Search results for: PES (power electronics systems) synchronous machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16403

Search results for: PES (power electronics systems) synchronous machine

16073 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 73
16072 Power System Modeling for Calculations in Frequency and Steady State Domain

Authors: G. Levacic, A. Zupan

Abstract:

Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain.

Keywords: power system modeling, frequency domain, steady state, EMTP-RV, PSS/E

Procedia PDF Downloads 310
16071 Study of Transformer and Motor Winding under Pulsed Power Application

Authors: Arijit Basuray, Saibal Chatterjee

Abstract:

Pulsed Power in the form of Recurrent Surge Generator (RSG) can be used for testing various parameters of Motor or Transformer windings including inter-turn, interlayer insulation. Windings with solid insulation in motor and transformer have many interfaces and undesirable defects, and these defects can be exposed under this nondestructive testing methodology. Due to rapid development in power electronics variable frequency drives (VFD), Dry Type or cast resin Transformer used with PWM Sine wave inverters for solar power, solid insulation system used nowadays are shifting more and more to a high-frequency application. Authors have used the recurrent surge generator for testing winding integrity as well as Partial Discharge(PD) at fast rising voltage enabling PD measurement at closer situation under which the insulation system is supposed to work. Authors have discussed test results on a different system with recurrent surge voltages of different rise time.

Keywords: fast rising voltage, partial discharge, pulsed power, recurrent surge generator, solid insulation

Procedia PDF Downloads 265
16070 Chinese Undergraduates’ Trust in And Usage of Machine Translation: A Survey

Authors: Bi Zhao

Abstract:

Neural network technology has greatly improved the output of machine translation in terms of both fluency and accuracy, which greatly increases its appeal for young users. The present exploratory study aims to find out how the Chinese undergraduates perceive and use machine translation in their daily life. A survey is conducted to collect data from 100 undergraduate students from multiple Chinese universities and with varied academic backgrounds, including arts, business, science, engineering, and medicine. The survey questions inquire about their use (including frequency, scenarios, purposes, and preferences) of and attitudes (including trust, quality assessment, justifications, and ethics) toward machine translation. Interviews and tasks of evaluating machine translation output are also employed in combination with the survey on a sample of selected respondents. The results indicate that Chinese undergraduate students use machine translation on a daily basis for a wide range of purposes in academic, communicative, and entertainment scenarios. Most of them have preferred machine translation tools, but the availability of machine translation tools within a certain scenario, such as the embedded machine translation tool on the webpage, is also the determining factor in their choice. The results also reveal that despite the reportedly limited trust in the accuracy of machine translation output, most students lack the ability to critically analyze and evaluate such output. Furthermore, the evidence is revealed of the inadequate awareness of ethical responsibility as machine translation users among Chinese undergraduate students.

Keywords: Chinese undergraduates, machine translation, trust, usage

Procedia PDF Downloads 123
16069 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: audit, machine learning, assessment, metrics

Procedia PDF Downloads 257
16068 A New Approach towards the Development of Next Generation CNC

Authors: Yusri Yusof, Kamran Latif

Abstract:

Computer Numeric Control (CNC) machine has been widely used in the industries since its inception. Currently, in CNC technology has been used for various operations like milling, drilling, packing and welding etc. with the rapid growth in the manufacturing world the demand of flexibility in the CNC machines has rapidly increased. Previously, the commercial CNC failed to provide flexibility because its structure was of closed nature that does not provide access to the inner features of CNC. Also CNC’s operating ISO data interface model was found to be limited. Therefore, to overcome that problem, Open Architecture Control (OAC) technology and STEP-NC data interface model are introduced. At present the Personal Computer (PC) has been the best platform for the development of open-CNC systems. In this paper, both ISO data interface model interpretation, its verification and execution has been highlighted with the introduction of the new techniques. The proposed is composed of ISO data interpretation, 3D simulation and machine motion control modules. The system is tested on an old 3 axis CNC milling machine. The results are found to be satisfactory in performance. This implementation has successfully enabled sustainable manufacturing environment.

