Search results for: 3D face recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4283

Search results for: 3D face recognition

3953 'Value-Based Re-Framing' in Identity-Based Conflicts: A Skill for Mediators in Multi-Cultural Societies

Authors: Hami-Ziniman Revital, Ashwall Rachelly

Abstract:

The conflict resolution realm has developed tremendously during the last half-decade. Three main approaches should be mentioned: an Alternative Dispute Resolution (ADR) suggesting processes such as Arbitration or Interests-based Negotiation was developed as an answer to obligations and rights-based conflicts. The Pragmatic mediation approach focuses on the gap between interests and needs of disputants. The Transformative mediation approach focusses on relations and suits identity-based conflicts. In the current study, we examine the conflictual relations between religious and non-religious Jews in Israel and the impact of three transformative mechanisms: Inter-group recognition, In-group empowerment and Value-based reframing on the relations between the participants. The research was conducted during four facilitated joint mediation classes. A unique finding was found. Using both transformative mechanisms and the Contact Hypothesis criteria, we identify transformation in participants’ relations and a considerable change from anger, alienation, and suspiciousness to an increased understanding, affection and interpersonal concern towards the out-group members. Intergroup Recognition, In-group empowerment, and Values-based reframing were the skills discovered as the main enablers of the change in the relations and the research participants’ fostered mutual recognition of the out-group values and identity-based issues. We conclude this transformation was possible due to a constant intergroup contact, based on the Contact Hypothesis criteria. In addition, as Interests-based mediation uses “Reframing” as a skill to acknowledge both mutual and opposite needs of the disputants, we suggest the use of “Value-based Reframing” in intergroup identity-based conflicts, as a skill contributes to the empowerment and the recognition of both mutual and different out-group values. We offer to implement those insights and skills to assist conflict resolution facilitators in various intergroup identity-based conflicts resolution efforts and to establish further research and knowledge.

Keywords: empowerment, identity-based conflict, intergroup recognition, intergroup relations, mediation skills, multi-cultural society, reframing, value-based recognition

Procedia PDF Downloads 343
3952 Facial Recognition Technology in Institutions of Higher Learning: Exploring the Use in Kenya

Authors: Samuel Mwangi, Josephine K. Mule

Abstract:

Access control as a security technique regulates who or what can access resources. It is a fundamental concept in security that minimizes risks to the institutions that use access control. Regulating access to institutions of higher learning is key to ensure only authorized personnel and students are allowed into the institutions. The use of biometrics has been criticized due to the setup and maintenance costs, hygiene concerns, and trepidations regarding data privacy, among other apprehensions. Facial recognition is arguably a fast and accurate way of validating identity in order to guard protected areas. It guarantees that only authorized individuals gain access to secure locations while requiring far less personal information whilst providing an additional layer of security beyond keys, fobs, or identity cards. This exploratory study sought to investigate the use of facial recognition in controlling access in institutions of higher learning in Kenya. The sample population was drawn from both private and public higher learning institutions. The data is based on responses from staff and students. Questionnaires were used for data collection and follow up interviews conducted to understand responses from the questionnaires. 80% of the sampled population indicated that there were many security breaches by unauthorized people, with some resulting in terror attacks. These security breaches were attributed to stolen identity cases, where staff or student identity cards were stolen and used by criminals to access the institutions. These unauthorized accesses have resulted in losses to the institutions, including reputational damages. The findings indicate that security breaches are a major problem in institutions of higher learning in Kenya. Consequently, access control would be beneficial if employed to curb security breaches. We suggest the use of facial recognition technology, given its uniqueness in identifying users and its non-repudiation capabilities.

Keywords: facial recognition, access control, technology, learning

Procedia PDF Downloads 127
3951 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching

Authors: Angel Daniel Muñoz Guzmán

Abstract:

E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.

