blue on the optimal activated carbon were conducted. The effects of contact time, amount of adsorbent, initial dye concentration and pH were studied. The adsorption equilibrium examined using Langmuir, Freundlich, Temkin and Redlich–Peterson models reveals that the Langmuir model is most appropriate to describe the adsorption process. The kinetics of MB sorption onto activated carbon follows the pseudo-second order rate expression. The examination of the thermodynamic analysis indicates that the adsorption process is spontaneous (ΔG ° < 0) and endothermic (ΔH ° > 0), the positive value of the standard entropy shows the affinity between the activated carbon and the dye. The present study showed that the produced optimal activated carbon prepared from Algerian alfa is an effective low-cost adsorbent and can be employed as alternative to commercial activated carbon for removal of MB dye from aqueous solution.

Keywords: activated carbon, adsorption, cationic dyes, Algerian alfa

Procedia PDF Downloads 210
9247 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future.

Keywords: CO₂ emissions, CO₂ reduction, ready-mixed concrete, environmental impact assessment

Procedia PDF Downloads 456
9246 Pragmatic Analysis of the Effectiveness of a Power Conditioning Device (DC-DC Converters) in a Simple Photovoltaics System

Authors: Asowata Osamede

Abstract:

Solar radiation provides the largest renewable energy potential on earth and photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduce dependence on fossil fuels. The aim of this paper is to evaluate the efficiency of power conditioning devices with a focus on the Buck and Boost DC-DC converters (12 V, 24 V and 48 V) in a basic off grid PV system with a varying load profile. This would assist in harnessing more of the available solar energy. The practical setup consists of a PV panel that is set to an orientation angle of 0º N, with corresponding tilt angles. Preliminary results, which include data analysis showing the power loss in the system and efficiency, indicate that the 12V DC-DC converter coupled with the load profile had the highest efficiency for a latitude of 26º S throughout the year.

Keywords: poly-crystalline PV panels, DC-DC converters, tilt and orientation angles, direct solar radiation, load profile

Procedia PDF Downloads 139
9245 Carbon Capture and Storage: Prospects in India

Authors: Abhinav Sirvaiya, Karan Gupta, Pankaj Garg

Abstract:

The demand of energy is increasing at every part of the world. Thus, use of fossil fuel is efficient which results in large liberation of carbon dioxide in atmosphere. Tons of this CO2 raises the risk of dangerous climate changes. To minimize the risk carbon capture and storage (CCS) has to be used so that the emitted carbon dioxide do not reach the atmosphere. CCS is being considered as one of the options that could have a major role to play in India.With the growing awareness towards the global warming, carbon capture and sequestration has a great importance. New technologies and theories are in use to capture CO2. This paper contains the methodology and technologies that is in use to capture carbon dioxide in India. The present scenario of CCS is also being discussed. CCS is playing a major role in enhancing recovery of oil (ERO). Both the purpose 1) minimizing percentage of carbon dioxide in atmosphere and 2) enhancing recovery of oil are fulfilled from the CCS. The CO2 is usually captured from coal based power plant and from some industrial sources and then stored in the geological formations like oil and gas reservoir and deep aquifers or in oceans. India has large reservoirs of coal which are being used for storing CO2, as coal is a good absorbent of CO2. New technologies and studies are going on for injection purposes. Government has initiated new plans for CCS as CCS is technically feasible and economically attractive. A discussion is done on new schemes that should bring up CCS plans and approaches. Stakeholders are welcomed for suitability of CCS. There is still a need to potentially capture the CO2 and avail its storage in developing country like India.

