Search results for: GLCM texture features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4340

Search results for: GLCM texture features

4010 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling

Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar

Abstract:

The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.

Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength

Procedia PDF Downloads 75
4009 AI Features in Netflix

Authors: Dona Abdulwassi, Dhaee Dahlawi, Yara Zainy, Leen Joharji

Abstract:

The relationship between Netflix and artificial intelligence is discussed in this paper. Netflix uses the most effective and efficient approaches to apply artificial intelligence, machine learning, and data science. Netflix employs the personalization tool for their users, recommending or suggesting shows based on what those users have already watched. The researchers conducted an experiment to learn more about how Netflix is used and how AI affects the user experience. The main conclusions of this study are that Netflix has a wide range of AI features, most users are happy with their Netflix subscriptions, and the majority prefer Netflix to alternative apps.

Keywords: easy accessibility, recommends, accuracy, privacy

Procedia PDF Downloads 65
4008 Effect of the Incorporation of Modified Starch on the Physicochemical Properties and Consumer Acceptance of Puff Pastry

Authors: Alejandra Castillo-Arias, Santiago Amézquita-Murcia, Golber Carvajal-Lavi, Carlos M. Zuluaga-Domínguez

Abstract:

The intricate relationship between health and nutrition has driven the food industry to seek healthier and more sustainable alternatives. A key strategy currently employed is the reduction of saturated fats and the incorporation of ingredients that align with new consumer trends. Modified starch, a polysaccharide widely used in baking, also serves as a functional ingredient to boost dietary fiber content. However, its use in puff pastry remains challenging due to the technological difficulties in achieving a buttery pastry with the necessary strength to create thin, flaky layers. This study explored the potential of incorporating modified starch into puff pastry formulations. To evaluate the physicochemical properties of wheat flour mixed with modified starch, five different flour samples were prepared: T1, T2, T3, and T4, containing 10g, 20g, 30g, and 40g of modified starch per 100 g mixture, respectively, alongside a control sample (C) with no added starch. The analysis focused on various physicochemical indices, including the Water Absorption Index (WAI), Water Solubility Index (WSI), Swelling Power (SP), and Water Retention Capacity (WRC). The puff pastry was further characterized by color measurement and sensory analysis. For the preparation of the puff pastry dough, the flour, modified starch, and salt were mixed, followed by the addition of water until a homogenous dough was achieved. The margarine was later incorporated into the dough, which was folded and rolled multiple times to create the characteristic layers of puff pastry. The dough was then cut into equal pieces, baked at 170°C, and allowed to cool. The results indicated that the addition of modified starch did not significantly alter the specific volume or texture of the puff pastries, as reflected by the stable WAI and SP values across the samples. However, the WRC increased with higher starch content, highlighting the hydrophilic nature of the modified starch, which necessitated additional water during dough preparation. Color analysis revealed significant variations in the L* (lightness) and a* (red-green) parameters, with no consistent relationship between the modified starch treatments and the control. However, the b* (yellow-blue) parameter showed a strong correlation across most samples, except for treatment T3. Thus, modified starch affected the a* component of the CIELAB color spectrum, influencing the reddish hue of the puff pastries. Variations in baking time due to increased water content in the dough likely contributed to differences in lightness among the samples. Sensory analysis revealed that consumers preferred the sample with a 20% starch substitution (T2), which was rated similarly to the control in terms of texture. However, treatment T3 exhibited unusual behavior in texture analysis, and the color analysis showed that treatment T1 most closely resembled the control, indicating that starch addition is most noticeable to consumers in the visual aspect of the product. In conclusion, while the modified starch successfully maintained the desired texture and internal structure of puff pastry, its impact on water retention and color requires careful consideration in product formulation. This study underscores the importance of balancing product quality with consumer expectations when incorporating modified starches in baked goods.