Keywords: student, experience, e-learning, e-teaching, e-tools, technology, education

Procedia PDF Downloads 111
3950 A Comparative Study of Burnout and Coping Strategies between HIV Counselors: Face to Face and Online Counseling Services in Addis Ababa

Authors: Yemisrach Mihertu Amsale

Abstract:

The purpose of this study was to compare burnout and coping strategies between HIV counselors in face to face and online counseling settings in Addis Ababa. The study was mixed approach design that was quantitative and qualitative. For the quantitative data the participants involved in this study included 64 face to face and 47 online HIV counselors in both counseling settings. In addition, 23 participants were involved to offer qualitative data from both counseling settings. For the purpose of gathering the quantitative data, the instruments, namely, demographic questionnaire, Maslach Burnout Inventory and the COPE questionnaire, were used to gather quantitative data. Qualitative data was also gathered in the FGD Guide and Interview Guide. Thus, this study revealed that HIV counselors in online counseling settings scored high on emotional exhaustion, depersonalization and low in personal accomplishment dimensions of burnout as compared to HIV counselors in face to face setting and the difference was statistically significant in emotional exhaustion and personal accomplishment, but there was no a significant difference on depersonalization dimension of burnout between the two groups. In addition, the present study revealed a statistically significant difference on problem focused coping strategy between the two groups and yet for on the emotion focused coping strategy the difference was not statistically significant. Statistically negative correlation was observed between some demographic variables such as age with emotional exhaustion and depersonalization dimensions of burnout; years of experiences and personal accomplishment dimension of burnout. A statistically positive correlation was also observed between average number of clients served per day and emotional exhaustion. Sex was having a statistically positive correlation with coping strategy. Lastly, a significant positive correlation was also observed in the emotional exhaustion dimension of the burnout and the emotional focused coping strategy. Generally, this study has shown that HIV counselors suffer from moderate to high level of burnout. Based on the findings, conclusions were made and recommendations were forwarded.

Keywords: counseling, burnout management, psychological, behavioral sciences

Procedia PDF Downloads 305
3949 Challenges Novice Arabic Language Teachers Face Related to Using Educational Technologies in Saudi Schools

Authors: Wesal Maash

Abstract:

This paper is part of a PhD mixed-method project currently conducted in the Saudi context. This paper explores the challenges novice Arabic language teachers (ALT) face when starting the teaching profession through semi-structured interviews with ten teachers and a questionnaire with 208 teachers. The data provided details of the challenges faced by those teachers and reasons why they face such a challenge. From the data, it can be deduced that schools are advanced and updated continuously, and the preparation program does not cope with that. This situation makes teachers struggle to cover the gap between what they learnt in their preparation and what is expected from them as teachers when they started their teaching profession. This paper suggests conducting further research to better understand this phenomenon by shedding light on the content of teachers' preparation programs.

Keywords: educational technologies, novice teachers, arabic language teachers, Saudi Arabia

Procedia PDF Downloads 85
3948 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 107
3947 Remarks on the Lattice Green's Function for the Anisotropic Face Cantered Cubic Lattice

Authors: Jihad H. Asad

Abstract:

An expression for the Green’s function (GF) of anisotropic face cantered cubic (IFCC) lattice is evaluated analytically and numerically for a single impurity problem. The density of states (DOS), phase shift and scattering cross section are expressed in terms of complete elliptic integrals of the first kind.

Keywords: lattice Green's function, elliptic integral, physics, cubic lattice

Procedia PDF Downloads 467
3946 Numerical Simulation of Two-Dimensional Porous Cylinder Flow in In-Line Arrangement

Authors: Hamad Alhajeri, Abdulrahman Almutairi, A. H. Alenezi, M. H. Alhajeri, Ayedh Alajmi

Abstract:

The flow around three porous cylinders in inline arrangement is investigated in this paper computationally using the commercial code FLUENT. The arrangement generally operates with the dirty gases passing through the porous cylinders, the particulate material being deposited on the outside of the cylinders. However, in a combined cycle power plant, filtration is required to allow the hot exhaust gases to be fed to a turbine without causing any physical damage to the turbine blades. Three cylinder elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the cylinder.