Keywords: CNC, ISO 6983, ISO 14649, LabVIEW, open architecture control, reconfigurable manufacturing systems, sustainable manufacturing, Soft-CNC

Procedia PDF Downloads 507
16067 Approach to Functional Safety-Compliant Design of Electric Power Steering Systems for Commercial Vehicles

Authors: Hyun Chul Koag, Hyun-Sik Ahn

Abstract:

In this paper, we propose a design approach for the safety mechanism of an actuator used in a commercial vehicle’s EPS system. As the number of electric/electronic system in a vehicle increases, the importance of the functional safety has been receiving much attention. EPS(Electric Power Steering) systems for commercial vehicles require large power than passenger vehicles, and hence, dual motor can be applied to get more torque. We show how to formulate the development process for the design of hardware and software of an EPS system using dual motors. A lot of safety mechanisms for the processor, sensors, and memory have been suggested, however, those for actuators have not been fully researched. It is shown by metric analyses that the target ASIL(Automotive Safety Integrated Level) is satisfied in the point of view of hardware of EPS controller.

Keywords: safety mechanism, functional safety, commercial vehicles, electric power steering

Procedia PDF Downloads 381
16066 Advancements in Smart Home Systems: A Comprehensive Exploration in Electronic Engineering

Authors: Chukwuka E. V., Rowling J. K., Rushdie Salman

Abstract:

The field of electronic engineering encompasses the study and application of electrical systems, circuits, and devices. Engineers in this discipline design, analyze and optimize electronic components to develop innovative solutions for various industries. This abstract provides a brief overview of the diverse areas within electronic engineering, including analog and digital electronics, signal processing, communication systems, and embedded systems. It highlights the importance of staying abreast of advancements in technology and fostering interdisciplinary collaboration to address contemporary challenges in this rapidly evolving field.

Keywords: smart home engineering, energy efficiency, user-centric design, security frameworks

Procedia PDF Downloads 77
16065 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method.

Keywords: power quality, direct power control, power ripple, switching table, unity power factor

Procedia PDF Downloads 312
16064 Application of Universal Distribution Factors for Real-Time Complex Power Flow Calculation

Authors: Abdullah M. Alodhaiani, Yasir A. Alturki, Mohamed A. Elkady

Abstract:

Complex power flow distribution factors, which relate line complex power flows to the bus injected complex powers, have been widely used in various power system planning and analysis studies. In particular, AC distribution factors have been used extensively in the recent power and energy pricing studies in free electricity market field. As was demonstrated in the existing literature, many of the electricity market related costing studies rely on the use of the distribution factors. These known distribution factors, whether the injection shift factors (ISF’s) or power transfer distribution factors (PTDF’s), are linear approximations of the first order sensitivities of the active power flows with respect to various variables. This paper presents a novel model for evaluating the universal distribution factors (UDF’s), which are appropriate for an extensive range of power systems analysis and free electricity market studies. These distribution factors are used for the calculations of lines complex power flows and its independent of bus power injections, they are compact matrix-form expressions with total flexibility in determining the position on the line at which line flows are measured. The proposed approach was tested on IEEE 9-Bus system. Numerical results demonstrate that the proposed approach is very accurate compared with exact method.

Keywords: distribution factors, power system, sensitivity factors, electricity market

Procedia PDF Downloads 463
16063 Continuous-Time Analysis And Performance Assessment For Digital Control Of High-Frequency Switching Synchronous Dc-Dc Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Sakina Zerouali

Abstract:

This paper features a performance analysis and robustness assessment of a digitally controlled DC-DC three-cell buck converter associated in parallel, operating in continuous conduction mode (CCM), facing feeding parameters variation and loads disturbance. The control strategy relies on the continuous-time with an averaged modeling technique for high-frequency switching converter. The methodology is to modulate the complete design procedure, in regard to the existence of an instantaneous current operating point for designing the digital closed-loop, to the same continuous-time domain. Moreover, the adopted approach is to include a digital voltage control (DVC) technique, taking an account for digital control delays and sampling effects, which aims at improving efficiency and dynamic response and preventing generally undesired phenomena. The results obtained under load change, input change, and reference change clearly demonstrates an excellent dynamic response of the proposed technique, also as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the specified output voltage. Simulations studies in MATLAB/Simulink environment are performed to verify the concept.

Keywords: continuous conduction mode, digital control, parallel multi-cells converter, performance analysis, power electronics

Procedia PDF Downloads 143
16062 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester

Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni

Abstract:

Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.

Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph

Procedia PDF Downloads 178
16061 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation

Authors: R. Ruslee, H. Gollee

Abstract:

Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.