Keywords: consumer preferences, modified starch, physicochemical properties, puff pastry

Procedia PDF Downloads 28
4007 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 356
4006 Exploring Multi-Feature Based Action Recognition Using Multi-Dimensional Dynamic Time Warping

Authors: Guoliang Lu, Changhou Lu, Xueyong Li

Abstract:

In action recognition, previous studies have demonstrated the effectiveness of using multiple features to improve the recognition performance. We focus on two practical issues: i) most studies use a direct way of concatenating/accumulating multi features to evaluate the similarity between two actions. This way could be too strong since each kind of feature can include different dimensions, quantities, etc; ii) in many studies, the employed classification methods lack of a flexible and effective mechanism to add new feature(s) into classification. In this paper, we explore an unified scheme based on recently-proposed multi-dimensional dynamic time warping (MD-DTW). Experiments demonstrated the scheme's effectiveness of combining multi-feature and the flexibility of adding new feature(s) to increase the recognition performance. In addition, the explored scheme also provides us an open architecture for using new advanced classification methods in the future to enhance action recognition.

Keywords: action recognition, multi features, dynamic time warping, feature combination

Procedia PDF Downloads 437
4005 Economics of Oil and Its Stability in the Gulf Region

Authors: Al Mutawa A. Amir, Liaqat Ali, Faisal Ali

Abstract:

After the World War II, the world economy was disrupted and changed due to oil and its prices. The research in this paper presents the basic statistical features and economic characteristics of the Gulf economy. The main features of the Gulf economies and its heavy dependence on oil exports, its dualism between modern and traditional sectors and its rapidly increasing affluences are particularly emphasized.  In this context, the research in this paper discussed the problems of growth versus development and has attempted to draw the implications for the future economic development of this area.

Keywords: oil prices, GCC, economic growth, gulf oil

Procedia PDF Downloads 335
4004 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity

Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish

Abstract:

Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.

Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow

Procedia PDF Downloads 132
4003 0.13-µm Complementary Metal-Oxide Semiconductor Vector Modulator for Beamforming System

Authors: J. S. Kim

Abstract:

This paper presents a 0.13-µm Complementary Metal-Oxide Semiconductor (CMOS) vector modulator for beamforming system. The vector modulator features a 360° phase and gain range of -10 dB to 10 dB with a root mean square phase and amplitude error of only 2.2° and 0.45 dB, respectively. These features make it a suitable for wireless backhaul system in the 5 GHz industrial, scientific, and medical (ISM) bands. It draws a current of 20.4 mA from a 1.2 V supply. The total chip size is 1.87x1.34 mm².

Keywords: CMOS, vector modulator, beamforming, 802.11ac

Procedia PDF Downloads 211
4002 The Effect of User Comments on Traffic Application Usage

Authors: I. Gokasar, G. Bakioglu

Abstract:

With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications.

Keywords: traffic app, real–time information, traffic congestion, regression analysis, dummy variables

Procedia PDF Downloads 430
4001 Beyond Geometry: The Importance of Surface Properties in Space Syntax Research

Authors: Christoph Opperer

Abstract:

Space syntax is a theory and method for analyzing the spatial layout of buildings and urban environments to understand how they can influence patterns of human movement, social interaction, and behavior. While direct visibility is a key factor in space syntax research, important visual information such as light, color, texture, etc., are typically not considered, even though psychological studies have shown a strong correlation to the human perceptual experience within physical space – with light and color, for example, playing a crucial role in shaping the perception of spaciousness. Furthermore, these surface properties are often the visual features that are most salient and responsible for drawing attention to certain elements within the environment. This paper explores the potential of integrating these factors into general space syntax methods and visibility-based analysis of space, particularly for architectural spatial layouts. To this end, we use a combination of geometric (isovist) and topological (visibility graph) approaches together with image-based methods, allowing a comprehensive exploration of the relationship between spatial geometry, visual aesthetics, and human experience. Custom-coded ray-tracing techniques are employed to generate spherical panorama images, encoding three-dimensional spatial data in the form of two-dimensional images. These images are then processed through computer vision algorithms to generate saliency-maps, which serve as a visual representation of areas most likely to attract human attention based on their visual properties. The maps are subsequently used to weight the vertices of isovists and the visibility graph, placing greater emphasis on areas with high saliency. Compared to traditional methods, our weighted visibility analysis introduces an additional layer of information density by assigning different weights or importance levels to various aspects within the field of view. This extends general space syntax measures to provide a more nuanced understanding of visibility patterns that better reflect the dynamics of human attention and perception. Furthermore, by drawing parallels to traditional isovist and VGA analysis, our weighted approach emphasizes a crucial distinction, which has been pointed out by Ervin and Steinitz: the difference between what is possible to see and what is likely to be seen. Therefore, this paper emphasizes the importance of including surface properties in visibility-based analysis to gain deeper insights into how people interact with their surroundings and to establish a stronger connection with human attention and perception.

