Search results for: bacteria flora
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1668

Search results for: bacteria flora

1338 Evaluation of Bacterial Composition of the Aerosol of Selected Abattoirs in Akure, South Western Nigeria

Authors: Funmilola O. Omoya, Joseph O. Obameso, Titus A. Olukibiti

Abstract:

This study was carried out to reveal the bacterial composition of aerosol in the studied abattoirs. Bacteria isolated were characterized according to microbiological standards. Factors such as temperature and distance were considered as variable in this study. The isolation was carried out at different temperatures such as 27oC, 31oC and 29oC and at various distances of 100meters and 200meters away from the slaughter sites. Result obtained showed that strains of Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Lactobacillus alimentarius and Micrococcus sp. were identified. The total viable counts showed that more microorganisms were present in the morning while the least viable count of 388 cfu was recorded in the evening period of this study. This study also showed that more microbial loads were recorded the further the distance is to the slaughter site. Conclusively, the array of bacteria isolated suggests that abattoir sites may be a potential source of pathogenic organisms to commuters if located within residential environment.

Keywords: abattoir, aerosol, bacterial composition, environment

Procedia PDF Downloads 228
1337 Antimicrobial Activity of Some Plant Extracts against Clinical Pathogen and Candida Species

Authors: Marwan Khalil Qader, Arshad Mohammad Abdullah

Abstract:

Antimicrobial resistance is a major cause of significant morbidity and mortality globally. Seven plant extracts (Plantago mediastepposa, Quercusc infectoria, Punic granatum, Thymus lcotschyana, Ginger officeinals, Rhus angustifolia and Cinnamon) were collected from different regions of Kurdistan region of Iraq. These plants’ extracts were dissolved in absolute ethanol and distillate water, after which they were assayed in vitro as an antimicrobial activity against Candida tropicalis, Candida albicanus, Candida dublinensis, Candida krusei and Candida glabrata also against 2 Gram-positive (Bacillus subtilis and Staphylococcus aureus) and 3 Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Klebsilla pneumonia). The antimicrobial activity was determined in ethanol extracts and distilled water extracts of these plants. The ethanolic extracts of Q. infectoria showed the maximum activity against all species of Candida fungus. The minimum inhibition zone of the Punic granatum ethanol extracts was 0.2 mg/ml for all microorganisms tested. Klebsilla pneumonia was the most sensitive bacterial strain to Quercusc infectoria and Rhus angustifolia ethanol extracts. Among both Gram-positive and Gram-negative bacteria tested with MIC of 0.2 mg/ml, the minimum inhibition zone of Ginger officeinals D. W. extracts was 0.2 mg/mL against Pseudomonas aeruginosa and Klebsilla pneumonia. The most sensitive bacterial strain to Thymus lcotschyana and Plantago mediastepposa D.W. extracts was S. aureus and E. coli.

Keywords: antimicrobial activity, pathogenic bacteria, plant extracts, chemical systems engineering

Procedia PDF Downloads 311
1336 Immune Complex Components Act as Agents in Relapsing Fever Borrelia Mediated Rosette Formation

Authors: Mukunda Upreti, Jill Storry, Rafael Björk, Emilie Louvet, Johan Normark, Sven Bergström

Abstract:

Borrelia duttonii and most other relapsing fever species are Gram-negative bacteria which cause a blood borne infection characterized by the binding of bacterium to erythrocytes. The bacteria associate with two or more erythrocytes to form clusters of cells into rosettes. Rosetting is a major virulence factor and the mechanism is believed to facilitate persistence of bacteria in the circulatory system and the avoidance of host immune cells through masking or steric hindrance effects. However, the molecular mechanisms of rosette formation are still poorly understood. This study aims at determining the molecules involved in the rosette formation phenomenon. Fractionated serum, using different affinity purification methods, was investigated as a rosetting agent and IgG and at least one other serum components were needed for rosettes to form. An IgG titration curve demonstrated that IgG alone is not enough to restore rosette formation level to the level whole serum gives. IgG hydrolysis by IdeS ( Immunoglobulin G-degrading enzyme of Streptococcus pyogenes) and deglycosylation using N-Glycanase proved that the whole IgG molecule regardless of saccharide moieties is critical for Borrelia induced rosetting. Complement components C3 and C4 were also important serum molecules necessary to maintain optimum rosetting rates. The deactivation of complement network and serum depletion with C3 and C4 significantly reduced the rosette formation rate. The dependency of IgG and complement components also implied involvement of the complement receptor (CR1). Rosette formation test with Knops null RBC and sCR1 confirmed that CR1 is also part of Borrelia induced rosette formation.

Keywords: complement components C3 and C4, complement receptor 1, Immunoglobulin G, Knops null, Rosetting

Procedia PDF Downloads 301
1335 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic

Procedia PDF Downloads 298
1334 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis

Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu

Abstract:

Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.

Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter

Procedia PDF Downloads 141
1333 Influence of Different Ripening Agents on the Shelf-Life and Microbial Load of Organic and Inorganic Musaceae, during the Ripening Process, and the Health Implication for Food Security

Authors: Wisdom Robert Duruji

Abstract:

Local farmers and fruit processors in developing countries of West Africa use different ripening agents to accelerate the ripening process of plantain and banana. This study reports on the influence of different ripening agents on the shelf-life and microbial load of organic and inorganic plantain (Musa paradisiaca) and banana (Musa sapientum) during ripening process and the health implication for food security in Nigeria. The experiment consisted of four treatments, namely: Calcium carbide, Irvingia gabonensis fruits, Newbouldia laevis leaves and a control, where no ripening agent was applied to the fingers of plantain and banana. The unripe and ripened plantain and banana were subjected to microbial analysis by isolating their micro flora (Bacteria, Yeast and Mould) using pour plate method. Microbes present in the samples were enumerated, characterized and classified to genera and species. The result indicated that the microbial load of inorganic plantain from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 12.11 cfu/g for ripened; and the microbial load of organic plantain from Obafemi Awolowo University Teaching and Research Farm (OAUTRF) increased from 6.00 for unripe to 11.60 cfu/g for ripened. Also, the microbial load of inorganic banana from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 11.50 cfu/g for ripened; while the microbial load of organic banana from OAUTRF increased from 6.50 for unripe to 9.40 cfu/g for ripened. The microbial effects of the ripening agents increased from 10.00 for control to 16.00 cfu/g for treated (ripened) organic and inorganic plantain; while that of organic and inorganic banana increased from 7.50 for control to 14.50 cfu/g for ripened. Visual observation for the presence of fungal colonies and deterioration rates were monitored till seven days after the plantain and banana fingers have fully ripened. Inorganic plantain and banana from (Urban day) open market in Ile-Ife are more contaminated than organic plantain and banana fingers from OAUTRF. The ripening accelerators reduced the shelf life, increased senescence, and microbial load of plantain and banana. This study concluded that organic Agriculture is better and microbial friendlier than inorganic farming.

Keywords: organic agriculture, food security, Musaceae, calcium carbide, Irvingia gabonensis, Newbouldia laevis

Procedia PDF Downloads 525
1332 Moroccan Mountains: Forest Ecosystems and Biodiversity Conservation Strategies

Authors: Mohammed Sghir Taleb

Abstract:

Forest ecosystems in Morocco are subject increasingly to natural and human pressures. Conscious of this problem, Morocco set a strategy that focuses on programs of in-situ and ex-situ biodiversity conservation. This study is the result of a synthesis of various existing studies on biodiversity and forest ecosystems. It gives an overview of Moroccan mountain forest ecosystems and flora diversity. It also focuses on the efforts made by Morocco to conserve and sustainably manage biodiversity.

Keywords: mountain, ecosystems, conservation, Morocco

Procedia PDF Downloads 557
1331 Ethno-Botanical Diversity and Conservation Status of Medicinal Flora at High Terrains of Garhwal (Uttarakhand) Himalaya, India: A Case Study in Context to Multifarious Tourism Growth and Peri-Urban Encroachments

Authors: Aravind Kumar

Abstract:

The high terrains of Garhwal (Uttarakhand) Himalaya are the niches of a number of rare and endemic plant species of great therapeutic importance. However, the wild flora of the area is still under a constant threat due to rapid upsurge in human interferences, especially through multifarious tourism growth and peri-urban encroachments. After getting the status of a ‘Special State’ of the country since its inception in the year 2000, this newly borne State led to very rapid infrastructural growth and development. Consequently, its townships started expanding in an unmanaged way grabbing nearby agricultural lands and forest areas into peri-urban landscapes. Simultaneously, a boom in tourism and pilgrimage in the state and the infrastructural facilities raised by the government for tourists/pilgrims are destroying its biodiversity. Field survey revealed 242 plant species of therapeutic significance naturally growing in the area and being utilized by local inhabitants as traditional medicines. On conservation scale, 6 species (2.2%) were identified as critically endangered, 19 species (7.1%) as the endangered ones, 8 species (3.0%) under rare category, 17 species (6.4%) as threatened and 14 species (5.2%) as vulnerable. The Government of India has brought mega-biodiversity hot spots of the state under Biosphere Reserve, National Parks, etc. restricting all kinds of human interferences; however, the two most sacred shrines of Hindus and Sikhs viz. Shri Badrinath and Shri Hemkunt Sahib, and two great touristic attractions viz. Valley of Flowers and Auli-Joshimath Skiing Track oblige the government to maintain equilibrium between entries of visitors vis-à-vis biodiversity conservation in high terrains of Uttarakhand Himalaya.

Keywords: biodiversity conservation, ethno-botany, Garhwal (Uttarakhand) Himalaya, peri-urban encroachment, pilgrimage and tourism

Procedia PDF Downloads 200
1330 Antimicrobial Activity of Fatty Acid Salts against Microbes for Food Safety

Authors: Aya Tanaka, Mariko Era, Manami Masuda, Yui Okuno, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Objectives— Fungi and bacteria are present in a wide range of natural environments. They are breed in the foods such as vegetables and fruit, causing corruption and deterioration of these foods in some cases. Furthermore, some species of fungi and bacteria are known to cause food intoxication or allergic reactions in some individuals. To prevent fungal and bacterial contamination, various fungicides and bactericidal have been developed that inhibit fungal and bacterial growth. Fungicides and bactericides must show high antifungal and antibacterial activity, sustainable activity, and a high degree of safety. Therefore, we focused on the fatty acid salt which is the main component of soap. We focused on especially C10K and C12K. This study aimed to find the effectiveness of the fatty acid salt as antimicrobial agents for food safety. Materials and Methods— Cladosporium cladosporioides NBRC 30314, Penicillium pinophilum NBRC 6345, Aspergillus oryzae (Akita Konno store), Rhizopus oryzae NBRC 4716, Fusarium oxysporum NBRC 31631, Escherichia coli NBRC 3972, Bacillus subtilis NBRC 3335, Staphylococcus aureus NBRC 12732, Pseudomonas aenuginosa NBRC 13275 and Serratia marcescens NBRC 102204 were chosen as tested fungi and bacteria. Hartmannella vermiformis NBRC 50599 and Acanthamoeba castellanii NBRC 30010 were chosen as tested amoeba. Nine fatty acid salts including potassium caprate (C10K) and laurate (C12K) at 350 mM and pH 10.5 were used as antifungal activity. The spore suspension of each fungus (3.0×10⁴ spores/mL) or the bacterial suspension (3.0×10⁵ or 3.0×10⁶ or 3.0×10⁷ CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar or nutrient agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 °C. Results— C10K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than A. oryzae. C12K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than P. pinophilum and A. oryzae. C10K and C12K did not show high anti-yeast activity. C10K was antibacterial activity of 6 or 7 log-unit incubated time for 10 min against bacteria other than B. subtilis. C12K was antibacterial activity of 5 to 7 log-unit incubated time for 10 min against bacteria other than S. marcescens. C12K was anti-amoeba activity of 4 log-unit incubated time for 10 min against H. vermiformis. These results suggest C10K and C12K have potential in the field of food safety.