Keywords: porous cylinders, CFD, fluid flow, filtration

Procedia PDF Downloads 484
3945 Recognition and Enforcement of Foreign Arbitral Awards in Nepal

Authors: Biraj Puri, Bikram Puri

Abstract:

Arbitration is one of the prompt and efficient methods of alternative dispute resolution, especially of a commercial nature, by a neutral arbitrator outside the formal court structure. Due to the globalization of trade, privatization, and global investment, recognition and enforcement of foreign arbitral awards attract prime concern. Arbitral awards are generally based on arguments and evidence presented by disputing parties. The foreign investor wants to secure the investment by appropriate legal measures and an amicable way of dispute settlement if it arises. Now, arbitration as a mechanism of commercial dispute settlement has gained international recognition. It can take place in any State, in any language and with arbitrators of any nationality. There are various international institutions to conduct arbitral proceedings and render awards. Once an arbitral award is delivered, it can be enforced as a court judgment. However, it is really challenging to execute foreign arbitral awards in Nepal. Any party willing to execute an award made in a foreign country in Nepal should submit an application to the High Court along with essential documents prescribed by domestic law (The Arbitration Act 1999). Arbitrarily and public policy are also the requirements regarding the recognition and enforcement of foreign arbitral awards in Nepal. Nepal is a signatory State to the New York Convention on Recognition and Enforcement of Foreign Arbitral Awards, 1958. It is crucial to acknowledge that Nepal has liberalized its economy as well as opened the door for a liberal and market-oriented economy through the Constitution of Nepal, 2015. Nepal is trying to expand business from local to global level. Commercial trade is expanding day by day. So in this context, acceptance of arbitration as an alternative means to solve commercial disputes is a matter of prime importance. India ratified the New York Convention, and also being a neighborhood country of Nepal, in practice, does not enforce arbitral awards provided by Nepal in the name of reservation. India has published a gazette notice in which it lists the countries in which the award will be recognized in India, but it does not include Nepal. As the largest trade partner of Nepal, India should rethink this in order to make trade smooth.

Keywords: commercial arbitration, foreign arbitral awards, recognition and enforcement of foreign arbitral awards, requirements

Procedia PDF Downloads 5
3944 Freedom of Information and Freedom of Expression

Authors: Amin Pashaye Amiri

Abstract:

Freedom of information, according to which the public has a right to have access to government-held information, is largely considered as a tool for improving transparency and accountability in governments, and as a requirement of self-governance and good governance. So far, more than ninety countries have recognized citizens’ right to have access to public information. This recognition often took place through the adoption of an act referred to as “freedom of information act”, “access to public records act”, and so on. A freedom of information act typically imposes a positive obligation on a government to initially and regularly release certain public information, and also obliges it to provide individuals with information they request. Such an act usually allows governmental bodies to withhold information only when it falls within a limited number of exemptions enumerated in the act such as exemptions for protecting privacy of individuals and protecting national security. Some steps have been taken at the national and international level towards the recognition of freedom of information as a human right. Freedom of information was recognized in a few countries as a part of freedom of expression, and therefore, as a human right. Freedom of information was also recognized by some international bodies as a human right. The Inter-American Court of Human Rights ruled in 2006 that Article 13 of the American Convention on Human Rights, which concerns the human right to freedom of expression, protects the right of all people to request access to government information. The European Court of Human Rights has recently taken a considerable step towards recognizing freedom of information as a human right. However, in spite of the measures that have been taken, public access to government information is not yet widely accepted as an international human right. The paper will consider the degree to which freedom of information has been recognized as a human right, and study the possibility of widespread recognition of such a human right in the future. It will also examine the possible benefits of such recognition for the development of the human right to free expression.