Keywords: asynchronous stimulation, electrode configuration, functional electrical stimulation (FES), muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation

Procedia PDF Downloads 299
16060 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 548
16059 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 493
16058 The Using of Smart Power Concepts in Military Targeting Process

Authors: Serdal AKYUZ

Abstract:

The smart power is the use of soft and hard power together in consideration of existing circumstances. Soft power can be defined as the capability of changing perception of any target mass by employing policies based on legality. The hard power, generally, uses military and economic instruments which are the concrete indicator of general power comprehension. More than providing a balance between soft and hard power, smart power creates a proactive combination by assessing existing resources. Military targeting process (MTP), as stated in smart power methodology, benefits from a wide scope of lethal and non-lethal weapons to reach intended end state. The Smart powers components can be used in military targeting process similar to using of lethal or non-lethal weapons. This paper investigates the current use of Smart power concept, MTP and presents a new approach to MTP from smart power concept point of view.

Keywords: future security environment, hard power, military targeting process, soft power, smart power

Procedia PDF Downloads 463
16057 Role of Machine Learning in Internet of Things Enabled Smart Cities

Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav

Abstract:

This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.

Keywords: IoT, smart city, embedded systems, sustainable environment

Procedia PDF Downloads 563
16056 Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability

Authors: Ahmed A. D. Sarhan, S. R. Besharaty, Javad Akbaria, M. Hamdi

Abstract:

The capability of CNC gantry milling machines in manufacturing long components has caused the expanded use of such machines. On the other hand, the machines’ gantry rigidity can reduce under severe loads or vibration during operation. Indeed, the quality of machining is dependent on the machine’s dynamic behavior throughout the operating process. For this reason, this type of machines has always been used prudently and are non efficient. Therefore, they can usually be employed for rough machining and may not produce adequate surface finishing. In this paper, a CNC gantry milling machine with the potential to produce good surface finish has been designed and analyzed. The lowest natural frequency of this machine is 202 Hz at all motion amplitudes with a full range of suitable frequency responses. Meanwhile, the maximum deformation under dead loads for the gantry machine is 0.565µm, indicating that this machine tool is capable of producing higher product quality.

Keywords: frequency response, finite element, gantry machine, gantry design, static and dynamic analysis

Procedia PDF Downloads 345
16055 Importance of Location Selection of an Energy Storage System in a Smart Grid

Authors: Vanaja Rao

Abstract:

In the recent times, the need for the integration of Renewable Energy Sources (RES) in a Smart Grid is on the rise. As a result of this, associated energy storage systems are known to play important roles in sustaining the efficient operation of such RES like wind power and solar power. This paper investigates the importance of location selection of Energy Storage Systems (ESSs) in a Smart Grid. Three scenarios of ESS location is studied and analyzed in a Smart Grid, which are – 1. Near the generation/source, 2. In the middle of the Grid and, 3. Near the demand/consumption. This is explained with the aim of assisting any Distribution Network Operator (DNO) in deploying the ESSs in a power network, which will significantly help reduce the costs and time of planning and avoid any damages incurred as a result of installing them at an incorrect location of a Smart Grid. To do this, the outlined scenarios mentioned above are modelled and analyzed with the National Grid’s datasets of energy generation and consumption in the UK power network. As a result, the outcome of this analysis aims to provide a better overview for the location selection of the ESSs in a Smart Grid. This ensures power system stability and security along with the optimum usage of the ESSs.

Keywords: distribution networks, energy storage system, energy security, location planning, power stability, smart grid

Procedia PDF Downloads 289
16054 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 517
16053 AI-Driven Strategies for Sustainable Electronics Repair: A Case Study in Energy Efficiency

Authors: Badiy Elmabrouk, Abdelhamid Boujarif, Zhiguo Zeng, Stephane Borrel, Robert Heidsieck

Abstract:

In an era where sustainability is paramount, this paper introduces a machine learning-driven testing protocol to accurately predict diode failures, merging reliability engineering with failure physics to enhance repair operations efficiency. Our approach refines the burn-in process, significantly curtailing its duration, which not only conserves energy but also elevates productivity and mitigates component wear. A case study from GE HealthCare’s repair center vividly demonstrates the method’s effectiveness, recording a high prediction of diode failures and a substantial decrease in energy consumption that translates to an annual reduction of 6.5 Tons of CO2 emissions. This advancement sets a benchmark for environmentally conscious practices in the electronics repair sector.