Keywords: food safety, microbes, antimicrobial, fatty acid salts

Procedia PDF Downloads 466
1329 Biological Control of Karnal Bunt by Pseudomonas fluorescens

Authors: Geetika Vajpayee, Sugandha Asthana, Pratibha Kumari, Shanthy Sundaram

Abstract:

Pseudomonas species possess a variety of promising properties of antifungal and growth promoting activities in the wheat plant. In the present study, Pseudomonas fluorescens MTCC-9768 is tested against plant pathogenic fungus Tilletia indica, causing Karnal bunt, a quarantine disease of wheat (Triticum aestivum) affecting kernels of wheat. It is one of the 1/A1 harmful diseases of wheat worldwide under EU legislation. This disease develops in the growth phase by the spreading of microscopically small spores of the fungus (teliospores) being dispersed by the wind. The present chemical fungicidal treatments were reported to reduce teliospores germination, but its effect is questionable since T. indica can survive up to four years in the soil. The fungal growth inhibition tests were performed using Dual Culture Technique, and the results showed inhibition by 82.5%. The interaction of antagonist bacteria-fungus causes changes in the morphology of hyphae, which was observed using Lactophenol cotton blue staining and Scanning Electron Microscopy (SEM). The rounded and swollen ends, called ‘theca’ were observed in interacted fungus as compared to control fungus (without bacterial interaction). This bacterium was tested for its antagonistic activity like protease, cellulose, HCN production, Chitinase, etc. The growth promoting activities showed increase production of IAA in bacteria. The bacterial secondary metabolites were extracted in different solvents for testing its growth inhibiting properties. The characterization and purification of the antifungal compound were done by Thin Layer Chromatography, and Rf value was calculated (Rf value = 0.54) and compared to the standard antifungal compound, 2, 4 DAPG (Rf value = 0.54). Further, the in vivo experiments showed a significant decrease in the severity of disease in the wheat plant due to direct injection method and seed treatment. Our results indicate that the extracted and purified compound from the antagonist bacteria, P. fluorescens MTCC-9768 may be used as a potential biocontrol agent against T. indica. This also concludes that the PGPR properties of the bacteria may be utilized by incorporating it into bio-fertilizers.

Keywords: antagonism, Karnal bunt, PGPR, Pseudomonas fluorescens

Procedia PDF Downloads 374
1328 Sustainable Landscape Strategies For The 21st Century Suburb

Authors: William Batson, Yunsik Song, Abel Simie

Abstract:

Recent trends in suburban design and planning have centered on economic efficiency in construction and completion. In doing so, developers, builders, and architects have bypassed free and reliable sustainable solutions to minimize the carbon footprint and improve the environment. Often, suburban areas are designed without landscape features, sidewalks, parks, adequate lighting, or walking space. Much of the design concern involves minimizing construction costs and streamlining streets and utilities. A new development in creating retention ponds to mitigate flooding and slow runoff is one step in the positive direction. However, "if you build them (suburbs), they (fauna) will come." The inevitable flora and fauna that soon propagate and take refuge within these artificial retention ponds create an additional dilemma. Architects, planners, and developers know the requirements and current strategies to provide residents and wildlife with a viable and sustainable environment. This includes habitat for hibernating animals and facilitating opportunities, especially for cold-blooded mammals. Many species that migrate to these artificial ponds struggle to survive, especially during flooding and when the water table drains below the artificial rim, preventing aquatic mammals from climbing on land. This flooding often results from large areas of impervious asphalt and concrete. These impervious surfaces retain and dispense large amounts of rainwater and contaminants that carry industrial pollutants, oil, plastics, animal waste, and fertilizers into storm drains and then deposited in these retention ponds. This paper will identify and show how simple and logical solutions are used to create a sustainable suburb and reduce the carbon footprint using landscape architectural strategies and cost-free design solutions. We will also demonstrate simple changes in the present suburban design model to provide a viable and sustainable suburb for the 21st century.

Keywords: sustainavilty, suburban, flora, fauna, carbon footprint

Procedia PDF Downloads 34
1327 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry

Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour

Abstract:

Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.