Keywords: space syntax, visibility analysis, isovist, visibility graph, visual features, human perception, saliency detection, raytracing, spherical images

Procedia PDF Downloads 77
4000 Profit and Nonprofit Sports Clubs, Financial and Organizational Comparison in Poland

Authors: Igor Perechuda, Wojciech Cieśliński

Abstract:

The paper identifies the features of Polish sports clubs in the particular organizational forms: profit and nonprofit. Identification and description of these features is carried out in terms of financial efficiency of the given organizational form. Under the terms of the efficiency the research allows you to specify the advantages of particular organizational sports club form and the following limitations. Paper considers features of sports clubs in range of Polish conditions as legal regulations. The sources of the functioning efficiency of sports clubs may lie in the organizational forms in which they operate. Each of the available forms can be considered either a for-profit or nonprofit enterprise. Depending on this classification there are different capabilities of increasing organizational and financial efficiency of a given sports club. Authors start with general classification and difference between for-profit and non-profit sport clubs. Next identifies specific financial and organizational conditions of both organizational form and then show examples of mixed activity forms and their efficiency effect.

Keywords: financial efficiency, for-profit, non-profit, sports club

Procedia PDF Downloads 551
3999 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 267
3998 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis

Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar

Abstract:

Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.

Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives

Procedia PDF Downloads 455
3997 Reconstructed Phase Space Features for Estimating Post Traumatic Stress Disorder

Authors: Andre Wittenborn, Jarek Krajewski

Abstract:

Trauma-related sadness in speech can alter the voice in several ways. The generation of non-linear aerodynamic phenomena within the vocal tract is crucial when analyzing trauma-influenced speech production. They include non-laminar flow and formation of jets rather than well-behaved laminar flow aspects. Especially state-space reconstruction methods based on chaotic dynamics and fractal theory have been suggested to describe these aerodynamic turbulence-related phenomena of the speech production system. To extract the non-linear properties of the speech signal, we used the time delay embedding method to reconstruct from a scalar time series (reconstructed phase space, RPS). This approach results in the extraction of 7238 Features per .wav file (N= 47, 32 m, 15 f). The speech material was prompted by telling about autobiographical related sadness-inducing experiences (sampling rate 16 kHz, 8-bit resolution). After combining these features in a support vector machine based machine learning approach (leave-one-sample out validation), we achieved a correlation of r = .41 with the well-established, self-report ground truth measure (RATS) of post-traumatic stress disorder (PTSD).

Keywords: non-linear dynamics features, post traumatic stress disorder, reconstructed phase space, support vector machine

Procedia PDF Downloads 104
3996 A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences

Authors: Yuan-Jye Tseng, Ching-Yen Chen

Abstract:

In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.

Keywords: cluster analysis, customer preferences, design evaluation, design for customer preferences, product design

Procedia PDF Downloads 191
3995 Positive-Negative Asymmetry in the Evaluations of Political Candidates: The Mediating Role of Affect in the Relationship between Cognitive Evaluation and Voting Intention

Authors: Magdalena Jablonska, Andrzej Falkowski

Abstract:

The negativity effect is one of the most intriguing and well-studied psychological phenomena that can be observed in many areas of human life. The aim of the following study is to investigate how valence framing and positive and negative information about political candidates affect judgments about similarity to an ideal and bad politician. Based on the theoretical framework of features of similarity, it is hypothesized that negative features have a stronger effect on similarity judgments than positive features of comparable value. Furthermore, the mediating role of affect is tested. Method: One hundred sixty-one people took part in an experimental study. Participants were divided into 6 research conditions that differed in the reference point (positive vs negative framing) and the number of favourable and unfavourable information items about political candidates (a positive, neutral and negative candidate profile). In positive framing condition, the concept of an ideal politician was primed; in the negative condition, participants were to think about a bad politician. The effect of independent variables on similarity judgments, affective evaluation, and voting intention was tested. Results: In the positive condition, the analysis showed that the negative effect of additional unfavourable features was greater than the positive effect of additional favourable features in judgements about similarity to the ideal candidate. In negative framing condition, ANOVA was insignificant, showing that neither the addition of positive features nor additional negative information had a significant impact on the similarity to a bad political candidate. To explain this asymmetry, two mediational analyses were conducted that tested the mediating role of affect in the relationship between similarity judgments and voting intention. In both situations the mediating effect was significant, but the comparison of two models showed that the mediation was stronger for a negative framing. Discussion: The research supports the negativity effect and attempts to explain the psychological mechanism behind the positive-negative asymmetry. The results of mediation analyses point to a stronger mediating role of affect in the relationship between cognitive evaluation and voting intention. Such a result suggests that negative comparisons, leading to the activation of negative features, give rise to stronger emotions than positive features of comparable strength. The findings are in line with positive-negative asymmetry, however, by adopting Tversky’s framework of features of similarity, the study integrates the cognitive mechanism of the negativity effect delineated in the contrast model of similarity with its emotional component resulting from the asymmetrical effect of positive and negative emotions on decision-making.