Keywords: maintenance, burn-in, failure physics, reliability testing

Procedia PDF Downloads 55
16052 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 102
16051 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables

Authors: Ronit Chakraborty, Sugata Banerji

Abstract:

There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.

Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling

Procedia PDF Downloads 91
16050 Material Choice Driving Sustainability of 3D Printing

Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Abstract:

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.

Keywords: 3D printing, additive manufacturing, sustainability, life-cycle assessment, design for environment

Procedia PDF Downloads 482
16049 A Novel Approach to Asynchronous State Machine Modeling on Multisim for Avoiding Function Hazards

Authors: Parisi L., Hamili D., Azlan N.

Abstract:

The aim of this study was to design and simulate a particular type of Asynchronous State Machine (ASM), namely a ‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz. The design task involved two main stages: firstly, designing a 4-bit binary counter using J-K flip flops as the timing signal and subsequently, attaining the digital logic by deploying ASM design process. The TLC was designed such that it showed a sequence of three different colours, i.e. red, yellow and green, corresponding to set thresholds by deploying the least number of AND, OR and NOT gates possible. The software Multisim was deployed to design such circuit and simulate it for circuit troubleshooting in order for it to display the output sequence of the three different colours on the traffic light in the correct order. A clock signal, an asynchronous 4-bit binary counter that was designed through the use of J-K flip flops along with an ASM were used to complete this sequence, which was programmed to be repeated indefinitely. Eventually, the circuit was debugged and optimized, thus displaying the correct waveforms of the three outputs through the logic analyzer. However, hazards occurred when the frequency was increased to 10 MHz. This was attributed to delays in the feedback being too high.

Keywords: asynchronous state machine, traffic light controller, circuit design, digital electronics

Procedia PDF Downloads 418
16048 Markov Characteristics of the Power Line Communication Channels in China

Authors: Ming-Yue Zhai

Abstract:

Due to the multipath and pulse noise nature, power line communications(PLC) channel can be modelled as a memory one with the finite states Markov model(FSMC). As the most important parameter modelling a Markov channel,the memory order in an FSMC is not solved in PLC systems yet. In the paper, the mutual information is used as a measure of the dependence between the different symbols, treated as the received SNA or amplitude of the current channel symbol or that of previous symbols. The joint distribution probabilities of the envelopes in PLC systems are computed based on the multi-path channel model, which is commonly used in PLC. we confirm that given the information of the symbol immediately preceding the current one, any other previous symbol is independent of the current one in PLC systems, which means the PLC channels is a Markov chain with the first-order. The field test is also performed to model the received OFDM signals with the help of AR model. The results show that the first-order AR model is enough to model the fading channel in PLC systems, which means the amount of uncertainty remaining in the current symbol should be negligible, given the information corresponding to the immediately preceding one.

Keywords: power line communication, channel model, markovian, information theory, first-order

Procedia PDF Downloads 397
16047 Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability

Authors: Ahmed Cherif Megri, HossamEldin ElSherif

Abstract:

In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant.

Keywords: shape optimization, header, power plant, inconel alloy, CFD, structural optimization

Procedia PDF Downloads 61
16046 A Smart Electric Power Wheelchair Controlled by Head Motion

Authors: Dechrit Maneetham

Abstract:

The aim of this paper was to design a smart electric power wheelchair (SEPW) with a novel control system for quadriplegics with head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely X ,Y and Z. The model of a DC motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller Arduino ATmega32u4 as controllers, a DC motor driven SEPW and feedback elements. And this paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the DC motor so that the motor runs very closed to the reference speed and angle. SEPW controller can be used to ensure the person’s head is attending the direction of travel asserted by a conventional, direction and speed control.

Keywords: wheelchair, quadriplegia, rehabilitation, medical devices, speed control

Procedia PDF Downloads 398
16045 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 124
16044 Inter-Area Oscillation Monitoring in Maghrebian Power Grid Using Phasor Measurement Unit

Authors: M. Tsebia, H. Bentarzi

Abstract:

In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink.

Keywords: PMU, inter-area oscillation, Maghrebian power system, Simulink

Procedia PDF Downloads 352