Keywords: antimicrobial properties, polyethylene, silver nanoparticles, strawberry

Procedia PDF Downloads 133
1326 Synthesis, Characterization and Biological Evaluation of Some Pyrazole Derivatives

Authors: Afifa Hafidh, Hedia Chaabane

Abstract:

This work mainly focused on the synthetic strategies and biological activities associated with pyrazoles. Pyrazole derivatives have been successfully synthesized by simple and facile method and studied for their antibacterial activity. These compounds were prepared from pyrazolic difunctional compounds as starting materials, by reaction with salicylic acid, paracetamol and thiosemicarbazide respectively. Structure of all the prepared compounds confirmation were proved using (FT-IR), (1H-NMR) and (13C-NMR) spectra in addition to melting points. The screening of the antimicrobial activity of the pyrazolic derivatives was examined against different microorganisms in the present study. They were screened for their antimicrobial activities against gram positive bacteria, gram negative bacteria and Candida albicans. The synthesized compounds were found to exhibit high antibacterial and antifungal efficiency against several tested bacterial strains, using agar diffusion method and filter paper disc-diffusion method. Ampicillin was used as positive control for all strains except Candida albicans for which Nystatin was used. The obtained results reveal that the antibacterial activity of some pyrazolic derivatives is comparable to that observed for the control samples (Ampicilin and Nystatin), suggesting a strong antibacterial activity. The analysis of these results shows that synthesized products react on the surfaces cell walls that are disrupted. When these products are in contact with the bacteria, they damage the membrane, leading to the perturbation of different cellular processes and then leakage of cytoplasm, resulting in the death of the cells. The results will be presented in details. The obtained products constitute effective antibacterial agents and important compounds for biological systems.

Keywords: salicylic acid, antimicrobial activities, antioxidant activity, paracetamol, pyrazole, thiosemicarbazide

Procedia PDF Downloads 149
1325 Indigo-Reducing Activity by Microorganisms from the Fermented Indigo Dyeing Solution

Authors: Yuta Tachibana, Ayuko Itsuki

Abstract:

The three strains of bacteria (Lysinibacillus xylanilyticus, Bacillus kochii, and Enterococcus sp.) were isolated from the fermented Indigo (Polygonum tinctorium) dyeing solution using the dilution plate method and some fermentation conditions were determined. High-Performance Liquid Chromatography (HPLC) was used to determine the indigo concentration. When the isolated bacteria were cultured in the indigo liquid culture containing various sugars, starch, and ethanol, the indigo culture solutions containing galactose, mannose, ribose, and ethanol were remarkably decreased. Comparison of decreasing indigo between three strains showed that Enterococcus sp. had the fastest growth and decrease of indigo. However, decreasing indigo per unit micro biomass did not correspond to the results of decreasing indigo―Bacillus kochii had higher indigo-reducing activity than Enterococcus sp. and Lysinibacillus xylanilyticus.

Keywords: fermentation condition, high-performance liquid chromatography (HPLC), indigo dyeing solution, indigo-reducing activity

Procedia PDF Downloads 122
1324 Indications and Characteristics of Clinical Application of Periodontal Suturing

Authors: Saimir Heta, Ilma Robo, Vera Ostreni, Glorja Demika, Sonila Kapaj

Abstract:

Suturing, as a procedure of joining the lips of the lembo or wound, is important at the beginning of the healing process. This procedure helps to pass the healing process from the procedure per secundam to the stages of healing per primam, thus logically reducing the healing time of the wound. The element that remains in the individual selection of the dentist applying the suture is the selection of the suture material. At a moment when some types of sutures are offered for use, some elements should be considered in the selection of the suture depending on the constituent material, the cross-section of the suture elements, and whether it collects bacteria in the "pits" created by the material. The presence of bacteria is a source of infection and possible delay in the healing of the sutured wound. Conclusion: The marketing of suture types offers a variety of materials, from which the selection of the most suitable suture type for specific application cases is a personal indication of the dental surgeon, based on professional experiences and knowledge in the field.

Keywords: suture, suture material, types of sutures, clinical application

Procedia PDF Downloads 59
1323 Microbiological and Physicochemical Evaluation of Traditional Greek Kopanisti Cheese Produced by Different Starter Cultures

Authors: M. Kazou, A. Gavriil, O. Kalagkatsi, T. Paschos, E. Tsakalidou

Abstract:

Kopanisti cheese is a Greek soft Protected Designation of Origin (PDO) cheese made of raw cow, sheep or goat milk, or mixtures of them, with similar organoleptic characteristics to that of Roquefort cheese. Traditional manufacturing of Kopanisti cheese is limited in small-scale dairies, without the addition of starter cultures. Instead, an amount of over-mature Kopanisti cheese, called Mana Kopanisti, is used to initiate ripening. Therefore, the selection of proper starter cultures and the understanding of the contribution of various microbial groups to its overall quality is crucial for the production of a high-quality final product with standardized organoleptic and physicochemical characteristics. Taking the above into account, the aim of the present study was the investigation of Kopanisti cheese microbiota and its role in cheese quality. For this purpose, four different types of Kopanisti were produced in triplicates, all with pasteurized cow milk, with the addition of (A) the typical mesophilic species Lactococcus lactis and Lactobacillus paracasei used as starters in the production of soft spread cheeses, (B) strains of Lactobacillus acidipiscis and Lactobacillus rennini previously isolated from Kopanisti and Mana Kopanisti, (C) all the species from (A) and (B) as inoculum, and finally (D) the species from (A) and Mana Kopanisti. Physicochemical and microbiological analysis was performed for milk and cheese samples during ripening. Enumeration was performed for major groups of lactic acid bacteria (LAB), total mesophilic bacteria, yeasts as well as hygiene indicator microorganisms. Bacterial isolates from all the different LAB groups, apart from enterococci, alongside yeasts isolates, were initially grouped using repetitive sequence-based polymerase chain reaction (rep-PCR) and then identified at the species level using 16S rRNA gene and internal transcribed spacer (ITS) DNA region sequencing, respectively. Sensory evaluation was also performed for final cheese samples at the end of the ripening period (35 days). Based on the results of the classical microbiological analysis, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, ranged between 7 and 10 log colony forming unit (CFU) g⁻¹, phychrotrophic bacteria, and yeast extract glucose chloramphenicol (YGC) isolates between 4 and 8 log CFU g⁻¹, while coliforms and enterococci up to 2 log CFU g⁻¹ throughout ripening in cheese samples A, C and D. In contrast, in cheese sample B, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, phychrotrophic bacteria, and YGC isolates ranged between 0 and 10 log CFU g⁻¹ and coliforms and enterococci up to 2 log CFU g⁻¹. Although the microbial counts were not that different among samples, identification of the bacterial and yeasts isolates revealed the complex microbial community structure present in each cheese sample. Differences in the physicochemical characteristics among the cheese samples were also observed, with pH ranging from 4.3 to 5.3 and moisture from 49.6 to 58.0 % in the final cheese products. Interestingly, the sensory evaluation also revealed differences among samples, with cheese sample B ranking first based on the total score. Overall, the combination of these analyses highlighted the impact of different starter cultures on the Kopanisti microbiota as well as on the physicochemical and sensory characteristics of the final product.