Keywords: freedom of information, freedom of expression, human rights, government information

Procedia PDF Downloads 550
3943 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 188
3942 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition

Procedia PDF Downloads 484
3941 Classification System for Soft Tissue Injuries of Face: Bringing Objectiveness to Injury Severity

Authors: Garg Ramneesh, Uppal Sanjeev, Mittal Rajinder, Shah Sheerin, Jain Vikas, Singla Bhupinder

Abstract:

Introduction: Despite advances in trauma care, a classification system for soft tissue injuries of the face still needs to be objectively defined. Aim: To develop a classification system for soft tissue injuries of the face; that is objective, easy to remember, reproducible, universally applicable, aids in surgical management and helps to develop a structured data that can be used for future use. Material and Methods: This classification system includes those patients that need surgical management of facial injuries. Associated underlying bony fractures have been intentionally excluded. Depending upon the severity of soft tissue injury, these can be graded from 0 to IV (O-Abrasions, I-lacerations, II-Avulsion injuries with no skin loss, III-Avulsion injuries with skin loss that would need graft or flap cover, and IV-complex injuries). Anatomically, the face has been divided into three zones (Zone 1/2/3), as per aesthetic subunits. Zone 1e stands for injury of eyebrows; Zones 2 a/b/c stand for nose, upper eyelid and lower eyelid respectively; Zones 3 a/b/c stand for upper lip, lower lip and cheek respectively. Suffices R and L stand for right or left involved side, B for presence of foreign body like glass or pellets, C for extensive contamination and D for depth which can be graded as D 1/2/3 if depth is still fat, muscle or bone respectively. I is for damage to facial nerve or parotid duct. Results and conclusions: This classification system is easy to remember, clinically applicable and would help in standardization of surgical management of soft tissue injuries of face. Certain inherent limitations of this classification system are inability to classify sutured wounds, hematomas and injuries along or against Langer’s lines.

Keywords: soft tissue injuries, face, avulsion, classification

Procedia PDF Downloads 383
3940 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 102
3939 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 96
3938 The Bespoke ‘Hybrid Virtual Fracture Clinic’ during the COVID-19 Pandemic: A Paradigm Shift?

Authors: Anirudh Sharma

Abstract:

Introduction: The Covid-19 pandemic necessitated a change in the manner outpatient fracture clinics are conducted due to the need to reduce footfall in hospital. While studies regarding virtual fracture clinics have shown these to be useful and effective, they focus exclusively on remote consultations. However, our service was bespoke to the patient – either a face-to-face or telephone consultation depending on patient need – a ‘hybrid virtual clinic (HVC).’ We report patient satisfaction and outcomes with this novel service. Methods: Patients booked onto our fracture clinics during the first 2 weeks of national lockdown were retrospectively contacted to assess the mode of consultations (virtual, face-to-face, or hybrid), patient experience, and outcome. Patient experience was assessed using the net promoter (NPS), customer effort (CES) and customer satisfaction scores (CSS), and their likelihood of using the HVC in the absence of a pandemic. Patient outcomes were assessed using the components of the EQ5D score. Results: Of 269 possible patients, 140 patients responded to the questionnaire. Of these, 66.4% had ‘hybrid’ consultations, 27.1% had only virtual consultations, and 6.4% had only face-to-face consultations. The mean overall NPS, CES, and CSS (on a scale of 1-10) were 7.27, 7.25, and 7.37, respectively. The mean likelihood of patients using the HVC in the absence of a pandemic was 6.5/10. Patients who had ‘hybrid’ consultations showed better effort scores and greater overall satisfaction than those with virtual consultations only and also reported superior EQ5D outcomes (mean 79.27 vs. 72.7). Patients who did not require surgery reported increased satisfaction (mean 7.51 vs. 7.08) and were more likely to use the HVC in the absence of a pandemic. Conclusion: Our study indicates that a bespoke HVC has good overall patient satisfaction and outcomes and is a better format of fracture clinic service than virtual consultations alone. It may be the preferred mode for fracture clinics in similar situations in the future. Further analysis needs to be conducted in order to explore the impact on resources and clinician experience of HVC in order to appreciate this new paradigm shift.

