Search results for: seismic prediction equations
1265 Numerical Study on the Performance of Upgraded Victorian Brown Coal in an Ironmaking Blast Furnace
Authors: Junhai Liao, Yansong Shen, Aibing Yu
Abstract:
A 3D numerical model is developed to simulate the complicated in-furnace combustion phenomena in the lower part of an ironmaking blast furnace (BF) while using pulverized coal injection (PCI) technology to reduce the consumption of relatively expensive coke. The computational domain covers blowpipe-tuyere-raceway-coke bed in the BF. The model is validated against experimental data in terms of gaseous compositions and coal burnout. Parameters, such as coal properties and some key operational variables, play an important role on the performance of coal combustion. Their diverse effects on different combustion characteristics are examined in the domain, in terms of gas compositions, temperature, and burnout. The heat generated by the combustion of upgraded Victorian brown coal is able to meet the heating requirement of a BF, hence making upgraded brown coal injected into BF possible. It is evidenced that the model is suitable to investigate the mechanism of the PCI operation in a BF. Prediction results provide scientific insights to optimize and control of the PCI operation. This model cuts the cost to investigate and understand the comprehensive combustion phenomena of upgraded Victorian brown coal in a full-scale BF.Keywords: blast furnace, numerical study, pulverized coal injection, Victorian brown coal
Procedia PDF Downloads 2431264 Strategy of Balancing in Russian Energy Diplomacy toward Middle East
Authors: Davood Karimipour
Abstract:
Since long ago, Russia has been one of the most influential actors in regional equations in South West Asia. The geographic affinity of its vital interests with Western Asia has caused Moscow to have a high sensitivity to the balance of power in the Middle East, as its role in the Syrian crisis clearly demonstrated the importance. In recent years, Moscow has tried to use the energy diplomacy tool in maintaining the balance of power between the major powers in the region. The paper, based on the qualitative case study method, investigates how Russia’s energy diplomacy plays a role in the balance of regional forces in the Middle East, studying the country’s conduct towards Iran, Saudi Arabia, Turkey, and Israel. The hypothesis presented that Russia, using energy tools, is trying to push the regional powers toward cooperation in order to increase the influence in the region, increase power in global markets, and controlling the US to restore power balance in the region. Its cooperation in the Iranian gas industry, the country’s relations with Saudis in the framework of OPEC, cooperation with the Turkish Kurds and the presence in the Israeli gas industry are an example of these Russian energy diplomacy initiatives in West Asia, which is the common point of the Moscow approach to South West Asia.Keywords: Russia, balance of power, energy diplomacy, Middle East
Procedia PDF Downloads 1651263 Combination Rule for Homonuclear Dipole Dispersion Coefficients
Authors: Giorgio Visentin, Inna S. Kalinina, Alexei A. Buchachenko
Abstract:
In the ambit of intermolecular interactions, a combination rule is defined as a relation linking a potential parameter for the interaction of two unlike species with the same parameters for interaction pairs of like species. Some of their most exemplificative applications cover the construction of molecular dynamics force fields and dispersion-corrected density functionals. Here, an extended combination rule is proposed, relating the dipole-dipole dispersion coefficients for the interaction of like target species to the same coefficients for the interaction of the target and a set of partner species. The rule can be devised in two different ways, either by uniform discretization of the Casimir-Polder integral on a Gauss-Legendre quadrature or by relating the dynamic polarizabilities of the target and the partner species. Both methods return the same system of linear equations, which requires the knowledge of the dispersion coefficients for interaction between the partner species to be solved. The test examples show a high accuracy for dispersion coefficients (better than 1% in the pristine test for the interaction of Yb atom with rare gases and alkaline-earth metal atoms). In contrast, the rule does not ensure correct monotonic behavior of the dynamic polarizability of the target species. Acknowledgment: The work is supported by Russian Science Foundation grant # 17-13-01466.Keywords: combination rule, dipole-dipole dispersion coefficient, Casimir-Polder integral, Gauss-Legendre quadrature
Procedia PDF Downloads 1781262 Saline Water Transgression into Fresh Coastal Groundwater in the Confined Aquifer of Lagos, Nigeria
Authors: Babatunde Adebo, Adedeji Adetoyinbo
Abstract:
Groundwater is an important constituent of the hydrological cycle and plays a vital role in augmenting water supply to meet the ever-increasing needs of people for domestic, agricultural and industrial purposes. Unfortunately, this important resource has in most cases been contaminated due to the advancement of seawater into the fresh groundwater. This is due to the high volume of water being abstracted in these areas as a result of a high population of coastal dwellers. The knowledge of salinity level and intrusion of saltwater into the freshwater aquifer is, therefore, necessary for groundwater monitoring and prediction in the coastal areas. In this work, an advection-dispersion saltwater intrusion model is used to study and simulate saltwater intrusion in a typical coastal aquifer. The aquifer portion was divided into a grid with elements and nodes. Map of the study area indicating well locations were overlain on the grid system such that these locations coincide with the nodes. Chlorides at these well were considered as initial nodal salinities. Results showed a highest and lowest increase in simulated chloride of 37.89 mg/L and 0.8 mg/L respectively. It also revealed that the chloride concentration of most of the considered well might climb unacceptable level in the next few years, if the current abstraction rate continues unabated.Keywords: saltwater intrusion, coastal aquifer, nodal salinity, chloride concentration
Procedia PDF Downloads 2401261 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 661260 Structural Element Vibration Analysis with finite element method: Use of Rayleigh Quotient
Authors: Houari Boumediene University of Science, Technology.