Keywords: Carbon Capture and Storage (CCS), carbon dioxide (CO2), enhance oil recovery, geological formations, stakeholders

Procedia PDF Downloads 445
9244 Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustors for Methane, Propane and Hydrogen

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

The carbon footprint of the aviation sector in total measured 3.8% in 2017, and it is expected to triple by 2050. New combustion approaches and fuel types are necessary to prevent this. This paper will focus on using propane, methane, and hydrogen as fuel replacements for kerosene and implement a trapped vortex combustor design to increase efficiency. Reacting simulations were conducted for axisymmetric trapped vortex combustor to investigate the static pressure drop, combustion efficiency and pattern factor for various cavity aspect ratios for 0.3, 0.6 and 1 and air mass flow rates for 14 m/s, 28 m/s and 42 m/s. Propane, methane and hydrogen are used as alternative fuels. The combustion model was anchored based on swirl flame configuration with an emphasis on high fidelity of boundary conditions with favorable results of eddy dissipation model implementation. Reynolds Averaged Navier Stokes (RANS) k-ε model turbulence model for the validation effort was used for turbulence modelling. A grid independence study was conducted for the three-dimensional model to reduce computational time. Preliminary results for 24 m/s air mass flow rate provided a close temperature profile inside the cavity relative to the experimental study. The investigation will be carried out on the effect of air mass flow rates and cavity aspect ratio on the combustion efficiency, pattern factor and static pressure drop in the combustor. A comparison study among pure methane, propane and hydrogen will be conducted to investigate their suitability for trapped vortex combustors and conclude their advantages and disadvantages as a fuel replacement. Therefore, the study will be one of the milestones to achieving 2050 zero carbon emissions or reducing carbon emissions.

Keywords: computational fluid dynamics, aerodynamic, aerospace, propulsion, trapped vortex combustor

Procedia PDF Downloads 66
9243 Effects of China's Urban Form on Urban Carbon Emission

Authors: Lu Lin

Abstract:

Urbanization has reshaped physical environment, energy consumption and carbon emission of the urban area. China is a typical developing country under a rapid urbanization process and is the world largest carbon emission country. This study aims to explore the correlation between urban form and carbon emission caused by urban energy consumption in China. 287 provincial-level and prefecture-level cities are studied in 2000, 2005, and 2010. Compact ratio index, shape index, and fractal dimension index are used to quantify urban form. Geographically weighted regression (GWR) model is employed to explore the relationship between urban form, energy consumption, and related carbon emission. The results show the average compact ratio index decreased from 2000 to 2010 which indicates urban in China sprawled. The average fractal dimension index increases by 3%, indicating the spatial layouts of China's cities were more complicated. The results by the GWR model show that shape index and fractal dimension index had a non-significant relationship with carbon emission by urban energy consumption. However, compact urban form reduced carbon emission. The findings of this study will help policy-makers make sustainable urban planning and reduce urban carbon emission.

Keywords: carbon emission, GWR model, urban energy consumption, urban form

Procedia PDF Downloads 319
9242 Development of Closed System for Bacterial CO2 Mitigation

Authors: Somesh Misha, Smita Raghuvanshi, Suresh Gupta

Abstract:

Increasing concentration of green house gases (GHG's), such as CO2 is of major concern and start showing its impact nowadays. The recent studies are focused on developing the continuous system using photoautotrophs for CO2 mitigation and simultaneous production of primary and secondary metabolites as a value addition. The advent of carbon concentrating mechanism had blurred the distinction between autotrophs and heterotrophs and now the paradigm has shifted towards the carbon capture and utilization (CCU) rather than carbon capture and sequestration (CCS). In the present work, a bioreactor was developed utilizing the chemolithotrophic bacterial species using CO2 mitigation and simultaneous value addition. The kinetic modeling was done and the biokinetic parameters are obtained for developing the bioreactor. The bioreactor was developed and studied for its operation and performance in terms of volumetric loading rate, mass loading rate, elimination capacity and removal efficiency. The characterization of effluent from the bioreactor was carried out for the products obtained using the analyzing techniques such as FTIR, GC-MS, and NMR. The developed bioreactor promised an economic, efficient and effective solution for CO2 mitigation and simultaneous value addition.