Keywords: affect, framing, negativity effect, positive-negative asymmetry, similarity judgements

Procedia PDF Downloads 198
3994 Potential Application of Artocarpus odoratisimmus Seed Flour in Bread Production

Authors: Hasmadi Mamat, Noorfarahzilah Masri

Abstract:

The search for lesser known and underutilized crops, many of which are potentially valuable as human and animal foods has been the focus of research in recent years. Tarap (Artocarpus odoratisimmus) is one of the most delicious tropical fruit and can be found extensively in Borneo, particularly in Sabah and Sarawak. This study was conducted in order to determine the proximate composition, mineral contents as well as to study the effect of the seed flour on the quality of bread produced. Tarap seed powder (TSP) was incorporated (up to 20%) with wheat flour and used to produce bread. The moisture content, ash, protein, fat, ash, carbohydrates, and dietary fiber were measured using AOAC methods while the mineral content was determined using AAS. The effect of substitution of wheat flour with Tarap seed flour on the quality of dough and bread was investigated using various techniques. Farinograph tests were applied to determine the effect of seaweed powder on the rheological properties of wheat flour dough, while texture profile analysis (TPA) was used to measure the textural properties of the final product. Besides that sensory evaluations were also conducted. On a dry weight basis, the TSP was composed of 12.50% moisture, 8.78% protein, 15.60% fat, 1.17% ash, 49.65% carbohydrate and 12.30% of crude fiber. The highest mineral found were Mg, followed by K, Ca, Fe and Na respectively. Farinograh results found that as TSP percentage increased, dough consistency, water absorption capacity and development time of dough decreased. Sensory analysis results showed that bread with 10% of TSP was the most accepted by panelists where the highest acceptability score were found for aroma, taste, colour, crumb texture as well as overall acceptance. The breads with more than 10% of TSP obtained lower acceptability score in most of attributes tested.

Keywords: tarap seed, proximate analysis, bread, sensory evaluation

Procedia PDF Downloads 183
3993 Patients' Quality of Life and Caregivers' Burden of Parkinson's Disease

Authors: Kingston Rajiah, Mari Kannan Maharajan, Si Jen Yeen, Sara Lew

Abstract:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder with evolving layers of complexity. Both motor and non-motor symptoms of PD may affect patients’ quality of life (QoL). Life expectancy for an individual with Parkinson’s disease depends on the level of care the individual has access to, can have a direct impact on length of life. Therefore, improvement of the QoL is a significant part of therapeutic plans. Patients with PD, especially those who are in advanced stages, are in great need of assistance, mostly from their family members or caregivers in terms of medical, emotional, and social support. The role of a caregiver becomes increasingly important with the progression of PD, the severity of motor impairment and increasing age of the patient. The nature and symptoms associated with PD can place significant stresses on the caregivers’ burden. As the prevalence of PD is estimated to more than double by 2030, it is important to recognize and alleviate the burden experienced by caregivers. This study focused on the impact of the clinical features on the QoL of PD patients, and of their caregivers. This study included PD patients along with their caregivers and was undertaken at the Malaysian Parkinson's Disease Association from June 2016 to November 2016. Clinical features of PD patients were assessed using the Movement Disorder Society revised Unified Parkinson Disease Rating Scale (MDS-UPDRS); the Hoehn and Yahr Staging of Parkinson's Disease were used to assess the severity and Parkinson's disease activities of daily living scale were used to assess the disability of Parkinson’s disease patients. QoL of PD patients was measured using the Parkinson's Disease Questionnaire-39 (PDQ-39). The revised version of the Zarit Burden Interview assessed caregiver burden. At least one of the clinical features affected PD patients’ QoL, and at least one of the QoL domains affected the caregivers’ burden. Clinical features ‘Saliva and Drooling’, and ‘Dyskinesia’ explained 29% of variance in QoL of PD patients. The QoL domains ‘stigma’, along with ‘emotional wellbeing’ explained 48.6% of variance in caregivers’ burden. Clinical features such as saliva, drooling and dyskinesia affected the QoL of PD patients. The PD patients’ QoL domains such as ‘stigma’ and ‘emotional well-being’ influenced their caregivers’ burden.