Keywords: Kopanisti cheese, microbiota, classical microbiological analysis, physicochemical analysis

Procedia PDF Downloads 118
1322 The State of Research on Medicinal Plants in Morocco

Authors: Alami Ilyass, Loubna Kharchoufa, Elachouri Mostafa

Abstract:

The two great realms of living diversity are cultural and biological. Today, both are being lost at an alarming rate. Of all the Earth’s biological diversity, plant kingdom is of high significance, and most essential to human welfare, in fact, medicinal plants are extensively exploited for countless purposes. Among these multiple uses, medicinal plants are the most important source of medicine for humankind healthcare and well being. In recent years there has been a great surge of public interest in the use of herbs and plants. Some scientists have viewed this phenomenon as a modern “herbal renaissance”. The importance of plants as medicines in developed and developing countries has recently been acknowledged by the United Nations (UN). However, to date fewer than 5% of the approximately 250,000 species of higher plants have been exhaustively studied for their potential pharmacological activity. A number of drugs from ethnobotanical leads have provided significant milestones in Western medicine. Despite this success, pharmacognosy research on Moroccan flora needs more studies aimed at the exploration of their therapeutic potential. A major weakness is the absence of strong funding agencies in the country, and a real national drug discovery program. Moreover, the lack of the coordination between different universities and research institutions leads, in most cases, to a waste of time, money and efforts of many researchers. In this work, we focus our attention on research into traditional indigenous medicinal plants in Morocco. Three parts constitute the head lines of this work: In the first one, we take up Moroccan biodiversity matter, the second part is devoted principally to the state of research into medicinal plants by Moroccan scholars and the last one is consecrated to the debate of factors which handicap the progress of research on phytomedicine in Morocco. The objectives of the present study are twofold: first, to highlight the state of the medicinal plants researches in Morocco. Second goal is to assess and correlate the levels of knowledge of the local flora to the research on medicinal plants to attempt to build capacity for research within Moroccan Scientific community at rate of developing country.

Keywords: Morocco, medicinal plants, ethnobotanical, pharmacognosy, phytomedicine

Procedia PDF Downloads 165
1321 Optimization of Batch to Up-Scaling of Soy-Based Prepolymer Polyurethane

Authors: Flora Elvistia Firdaus

Abstract:

The chemical structure of soybean oils have to be chemically modified through its tryglyceride to attain resemblance properties with petrochemicals. Sulfur acid catalyst in peracetic acid co-reagent has good performance on modified soybean oil strucutures through its unsaturated fatty acid moiety to the desired hydroxyl functional groups. A series of screening reactions have indicated that the ratio of acetic/peroxide acid 1:7.25 (mol/mol) with temperature of 600°C for soy-epoxide synthesis are prevailed for up-scaling of bodied soybean into 10 and 20 folds from initials. A two-step process was conducted for the preparation of soy-polyol in designated temperatures.

Keywords: soybean, polyol, up-scaling, polyurethane

Procedia PDF Downloads 334
1320 The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil

Authors: C. J. Tien, C. S. Chen, S. F. Huang, Z. X. Wang

Abstract:

Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks.

Keywords: catabolic gene, diesel, diversity, edaphic algae

Procedia PDF Downloads 249
1319 Formulation Assay Of An Aloe Vera-based Oral Gel And Its Effect On Probiotics

Authors: Serier Bouchenak NORA, Bouguerni ABDELMADJID

Abstract:

Algeria is a Mediterranean country which provides an ideal habitat for a wide range of species of medicinal plants. The objective of this current work is to extract the gel contained in the leaves of Aloe vera in order to formulate an oral gel as a prebiotic and see its effects on probiotics (lactic and pseudo lactic bacteria and bifido bacterium). Aloe vera polysaccharid extract is a matrix mainly composed of non-digestible oligosaccharids or slow-fermentation polysaccharids, as this produces a lower pH. The behavior of Aloe vera during in vitro fermentation of the colon was similar to that of lactulose, indicating the possibility of using Aloe vera and its polysaccharids extracts as a prebiotic. The microbiological control of the two kinds of bacteria (bifidobacteria and staphylococci) has demonstrated the gel capacity to stimulate them by these bioactive compounds. The generation time of Bifidobacteria in fermented milk with added prebiotic Aloe vera gel is 80.408 min with a µ growth rate equal to 0.012 min -1. The doubling time is 61.459 min with a growth rate µ equal to 0.016 min -1 for the Streptococcus sp. species.