Keywords: CO2 mitigation, bio-reactor, chemolithotrophic bacterial species, FTIR, GC-MS, NMR

Procedia PDF Downloads 442
9241 Reactivities of Turkish Lignites during Oxygen Enriched Combustion

Authors: Ozlem Uguz, Ali Demirci, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Lignitic coal holds its position as Turkey’s most important indigenous energy source to generate energy in thermal power plants. Hence, efficient and environmental-friendly use of lignite in electricity generation is of great importance. Thus, clean coal technologies have been planned to mitigate emissions and provide more efficient burning in power plants. In this context, oxygen enriched combustion (oxy-combustion) is regarded as one of the clean coal technologies, which based on burning with oxygen concentrations higher than that in air. As it is known that the most of the Turkish coals are low rank with high mineral matter content, unburnt carbon trapped in ash is, unfortunately, high, and it leads significant losses in the overall efficiencies of the thermal plants. Besides, the necessity of burning huge amounts of these low calorific value lignites to get the desired amount of energy also results in the formation of large amounts of ash that is rich in unburnt carbon. Oxygen enriched combustion technology enables to increase the burning efficiency through the complete burning of almost all of the carbon content of the fuel. This also contributes to the protection of air quality and emission levels drop reasonably. The aim of this study is to investigate the unburnt carbon content and the burning reactivities of several different lignite samples under oxygen enriched conditions. For this reason, the combined effects of temperature and oxygen/nitrogen ratios in the burning atmosphere were investigated and interpreted. To do this, Turkish lignite samples from Adıyaman-Gölbaşı and Kütahya-Tunçbilek regions were characterized first by proximate and ultimate analyses and the burning profiles were derived using DTA (Differential Thermal Analysis) curves. Then, these lignites were subjected to slow burning process in a horizontal tube furnace at different temperatures (200ºC, 400ºC, 600ºC for Adıyaman-Gölbaşı lignite and 200ºC, 450ºC, 800ºC for Kütahya-Tunçbilek lignite) under atmospheres having O₂+N₂ proportions of 21%O₂+79%N₂, 30%O₂+70%N₂, 40%O₂+60%N₂, and 50%O₂+50%N₂. These burning temperatures were specified based on the burning profiles derived from the DTA curves. The residues obtained from these burning tests were also analyzed by proximate and ultimate analyses to detect the unburnt carbon content along with the unused energy potential. Reactivity of these lignites was calculated using several methodologies. Burning yield under air condition (21%O₂+79%N₂) was used a benchmark value to compare the effectiveness of oxygen enriched conditions. It was concluded that oxygen enriched combustion method enhanced the combustion efficiency and lowered the unburnt carbon content of ash. Combustion of low-rank coals under oxygen enriched conditions was found to be a promising way to improve the efficiency of the lignite-firing energy systems. However, cost-benefit analysis should be considered for a better justification of this method since the use of more oxygen brings an unignorable additional cost.

Keywords: coal, energy, oxygen enriched combustion, reactivity

Procedia PDF Downloads 256
9240 Green approach of Anticorrosion Coating of Steel Based on Polybenzoxazine/Henna Nanocomposites

Authors: Salwa M. Elmesallamy, Ahmed A. Farag, Magd M. Badr, Dalia S. Fathy, Ahmed Bakry, Mona A. El-Etre

Abstract:

The term green environment is an international trend. It is become imperative to treat the corrosion of steel with a green coating to protect the environment. From the potential adverse effects of the traditional materials.A series of polybenzoxazine/henna composites (PBZ/henna), with different weight percent (3,5, and 7 wt % (of henna), were prepared for corrosion protection of carbon steel. The structures of the prepared composites were verified using FTIR analysis. The mechanical properties of the resins, such as adhesion, hardness, binding, and tensile strength, were also measured. It was found that the tensile strength increases by henna loading up to 25% higher than the tidy resin. The thermal stability was investigated by thermogravimetric analysis (TGA) the loading of lawsone (henna) molecules into the PBZ matrix increases the thermal stability of the composite. UV stability was tested by the UV weathering accelerator to examine the possibility that henna can also act as an aging UV stabilizer. The effect of henna content on the corrosion resistance of composite coatings was tested using potentiostatic polarization and electrochemical spectroscopy. The presence of henna in the coating matrix enhances the protection efficiency of polybenzoxazine coats. Increasing henna concentration increases the protection efficiency of composites. The quantum chemical calculations for polybenzoxazine/henna composites have resulted that the highest corrosion inhibition efficiency, has the highest EHOMO and lowest ELUMO; which is in good agreement with results obtained from experiments.