Keywords: hybrid virtual clinic, coronavirus, COVID-19, fracture clinic, remote consultation

Procedia PDF Downloads 136
3937 Trial of Resorbable versus Non-Resorbable Sutures for Traumatic Lacerations of the Face: A Demonstration of Maxillo-Facial Trainee Led Research

Authors: R. Botrugno, S Basyuni, G. Nugent, I. Jenkyn, A. Ferro, H. Bennett, C. Hjalmarsson, J. Chu, V. Santhanam

Abstract:

This trainee led randomised controlled trial (RCT) aims to assess various outcomes for resorbable versus non-resorbable sutures for traumatic lacerations to the face. Within this trial of resorbable versus non-resorbable sutures for traumatic lacerations of the face (TORNFace), patient recruitment was facilitated by trainees who were employed at an NHS University Teaching Hospital in the United Kingdom. The trainees received appropriate training prior to recruiting patients for the trial. This included the completion of a national research e-learning module and face-to-face training that was provided locally. The locally delivered training provided an understanding of the eligibility criteria for the trial and the consent process. Existing trainee skills were utilised involving clinical photography to record baseline data and delivering the intervention based on the treatment arm selected. Eligible patients who required primary closure of traumatic lacerations of the face were randomised into one of two treatment arms. These comprised of resorbable (vicryl rapide) or non-resorbable sutures (ethilon). Primarily the cosmetic outcome was assessed. Secondary outcomes included: complications rates, health care economics, and patient-reported outcomes. Remote follow-up of recruited patients utilised photographs of the facial laceration which had received the intervention. These took place at 1 week, 3 months and 6 months post-intervention. This study aims to demonstrate an example of trainee-led research within the specialty of oral and maxillofacial surgery. The available data for the randomised controlled trial will also be presented.

Keywords: laceration, suture, trauma, trial

Procedia PDF Downloads 137
3936 Female Fans in Global Football Governance: A Call for Change

Authors: Yaron Covo, Tamar Kofman, Shira Palti

Abstract:

Over the recent decades, debates about the engagement of fans in football governance have focused on the club level and national level, emphasizing the significance of fans’ involvement in increasing the connection of clubs with the community, and in safeguarding the transparency, accountability, and clubs’ financial stability. This paper will offer a different conceptual justification for providing fans with access to decision-making processes in football. First, it will suggest that the participation of fans is necessary for addressing discriminatory practices against women in football stadiums. Second, it will argue that fans’ involvement in football governance is important not only at the club and national level but also at the global level, relying on the principles of Global Administrative Law. In contemporary men’s football, female fans face different forms of discrimination. Iranian women are still prohibited from attending football games at the domestic level; In Saudi Arabia, female fans are only permitted to enter designated family areas; Qatar – the host of the 2022 FIFA world cup – requires women to attend matches wearing modest clothing. Similarly, in Turkey, Lebanon, UAE, and Algeria, women face cultural barriers when attending men’s football games. In other countries, female fans suffer from subtle discrimination, including micro-aggressions, misogyny, sexism, and noninstitutionalized exclusion. Despite the vital role of fans in world football and the importance of football for many women’s lives, little has been done to address this problem. While FIFA recognizes that these discriminatory practices contradict its statutes, this recognition fails to materialize into meaningful change. This paper will argue that FIFA’s omission stems from two interrelated characteristics of world football: (1) the ultra-masculine nature of the game; (2) the insufficient recognition of fans’ significance. While fans have been given a voice in various football bodies on the domestic level, FIFA has yet to allow the representation of fans as stakeholders in world football governance. Since fans are a more heterogeneous group than players, the voices of those fans who do not fit the ultra-masculine model are not heard. Thus, by focusing mainly on male players, FIFA reproduces the hegemonic masculinity that feeds back into fan dynamics and marginalizes female fans. To rectify this problem, we will call on FIFA to provide fans and female fans in particular, with voice mechanisms and access to decision-making processes. In addition to its impact on the formation of fans’ identities, such a move will allow fans to demand better enforcement of existing anti-discrimination norms and new regulations to address their needs. The literature has yet to address the relationship between fans’ gender discrimination and global football governance. Building on Global Administrative Law scholarship and feminist theories, this paper will aim to fill this gap.