Keywords: aloe vera, probiotics, prebiotics, growth rate, bifidobacteria

Procedia PDF Downloads 49
1318 Technological Characterization of Lactic Acid Bacteria Isolated from Algerian's Goat's Milk

Authors: A. Cheriguene, F. Chougrani

Abstract:

A total of 153 wild lactic acid bacteria were isolated from goat’s milk collected from different areas in Western Algeria. The strains were identified using phenotypical, biochemical and physiological properties. API system and SDS-PAGE technique was also used in identification of the strains. Six genera were found Enterococcus (41.83%), Lactobacillus (29.40%), Lactococcus (19.60%), Leuconostoc (4.57%), Streptococcus thermophilus (3.26%) and Pediococcus (1.30%). The most abundant species were Enterococcus faecium (24 isolates), Enterococcus durans (22 isolates), Lactococcus lactis subsp. lactis (25 isolates), Lactobacillus rhamnosus (09 isolates) and Lactobacillus delbrueckii subsp. bulgaricus (07 isolates). The strains were screened for production and technological properties such as acid production, aminopeptidase activity, autolytic properties, antimicrobial activity and exopolysaccharide production. In general most tested isolates showed a good biomass separation when collected by centrifugation; as for the production of the lactic acid, results revealed that our strains are weakly acidifying; nevertheless, lactococci showed a best acidifying activity compared to lactobacilli. Aminopeptidase activity was also weak in most strains; but, it was generally higher for lactobacilli compared to lactococci, where we recorded 30 units for Lactobacillus delbrueckii subsp. bulgaricus M14. Autolytic activity was generally higher for most strains, more particularly lactobacilli where we recorded values of 71.13% and 70% of autolysis rate respectively in Lactobacillus rhamnosus strains 9S10 and 9S7. Antimicrobial activity was detected in 50% of the isolates, particularly in lactobacilli where 80% of strains tested were able to inhibit the growth of other strains. Two strains could produce exopolysaccharides, E. faecium 8M6 and E. durans 7S8. Some strains were able to maintain two or three technological characteristics together.

Keywords: lactic acid bacteria, technological properties, acidification, aminopeptidase acivity (AP), autolysis

Procedia PDF Downloads 410
1317 Ecological Evaluation and Conservation Strategies of Economically Important Plants in Indian Arid Zone

Authors: Sher Mohammed, Purushottam Lal, Pawan K. Kasera

Abstract:

The Thar Desert of Rajasthan covers a wide geographical area spreading between 23.3° to 30.12°, North latitude and 69.3◦ to 76◦ Eastern latitudes; having a unique spectrum of arid zone vegetation. This desert is spreading over 12 districts having a rich source of economically important/threatened plant diversity interacting and growing with adverse climatic conditions of the area. Due to variable geological, physiographic, climatic, edaphic and biotic factors, the arid zone medicinal flora exhibit a wide collection of angiosperm families. The herbal diversity of this arid region is medicinally important in household remedies among tribal communities as well as in traditional systems. The on-going increasing disturbances in natural ecosystems are due to climatic and biological, including anthropogenic factors. The unique flora and subsequently dependent faunal diversity of the desert ecosystem is losing its biotic potential. A large number of plants have no future unless immediate steps are taken to arrest the causes, leading to their biological improvement. At present the potential loss in ecological amplitude of various genera and species is making several plant species as red listed plants of arid zone vegetation such as Commmiphora wightii, Tribulus rajasthanensis, Calligonum polygonoides, Ephedra foliata, Leptadenia reticulata, Tecomella undulata, Blepharis sindica, Peganum harmala, Sarcostoma vinimale, etc. Mostly arid zone species are under serious pressure against prevailing ecosystem factors to continuation their life cycles. Genetic, molecular, cytological, biochemical, metabolic, reproductive, germination etc. are the several points where the floral diversity of the arid zone area is facing severe ecological influences. So, there is an urgent need to conserve them. There are several opportunities in the field to carry out remarkable work at particular levels to protect the native plants in their natural habitat instead of only their in vitro multiplication.

Keywords: ecology, evaluation, xerophytes, economically, threatened plants, conservation

Procedia PDF Downloads 240
1316 Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities

Authors: Zhichao Li

Abstract:

This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently.

Keywords: phenol, nitrogen heterocyclic aromatic hydrocarbons, phenol-degrading bacteria, microbial communities, biological treatment technology

Procedia PDF Downloads 179
1315 In-silico Design of Riboswitch Based Potent Inhibitors for Vibrio cholera

Authors: Somdutt Mujwar, Kamal Raj Pardasani

Abstract:

Cholera pandemics are caused by facultative pathogenic Vibrio cholera bacteria persisting in the countries having warmer climatic conditions as well as the presence of large water bodies with huge amount of organic matter, it is responsible for the millions of deaths annually. Presently the available therapy for cholera is Oral Rehydration Therapy (ORT) with an antibiotic drug. Excessive utilization of life saving antibiotics drugs leads to the development of resistance by the infectious micro-organism against the antibiotic drugs resulting in loss of effectiveness of these drugs. Also, many side effects are also associated with the use of these antibiotic drugs. This riboswitch is explored as an alternative drug target for Vibrio cholera bacteria to overcome the problem of drug resistance as well as side effects associated with the antibiotics drugs. The bacterial riboswitch is virtually screened with 24407 legends to get possible drug candidates. The 10 ligands showing best binding with the riboswitch are selected to design a pharmacophore, which can be utilized to design lead molecules by using the phenomenon of bioisosterism.