Keywords: carers, quality of life, clinical features, Malaysia

Procedia PDF Downloads 246
3992 Two Quasiparticle Rotor Model for Deformed Nuclei

Authors: Alpana Goel, Kawalpreet Kalra

Abstract:

The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.

Keywords: deformed nuclei, signature effects, signature inversion, signature reversal

Procedia PDF Downloads 158
3991 Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection

Authors: Mrinal Kanti Bhowmik, Kakali Das Jr., Barin Kumar De, Debotosh Bhattacharjee

Abstract:

Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection.

Keywords: fractal, tumor, thermography, mammography

Procedia PDF Downloads 389
3990 Discovering the Real Psyche of Human Beings

Authors: Sheetla Prasad

Abstract:

The objective of this study is ‘discovering the real psyche of human beings for prediction of mode, direction and strength of the potential of actions of the individual. The human face was taken as a source of central point to search for the route of real psyche. Analysis of the face architecture (shape and salient features of face) was done by three directional photographs ( 600 left and right and camera facing) of human beings. The shapes and features of the human face were scaled in 177 units on the basis of face–features locations (FFL). The mathematical analysis was done of FFLs by self developed and standardized formula. At this phase, 800 samples were taken from the population of students, teachers, advocates, administrative officers, and common persons. The finding shows that real psyche has two external rings (ER). These ER are itself generator of two independent psyches (manifested and manipulated). Prima-facie, it was proved that micro differences in FFLs have potential to predict the state of art of the human psyche. The potential of psyches was determined by the saving and distribution of mental energy. It was also mathematically proved.

Keywords: face architecture, psyche, potential, face functional ratio, external rings

Procedia PDF Downloads 508
3989 A Combined Feature Extraction and Thresholding Technique for Silence Removal in Percussive Sounds

Authors: B. Kishore Kumar, Pogula Rakesh, T. Kishore Kumar

Abstract:

The music analysis is a part of the audio content analysis used to analyze the music by using the different features of audio signal. In music analysis, the first step is to divide the music signal to different sections based on the feature profiles of the music signal. In this paper, we present a music segmentation technique that will effectively segmentize the signal and thresholding technique to remove silence from the percussive sounds produced by percussive instruments, which uses two features of music, namely signal energy and spectral centroid. The proposed method impose thresholds on both the features which will vary depends on the music signal. Depends on the threshold, silence part is removed and the segmentation is done. The effectiveness of the proposed method is analyzed using MATLAB.

Keywords: percussive sounds, spectral centroid, spectral energy, silence removal, feature extraction

Procedia PDF Downloads 594
3988 Congolese Wood in the Antwerp Interwar Interior

Authors: M. Jaenen, M. de Bouw, A. Verdonck, M. Leus

Abstract:

During the interwar period artificial materials were often preferred, but many Antwerp architects relied on the application of wood for most of the interior finishing works and furnishings. Archival, literature and on site research of interwar suburban townhouses and the Belgian wood and furniture industry gave a new insight to the application of wood in the interwar interior. Many interwar designers favored the decorative values in all treatments of wood because of its warmth, comfort, good-wearing, and therefore, economic qualities. For the creation of a successful modern interior the texture and surface of the wood becomes as important as the color itself. This aesthetics valuation was the result of the modernization of the wood industry. The development of veneer and plywood gave the possibility to create strong, flat, long and plain wooden surfaces which are capable of retaining their shape. Also the modernization of cutting machines resulted in high quality and diversity in texture of veneer. The flat and plain plywood surfaces were modern decorated with all kinds of veneer-sliced options. In addition, wood species from the former Belgian Colony Congo were imported. Limba (Terminalia superba), kambala (Chlorophora excelsa), mubala (Pentaclethra macrophylla) and sapelli (Entandrophragma cylindricum) were used in the interior of many Antwerp interwar suburban town houses. From the thirties onwards Belgian wood firms established modern manufactures in Congo. There the local wood was dried, cut and prepared for exportation to the harbor of Antwerp. The presence of all kinds of strong and decorative Congolese wood products supported its application in the interwar interior design. The Antwerp architects combined them in their designs for doors, floors, stairs, built-in-furniture, wall paneling and movable furniture.