Keywords: fans, FIFA, football governance, gender discrimination, global administrative law, human rights

Procedia PDF Downloads 150
3935 Comparison of E-learning and Face-to-Face Learning Models Through the Early Design Stage in Architectural Design Education

Authors: Gülay Dalgıç, Gildis Tachir

Abstract:

Architectural design studios are ambiencein where architecture design is realized as a palpable product in architectural education. In the design studios that the architect candidate will use in the design processthe information, the methods of approaching the design problem, the solution proposals, etc., are set uptogetherwith the studio coordinators. The architectural design process, on the other hand, is complex and uncertain.Candidate architects work in a process that starts with abstre and ill-defined problems. This process starts with the generation of alternative solutions with the help of representation tools, continues with the selection of the appropriate/satisfactory solution from these alternatives, and then ends with the creation of an acceptable design/result product. In the studio ambience, many designs and thought relationships are evaluated, the most important step is the early design phase. In the early design phase, the first steps of converting the information are taken, and converted information is used in the constitution of the first design decisions. This phase, which positively affects the progress of the design process and constitution of the final product, is complex and fuzzy than the other phases of the design process. In this context, the aim of the study is to investigate the effects of face-to-face learning model and e-learning model on the early design phase. In the study, the early design phase was defined by literature research. The data of the defined early design phase criteria were obtained with the feedback graphics created for the architect candidates who performed e-learning in the first year of architectural education and continued their education with the face-to-face learning model. The findings of the data were analyzed with the common graphics program. It is thought that this research will contribute to the establishment of a contemporary architectural design education model by reflecting the evaluation of the data and results on architectural education.

Keywords: education modeling, architecture education, design education, design process

Procedia PDF Downloads 138
3934 Behavioral and EEG Reactions in Children during Recognition of Emotionally Colored Sentences That Describe the Choice Situation

Authors: Tuiana A. Aiusheeva, Sergey S. Tamozhnikov, Alexander E. Saprygin, Arina A. Antonenko, Valentina V. Stepanova, Natalia N. Tolstykh, Alexander N. Savostyanov

Abstract:

Situation of choice is an important condition for the formation of essential character qualities of a child, such as being initiative, responsible, hard-working. We have studied the behavioral and EEG reactions in Russian schoolchildren during recognition of syntactic errors in emotionally colored sentences that describe the choice situation. Twenty healthy children (mean age 9,0±0,3 years, 12 boys, 8 girls) were examined. Forty sentences were selected for the experiment; the half of them contained a syntactic error. The experiment additionally had the hidden condition: 50% of the sentences described the children's own choice and were emotionally colored (positive or negative). The other 50% of the sentences described the forced-choice situation, also with positive or negative coloring. EEG were recorded during execution of error-recognition task. Reaction time and quality of syntactic error detection were chosen as behavioral measures. Event-related spectral perturbation (ERSP) was applied to characterize the oscillatory brain activity of children. There were two time-frequency intervals in EEG reactions: (1) 500-800 ms in the 3-7 Hz frequency range (theta synchronization) and (2) 500-1000 ms in the 8-12 Hz range (alpha desynchronization). We found out that behavioral and brain reactions in child brain during recognition of positive and negative sentences describing forced-choice situation did not have significant differences. Theta synchronization and alpha desynchronization were stronger during recognition of sentences with children's own choice, especially with negative coloring. Also, the quality and execution time of the task were higher for this types of sentences. The results of our study will be useful for improvement of teaching methods and diagnostics of children affective disorders.