Keywords: polybenzoxazine, corrosion, green chemistry, carbon steel

Procedia PDF Downloads 75
9239 Macroalgae as a Gaseous Fuel Option: Potential and Advanced Conversion Technologies

Authors: Muhammad Rizwan Tabassum, Ao Xia, Jerry D. Murphy

Abstract:

The aim of this work is to provide an overview of macroalgae as an alternative feedstock for gaseous fuel production and key innovative technologies. Climate change and continuously depleting resources are the key driving forces to think for alternative sources of energy. Macroalgae can be favored over land based energy crops because they are not in direct competition with food crops. However, some drawbacks, such as high moisture content, seasonal variation in chemical composition and process inhibition limit the economic practicability. Macroalgae, like brown seaweed can be converted into gaseous and liquid fuel by different conversion technologies. Biomethane via anaerobic digestion is the appealing technology due to its dual advantage of a commercially applicable and environment friendly technology. Other technologies like biodiesel and bioethanol conversion technologies from seaweed are still under progress. Screening of high yielding macroalgae species, peak harvesting season and process optimization make the technology economically feasible for alternative source of feedstock for biofuel production in future.

Keywords: anaerobic digestion, biofuels, bio-methane, advanced conversion technologies, macroalgae

Procedia PDF Downloads 292
9238 Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers

Authors: Bastien Sanglard, Simon Cayez, Guillaume Viau, Thomas Blon, Julian Carrey, Sébastien Lachaize

Abstract:

The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work.

Keywords: solar concentration, metallurgy, ammonia, hydrogen, sustainability

Procedia PDF Downloads 115
9237 Valorization of By-Products through Feed Formulation for Tilapia sp: Zootechnical Performance Study

Authors: Redhouane Benfares, Kamel Boudjemaa, Affaf Kord, Sonia Messis, Linda Farai, Belkacem Guenachi, Kherarba Maha, Jaroslava ŠVarc-Gajić

Abstract:

In recent years valorization of biowaste has attracted a lot of attention worldwide owing to its high nutritional value and low price. In this work, biowaste of animal (sardines) and plant (tomato) biowaste was used to formulate a new feed for red tilapia that showed to be competitive in its price, and zootechnical performance in comparison to commercially available tilapia feeds. Mathematical modelling was used to formulate optimal feed composition with favorable chemical composition and the lowest price. Formulated feed had high protein content (40.76%) and an energy value of 279.6 Kcal/100 g. Optimised feed was manufactured and compared to commercially available reference feed with respect to feeding intake, feed efficiency, the specific growth rate of fingerlings of Tilapia sp, and, most important, zootechnical parameters. With a fish survival rate of 100% calculated feed conversion index for the formulated feed was 2.7.

Keywords: conversion index, fish waste, formulated feed, tomato waste

Procedia PDF Downloads 128
9236 Iodine-Doped Carbon Dots as a Catalyst for Water Remediation Application

Authors: Anurag Kumar Pandey, Tapan Kumar Nath, Santanu Dhara

Abstract:

Polluted water by industrial effluents or dyes has become a major global concern, particularly in developing countries. Such environmental contaminants constitute a serious threat to biodiversity, ecosystems, and human health worldwide; thus, their treatment is critical. The usage of nanoparticles has been discovered to be a potential water treatment method with high efficiency, cheap manufacturing costs, and green synthesis. Carbon dots have attracted the interest of researchers due to their unique properties, such as high water solubility, ease of production, great electron-donating ability, and low toxicity. In this context, we synthesized iodine-doped clove buds-derived carbon dots (I-CCDs) for the Fenton-like degradation of environmental contaminants in water (such as methylene blue (MB) and rhodamine-B (Rh-B) dye). The formation of I-CCDs has been confirmed using various spectroscopy techniques. I-CCDs have demonstrated remarkable optical, cytocompatibility, and antibacterial capabilities. The C-dots that were synthesized were found to be an effective catalyst for the reduction of MB and Rh-B utilizing NaBH4 as a reducing agent. UV-visible spectroscopy was used to construct a detailed pathway for dye reduction step by step. As-prepared I-CCDs have the potential to be a promising solution for wastewater purification and treatment systems.

Keywords: iodine-doped carbon dots, wastewater treatment and purification, environmental friendly, antibacterial

Procedia PDF Downloads 50