Keywords: cholera, drug design, ligand, riboswitch, pharmacophore

Procedia PDF Downloads 326
1314 Inhibitory Mechanism of Ag and Fe Colloidal Nanoparticles on P. aeruginosa and E.coli Growth

Authors: Fatemeh Moradian, Razieh Ghorbani, Poria Biparva

Abstract:

Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their Nano composites as an alternative. The use of metal nanoparticles to combat bacterial infections is one of the most wide spread applications of nanotechnology in the field of antibacterial. Nanomaterials have unique properties compared to their bulk counterparts. In this report, we demonstrate the antimicrobial activity of zerovalent Iron(ZVI) and Ag(silver) nanoparticles against Gram-negative bacteria E.coli(DH5α) and Pseudomonas aeruginosa. At first ZVI and Ag nanoparticles were synthesized by chemical reduction method and using scanning electron microscopy (SEM) the nanoparticle size determined. Different concentrations of Ag and ZVI nanoparticles were added to bacteria on nutrient agar medium. Minimum inhibitory concentration (MIC) of Ag and Fe nanoparticles for P. aeruginosa were 5µM and 1µg as well as for E.coli were 6µM. and 10 µg, respectively. Among the two nanoparticles, ZVI showed that the greatest antimicrobial activity against E.coli and Ag nanoparticle on P.aeruginosa. Results suggested that the bactericidal effect of metal nanoparticles has been attributed to their small size as well as high surface to volume ratio and NPs could be used as an effective antibacterial material.

Keywords: bactericidal properties, MIC, nanoparticle, SEM

Procedia PDF Downloads 570
1313 Chemiluminescent Detection of Microorganisms in Food/Drug Product Using Reducing Agents and Gold Nanoplates

Authors: Minh-Phuong Ngoc Bui, Abdennour Abbas

Abstract:

Microbial spoilage of food/drug has been a constant nuisance and an unavoidable problem throughout history that affects food/drug quality and safety in a variety of ways. A simple and rapid test of fungi and bacteria in food/drugs and environmental clinical samples is essential for proper management of contamination. A number of different techniques have been developed for detection and enumeration of foodborne microorganism including plate counting, enzyme-linked immunosorbent assay (ELISA), polymer chain reaction (PCR), nucleic acid sensor, electrical and microscopy methods. However, the significant drawbacks of these techniques are highly demand of operation skills and the time and cost involved. In this report, we introduce a rapid method for detection of bacteria and fungi in food/drug products using a specific interaction between a reducing agent (tris(2-carboxylethyl)phosphine (TCEP)) and the microbial surface proteins. The chemical reaction was transferred to a transduction system using gold nanoplates-enhanced chemiluminescence. We have optimized our nanoplates synthetic conditions, characterized the chemiluminescence parameters and optimized conditions for the microbial assay. The new detection method was applied for rapid detection of bacteria (E.coli sp. and Lactobacillus sp.) and fungi (Mucor sp.), with limit of detection as low as single digit cells per mL within 10 min using a portable luminometer. We expect our simple and rapid detection method to be a powerful alternative to the conventional plate counting and immunoassay methods for rapid screening of microorganisms in food/drug products.

Keywords: microorganism testing, gold nanoplates, chemiluminescence, reducing agents, luminol

Procedia PDF Downloads 276
1312 Antibacterial Effects of Some Medicinal and Aromatic Plant Extracts on Pathogenic Bacteria Isolated from Pear Orchards

Authors: Kubilay Kurtulus Bastas

Abstract:

Bacterial diseases are very destructive and cause economic losses on pears. Promising plant extracts for the management of plant diseases are environmentally safe, long-lasting and extracts of certain plants contain alkaloids, tannins, quinones, coumarins, phenolic compounds, and phytoalexins. In this study, bacteria were isolated from different parts of pear exhibiting characteristic symptoms of bacterial diseases from the Central Anatolia, Turkey. Pathogenic bacteria were identified by morphological, physiological, biochemical and molecular methods as fire blight (Erwinia amylovora (39%)), bacterial blossom blast and blister bark (Pseudomonas syringae pv. syringae (22%)), crown gall (Rhizobium radiobacter (1%)) from different pear cultivars, and determined virulence levels of the pathogens with pathogenicity tests. The air-dried 25 plant material was ground into fine powder and extraction was performed at room temperature by maceration with 80% (v/v) methanol/distilled water. The minimum inhibitory concentration (MIC) values were determined by using modified disc diffusion method at five different concentrations and streptomycin sulphate was used as control chemical. Bacterial suspensions were prepared as 108 CFU ml⁻¹ densities and 100 µl bacterial suspensions were spread to TSA medium. Antimicrobial activity was evaluated by measuring the inhibition zones in reference to the test organisms. Among the tested plants, Origanum vulgare, Hedera helix, Satureja hortensis, Rhus coriaria, Eucalyptus globulus, Rosmarinus officinalis, Ocimum basilicum, Salvia officinalis, Cuminum cyminum and Thymus vulgaris showed a good antibacterial activity and they inhibited the growth of the pathogens with inhibition zone diameter ranging from 7 to 27 mm at 20% (w/v) in absolute methanol in vitro conditions. In vivo, the highest efficacy was determined as 27% on reducing tumor formation of R. radiobacter, and 48% and 41% on reducing shoot blight of E. amylovora and P. s. pv. syringae on pear seedlings, respectively. Obtaining data indicated that some plant extracts may be used against the bacterial diseases on pome fruits within sustainable and organic management programs.