Keywords: Antwerp, congo, furniture, interwar

Procedia PDF Downloads 226
3987 Comprehensive Evaluation of COVID-19 Through Chest Images

Authors: Parisa Mansour

Abstract:

The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.

Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT

Procedia PDF Downloads 58
3986 A Nonlinear Feature Selection Method for Hyperspectral Image Classification

Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo

Abstract:

For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.

Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine

Procedia PDF Downloads 265
3985 A Computer-Aided System for Tooth Shade Matching

Authors: Zuhal Kurt, Meral Kurt, Bilge T. Bal, Kemal Ozkan

Abstract:

Shade matching and reproduction is the most important element of success in prosthetic dentistry. Until recently, shade matching procedure was implemented by dentists visual perception with the help of shade guides. Since many factors influence visual perception; tooth shade matching using visual devices (shade guides) is highly subjective and inconsistent. Subjective nature of this process has lead to the development of instrumental devices. Nowadays, colorimeters, spectrophotometers, spectroradiometers and digital image analysing systems are used for instrumental shade selection. Instrumental devices have advantages that readings are quantifiable, can obtain more rapidly and simply, objectively and precisely. However, these devices have noticeable drawbacks. For example, translucent structure and irregular surfaces of teeth lead to defects on measurement with these devices. Also between the results acquired by devices with different measurement principles may make inconsistencies. So, its obligatory to search for new methods for dental shade matching process. A computer-aided system device; digital camera has developed rapidly upon today. Currently, advances in image processing and computing have resulted in the extensive use of digital cameras for color imaging. This procedure has a much cheaper process than the use of traditional contact-type color measurement devices. Digital cameras can be taken by the place of contact-type instruments for shade selection and overcome their disadvantages. Images taken from teeth show morphology and color texture of teeth. In last decades, a new method was recommended to compare the color of shade tabs taken by a digital camera using color features. This method showed that visual and computer-aided shade matching systems should be used as concatenated. Recently using methods of feature extraction techniques are based on shape description and not used color information. However, color is mostly experienced as an essential property in depicting and extracting features from objects in the world around us. When local feature descriptors with color information are extended by concatenating color descriptor with the shape descriptor, that descriptor will be effective on visual object recognition and classification task. Therefore, the color descriptor is to be used in combination with a shape descriptor it does not need to contain any spatial information, which leads us to use local histograms. This local color histogram method is remain reliable under variation of photometric changes, geometrical changes and variation of image quality. So, coloring local feature extraction methods are used to extract features, and also the Scale Invariant Feature Transform (SIFT) descriptor used to for shape description in the proposed method. After the combination of these descriptors, the state-of-art descriptor named by Color-SIFT will be used in this study. Finally, the image feature vectors obtained from quantization algorithm are fed to classifiers such as Nearest Neighbor (KNN), Naive Bayes or Support Vector Machines (SVM) to determine label(s) of the visual object category or matching. In this study, SVM are used as classifiers for color determination and shade matching. Finally, experimental results of this method will be compared with other recent studies. It is concluded from the study that the proposed method is remarkable development on computer aided tooth shade determination system.

Keywords: classifiers, color determination, computer-aided system, tooth shade matching, feature extraction

Procedia PDF Downloads 448
3984 Soil Degradati̇on Mapping Using Geographic Information System, Remote Sensing and Laboratory Analysis in the Oum Er Rbia High Basin, Middle Atlas, Morocco

Authors: Aafaf El Jazouli, Ahmed Barakat, Rida Khellouk

Abstract:

Mapping of soil degradation is derived from field observations, laboratory measurements, and remote sensing data, integrated quantitative methods to map the spatial characteristics of soil properties at different spatial and temporal scales to provide up-to-date information on the field. Since soil salinity, texture and organic matter play a vital role in assessing topsoil characteristics and soil quality, remote sensing can be considered an effective method for studying these properties. The main objective of this research is to asses soil degradation by combining remote sensing data and laboratory analysis. In order to achieve this goal, the required study of soil samples was taken at 50 locations in the upper basin of Oum Er Rbia in the Middle Atlas in Morocco. These samples were dried, sieved to 2 mm and analyzed in the laboratory. Landsat 8 OLI imagery was analyzed using physical or empirical methods to derive soil properties. In addition, remote sensing can serve as a supporting data source. Deterministic potential (Spline and Inverse Distance weighting) and probabilistic interpolation methods (ordinary kriging and universal kriging) were used to produce maps of each grain size class and soil properties using GIS software. As a result, a correlation was found between soil texture and soil organic matter content. This approach developed in ongoing research will improve the prospects for the use of remote sensing data for mapping soil degradation in arid and semi-arid environments.

Keywords: Soil degradation, GIS, interpolation methods (spline, IDW, kriging), Landsat 8 OLI, Oum Er Rbia high basin

Procedia PDF Downloads 165
3983 Lexical Features and Motivations of Product Reviews on Selected Philippine Online Shops

Authors: Jimmylen Tonio, Ali Anudin, Rochelle Irene G. Lucas

Abstract:

Alongside the progress of electronic-business websites, consumers have become more comfortable with online shopping. It has become customary for consumers that prior to purchasing a product or availing services, they consult online reviews info as bases in evaluating and deciding whether or not they should push thru with their procurement of the product or service. Subsequently, after purchasing, consumers tend to post their own comments of the product in the same e-business websites. Because of this, product reviews (PRS) have become an indispensable feature in online businesses equally beneficial for both business owners and consumers. This study explored the linguistic features and motivations of online product reviews on selected Philippine online shops, LAZADA and SHOPEE. Specifically, it looked into the lexical features of the PRs, the factors that motivated consumers to write the product reviews, and the difference of lexical preferences between male and female when they write the reviews. The findings revealed the following: 1. Formality of words in online product reviews primarily involves non-standard spelling, followed by abbreviated word forms, colloquial contractions and use of coined/novel words; 2. Paralinguistic features in online product reviews are dominated by the use of emoticons, capital letters and punctuations followed by the use of pictures/photos and lastly, by paralinguistic expressions; 3. The factors that motivate consumers to write product reviews varied. Online product reviewers are predominantly driven by venting negative feelings motivation, followed by helping the company, helping other consumers, positive self-enhancement, advice seeking and lastly, by social benefits; and 4. Gender affects the word frequencies of product online reviews, while negation words, personal pronouns, the formality of words, and paralinguistic features utilized by both male and female online product reviewers are not different.

Keywords: lexical choices, motivation, online shop, product reviews

Procedia PDF Downloads 152
3982 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation

Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev

Abstract:

The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.

Keywords: CO and VOCs oxidation, copper oxide, Ceria, gold catalysts

Procedia PDF Downloads 319
3981 Valuation of Green Commercial Office Building: A Preliminary Study of Malaysian Valuers' Insight

Authors: Tuti Haryati Jasimin, Hishamuddin Mohd Ali

Abstract:

Malaysia’s green building development is gaining momentum and green buildings have become a key focus area especially within the commercial sector with the encouragement of government legislation and policy. Due to the emerging awareness among the market players’ views of the benefits associated with the ownership of green buildings in Malaysia, there is a need for valuers to incorporate consideration of sustainability into their assessments of property market value to ensure the green buildings continue to increase in the market. This paper analyses the valuers’ current perception on the valuation practices with regard to the green issues in Malaysia. The study was based on a survey of registered real estate valuers and the experts whose work related to valuation in the Klang Valley area to rate their view regarding the perception on valuation of green building. The findings present evidence that even though Malaysian valuers have limited knowledge of green buildings, they recognize the importance of incorporating the green features in the valuation process. The inclusion of incorporating the green features in valuations in practice was hindered by the inadequacy of sufficient transactional data in the market. Furthermore, valuers experienced difficulty in identifying what are the various input parameters of green building and how to adjust it in order to reflect the benefit of sustainability features correctly in the valuation process. This paper focuses on the present challenges confronted by Malaysian valuers with regards to incorporating the green features in their valuation.

Keywords: green commercial office building, Malaysia, valuers’ perception, valuation, commercial sector

Procedia PDF Downloads 325