Keywords: choice situation, electroencephalogram (EEG), emotionally colored sentences, schoolchildren

Procedia PDF Downloads 271
3933 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 155
3932 Obstacles to Innovation for SMEs: Evidence from Germany

Authors: Natalia Strobel, Jan Kratzer

Abstract:

Achieving effective innovation is a complex task and during this process firms (especially SMEs) often face obstacles. However, research into obstacles to innovation focusing on SMEs is very scarce. In this study, we propose a theoretical framework for describing these obstacles to innovation and investigate their influence on the innovative performance of SMEs. Data were collected in 2013 through face-to-face interviews with executives of 49 technology SMEs from Germany. The semi-structured interviews were designed on the basis of scales for measuring innovativeness, financial/competitive performance and obstacles to innovation, next to purely open questions. We find that the internal obstacles lack the know-how, capacity overloading, unclear roles and tasks, as well as the external obstacle governmental bureaucracy negatively influence the innovative performance of SMEs. However, in contrast to prior findings this study shows that cooperation ties of firms might also negatively influence the innovative performance.

Keywords: innovation, innovation process, obstacles, SME

Procedia PDF Downloads 355
3931 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 120
3930 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 272
3929 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 519
3928 Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study

Authors: Ria Ghosh, Soumendra Singh, Dipanjan Mukherjee, Susmita Mondal, Monojit Das, Uttam Pal, Aniruddha Adhikari, Aman Bhushan, Surajit Bose, Siddharth Sankar Bhattacharyya, Debasish Pal, Tanusri Saha-Dasgupta, Maitree Bhattacharyya, Debasis Bhattacharyya, Asim Kumar Mallick, Ranjan Das, Samir Kumar Pal

Abstract:

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.

Keywords: DNA, drug delivery, micelle, pre-micelle, SDS, toluidine blue

Procedia PDF Downloads 113
3927 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System

Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli

Abstract:

This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.

Keywords: feature selection, genetic algorithm, optimization, wood recognition system

Procedia PDF Downloads 545
3926 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov

Abstract:

Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 102
3925 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 340
3924 The Robot Physician's (Rp - 7) Management and Care in Unstable ICU Oncology Patients

Authors: Alisher Agzamov, Hanan Al Harbi

Abstract:

BACKGROUND: The timely assessment and treatment of ICU Surgical and Medical Oncology patients is important for Oncology surgeons and Medical Oncologists and Intensivists. We hypothesized that the use of Robot Physician’s (RP - 7) ICU management and care in ICU can improve ICU physician rapid response to unstable ICU Oncology patients. METHODS: This is a prospective study using a before-after, cohort-control design to test the effectiveness of RP. We have used RP to make multidisciplinary ICU rounds in the ICU and for Emergency cases. Data concerning several aspects of the RP interaction including the latency of the response, the problem being treated, the intervention that was ordered, and the type of information gathered using the RP were documented. The effect of RP on ICU length of stay and cost was assessed. RESULTS: The use of RP was associated with a reduction in latency of attending physician face-to-face response for routine and urgent pages compared to conventional care (RP: 10.2 +/- 3.3 minutes vs conventional: 220 +/- 80 minutes). The response latencies to Oncology Emergency (8.0 +/- 2.8 vs 150 +/- 55 minutes) and for Respiratory Failure (12 +/- 04 vs 110 +/- 45 minutes) were reduced (P < .001), as was the LOS for patients with AML (5 days) and ARDS (10 day). There was an increase in ICU occupancy by 20 % compared with the prerobot era, and there was an ICU cost savings of KD2.5 million attributable to the use of RP. CONCLUSION: The use of RP enabled rapid face-to-face ICU Intensivist - physician response to unstable ICU Oncology patients and resulted in decreased ICU cost and LOS.

Keywords: robot physician, oncology patients, rp - 7 in icu management, cost and icu occupancy

Procedia PDF Downloads 83