Keywords: bacteria, eco-friendly management, organic, pear, plant extract

Procedia PDF Downloads 302
1311 Antifungal Lactobacilli Affect Mycelium Morphology and Protect Apricot Juice against Mold Spoilage

Authors: Nora Laref, Bettache Guessas

Abstract:

Preservation of foods mainly depends on delaying or inhibiting the growth of spoilage microorganisms, and antifungal activity of lactic acid bacteria is one of the technological properties researched. The antifungal activity was screened with overlay method of six strains of lactic acid bacteria (Lactobacillus plantarum LB54, LB52, LB51, LB20, LB24 Lactobacillus farciminis LB53) isolated from silage, camel milk and carrot against Aspergillus sp. Lactobacillus plantarum and farciminis inhibit spore germination and mycelia growth of Aspergillus sp., the production of antifungal compounds by these strains was detectable after 4h of incubation at 30°C and show total inhibition after 24h in liquid media, but in solid media showed a good inhibition after 96h of incubation, these compounds cause malformations in the thalle, conidiophore and conidia. These strains could be used as agents of biopreservation since have the ability to retard Aspergillus sp., growth in apricot juice with and without sugar conserved in refrigerator but not in bread.

Keywords: lactobacillus, antifungal substances, aspergillus, biopreservation

Procedia PDF Downloads 321
1310 A contribution to Phytochemical and Biological Studies of Ailanthus Alitssima Swingle Cultivated in Egypt

Authors: Ahmed Samy Elnoby

Abstract:

Ailanthus altissima native to Asia which belongs to the family Simaroubaceae was subjected to phytochemical screening and biological investigations. Phytochemical screening revealed the presence of carbohydrates, tannins, sterols, flavonoids and traces of saponins. In addition, quantitative determination of phenolics and flavonoid content were performed. The antimicrobial activity of methanolic extract of the leaves was determined against gram-positive, gram-negative bacteria in addition to fungi using a modified Kirby-Bauer disc diffusion method that was compared with standard discs ampicillin which acts as an antibacterial agent and amphotericin B which acts as an antifungal agent. A high potency was observed against gram-positive bacteria mainly staphylococcus aureus, gram-negative bacteria mainly Escherichia coli and showed no potency against fungi mainly Aspergillus flavus and candida albicans. On the other hand, the antioxidant activity of the extract was determined by 1, 1-diphenyl-2- diphenyl-2-picryl-hydrazil (DPPH). A very low potency was shown by using DPPH for the antioxidant effect so IC50 = 0 ug/ml, IC90 =0 ug /ml and remark gave 47.2 % at 100 ug/ml which is very weak. Cytotoxic activity was determined by using MTT assay (3-4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) against MCF7 (Human Caucasian breast adenocarcinoma) cell line. A moderate potency was shown by using MCF7 cell line for cytotoxic effect so LC50= 90.2 ug/ml, LC90=139.9 ug/ml and the remark gave 55.2% at 100 ug/ml which is of moderate activity so, Ailanthus altissima can be considered to be a promising antimicrobial agent from natural origin.

Keywords: Ailanthus altissima, TLC, HPLC, anti-microbial activity, antifungal activity, antioxidant, cytotoxic activity

Procedia PDF Downloads 154
1309 Characterization of the Microorganisms Associated with Pleurotus ostractus and Pleurotus tuber-Regium Spent Mushroom Substrate

Authors: Samuel E. Okere, Anthony E. Ataga

Abstract:

Introduction: The microbial ecology of Pleurotus osteratus and Pleurotus tuber–regium spent mushroom substrate (SMS) were characterized to determine other ways of its utilization. Materials and Methods: The microbiological properties of the spent mushroom substrate were determined using standard methods. This study was carried out at the Microbiology Laboratory University of Port Harcourt, Rivers State, Nigeria. Results: Quantitative microbiological analysis revealed that Pleurotus osteratus spent mushroom substrate (POSMS) contained 7.9x10⁵ and 1.2 x10³ cfu/g of total heterotrophic bacteria and total fungi count respectively while Pleurotus tuber-regium spent mushroom substrate (PTSMS) contained 1.38x10⁶ and 9.0 x10² cfu/g of total heterotrophic bacteria count and total fungi count respectively. The fungi species encountered from Pleurotus tuber-regium spent mushroom substrate (PTSMS) include Aspergillus and Cladosporum species, while Aspergillus and Penicillium species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). However, the bacteria species encountered from Pleurotus tuber-regium spent mushroom substrate include Bacillus, Acinetobacter, Alcaligenes, Actinobacter, and Pseudomonas species while Bacillus, Actinobacteria, Aeromonas, Lactobacillus and Aerococcus species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). Conclusion: Therefore based on the findings from this study, it can be concluded that spent mushroom substrate contain microorganisms that can be utilized both in bioremediation of oil-polluted soils as they contain important hydrocarbon utilizing microorganisms such as Penicillium, Aspergillus and Bacillus species and also as sources of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas and Bacillus species which can induce resistance on plants. However, further studies are recommended, especially to molecularly characterize these microorganisms.

Keywords: characterization, microorganisms, mushroom, spent substrate

Procedia PDF Downloads 134