Abstract:
"Various methods are typically used in the dynamic analysis of transversely vibrating beams. To achieve this, numerical methods are used to solve the general eigenvalue problem. The equations of equilibrium, which describe the motion, are derived from a fourth-order differential equation. Our study is based on the finite element method, and the results of the investigation are the vibration frequencies obtained using the Jacobi method. Two types of elementary mass matrices are considered: one representing a uniform distribution of mass along the element and the other consisting of concentrated masses located at fixed points whose number increases progressively with equal distances at each evaluation stage. The beams studied have different boundary constraints, representing several classical situations. Comparisons are made for beams where the distributed mass is replaced by n concentrated masses. As expected, the first calculation stage involves determining the lowest number of beam parts that gives a frequency comparable to that obtained from the Rayleigh formula. The obtained values are then compared to theoretical results based on the assumptions of the Bernoulli-Euler theory. These steps are repeated for the second type of mass representation in the same manner."Keywords: finite element method, bernouilli eulertheory, structural analysis, vibration analysis, rayleigh quotient
Procedia PDF Downloads 921259 Study of Properties of Concretes Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building
Authors: Iuri Salukvadze
Abstract:
Development of Georgian Economy largely depends on its effective use of its transit country potential. The value of Georgia as the part of Europe-Asia corridor has increased; this increases the interest of western and eastern countries to Georgia as to the country that laid on the transit axes that implies transit infrastructure creation and development in Georgia. It is important to use compacted concrete with the additive in modern road construction industry. Even in the 21-century, concrete remains as the main vital constructive building material, therefore innovative, economic and environmentally protected technologies are needed. Georgian construction market requires the use of concrete of new generation, adaptation of nanotechnologies to the local realities that will give the ability to create multifunctional, nano-technological high effective materials. It is highly important to research their physical and mechanical states. The study of compacted concrete with the additives is necessary to use in the road construction in the future and to increase hardness of roads in Georgia. The aim of the research is to study the physical-mechanical properties of the compacted concrete with the additives based on the local materials. Any experimental study needs large number of experiments from one side in order to achieve high accuracy and optimal number of the experiments with minimal charges and in the shortest period of time from the other side. To solve this problem in practice, it is possible to use experiments planning static and mathematical methods. For the materials properties research we will use distribution hypothesis, measurements results by normal law according to which divergence of the obtained results is caused by the error of method and inhomogeneity of the object. As the result of the study, we will get resistible compacted concrete with additives for the motor roads that will improve roads infrastructure and give us saving rate while construction of the roads and their exploitation.Keywords: construction, seismic protection systems, soil, motor roads, concrete
Procedia PDF Downloads 2441258 Numerical Analysis of Prefabricated Horizontal Drain Induced Consolidation Using ABAQUS
Authors: Anjana R. Menon, Anjana Bhasi
Abstract:
This paper deals with the numerical analysis of Prefabricated Horizontal Drain (PHD) induced consolidation of clayey deposits, using ABAQUS. PHDs are much like Prefabricated Vertical Drains (PVDs) installed in horizontal layers, used mainly for enhancing the consolidation of clayey fill embankments, and dredged mud deposits. The efficiency of the system depends mainly on the spacing and layout of the drain. Hence, two spacing related parameters are defined, namely WH (width to horizontal spacing ratio) and VH (vertical to horizontal spacing ratio), and the finite element models are developed based on plane strain unit cell conditions under various combinations of these parameters. The analysis results, in terms of degree of consolidation (U), are compared with the established theories. Based on the analysis, a set of equations are proposed to analyse the PHD induced consolidation. The proposed method is found to be reasonably accurate. Further, the effect of PHDs at different spacing ratios, in accelerating consolidation of a clayey embankment fill is analysed in terms of pore pressure dissipation rate, and settlement. The PHD is found to accelerate the rate of pore pressure dissipation by more than 50%, thus reducing the time for final settlement significantly.Keywords: ABAQUS, consolidation, plane strain, prefabricated horizontal drain
Procedia PDF Downloads 3611257 Analysis of Natural Convection within a Hexagonal Enclosure Full with Nanofluid (Water-Cu) Under Effect of the Position of the Inner Obstacle
Authors: Lakhdar Rahmani, Benhanifia Kada, Brahim Mebarki
Abstract:
The present paper aims to investigate the natural convection of nanofluid (water-cu) inside a hexagonal enclosure shape embedded with a square obstacle in the presence of hot and cold side walls. The governing equations were solved in a non-uniform unstructured grid by employing the Galerkin finite element method using the software COMSOL Multiphysics. The objective of this study is to analyze the influence of Rayleigh number (103 < Ra < 105), the position of the obstacle, which is located in three different positions (center, bottom, and top side ), and the effect of Nanoparticles volume concentration (0 < Ø < 0.2) on the thermal behavior inside the enclosure, The results are reported as contours of isotherms, streamlines, and average Nusselt numbers. The obtained results illustrate that the increase in the Rayleigh number (Ra) and the Nanoparticles concentration ( Ø ) leads to an increase in the Nusselt number (Nu average ) that signifies the rate of heat transfer in the studied enclosure, in addition to the best performance observed with the position of obstacle that is located at the middle of the enclosure, where has a high effect in improving the heat transfer along the enclosure comparatively with the rest different positions.Keywords: natural convection, nanofluid (water-Cu), hexagonal enclosure, Nusselt numbers, Rayleigh number
Procedia PDF Downloads 901256 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach
Authors: Mortez Alijani, Anas Osman
Abstract:
Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point
Procedia PDF Downloads 1641255 Finite Difference Based Probabilistic Analysis to Evaluate the Impact of Correlation Length on Long-Term Settlement of Soft Soils
Authors: Mehrnaz Alibeikloo, Hadi Khabbaz, Behzad Fatahi
Abstract:
Probabilistic analysis has become one of the most popular methods to quantify and manage geotechnical risks due to the spatial variability of soil input parameters. The correlation length is one of the key factors of quantifying spatial variability of soil parameters which is defined as a distance within which the random variables are correlated strongly. This paper aims to assess the impact of correlation length on the long-term settlement of soft soils improved with preloading. The concept of 'worst-case' spatial correlation length was evaluated by determining the probability of failure of a real case study of Vasby test fill. For this purpose, a finite difference code was developed based on axisymmetric consolidation equations incorporating the non-linear elastic visco-plastic model and the Karhunen-Loeve expansion method. The results show that correlation length has a significant impact on the post-construction settlement of soft soils in a way that by increasing correlation length, probability of failure increases and the approach to asymptote.Keywords: Karhunen-Loeve expansion, probability of failure, soft soil settlement, 'worst case' spatial correlation length
Procedia PDF Downloads 1681254 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein
Authors: Y. Ruchi, A. Prerna, S. Deepshikha
Abstract:
Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.Keywords: ALS, binding site, homology modeling, neuronal degeneration
Procedia PDF Downloads 3891253 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients
Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera
Abstract:
Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine
Procedia PDF Downloads 2531252 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 1541251 Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge
Authors: Mohammad Mashud, S. M. Nahid Hasan
Abstract:
The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method.Keywords: airfoil, momentum injection, flap, pressure distribution
Procedia PDF Downloads 1401250 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 1741249 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 751248 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 3091247 Effects of Blast Load on Historic Stone Masonry Buildings in Canada: A Review and Analytical Study
Authors: Abass Braimah, Maha Hussein Abdallah
Abstract:
The global ascendancy of terrorist attacks on building infrastructure with economic and heritage significance has increased awareness of the possibility of terrorism in Canada. Many structures in Canada that are at risk of terrorist attacks include government buildings, built many years ago of historic stone masonry construction. Although many researchers are investigating ways to retrofit masonry stone buildings to mitigate the effect of blast loadings, lack of knowledge on the dynamic behavior of historic stone masonry structures under blast loads makes it difficult to ascertain the effectiveness of the retrofitting techniques. This paper presents a review of open-source literature for the experimental and numerical stone masonry structures under blast loads. This review yielded very little information of the response of the historic stone masonry structures under blast loads. Thus, a comprehensive study is needed to understand the blast load effects on historic stone masonry buildings. The out-of-plane response of historic masonry structures to blast loads is investigated by using single-degree-of-freedom analysis. This approach presents equations that can be used effectively in the analysis of historic masonry walls to out-of-plane blast loading.Keywords: blast loads, historical buildings, masonry structure, single-degree-of-freedom analysis
Procedia PDF Downloads 1841246 Image Segmentation Using Active Contours Based on Anisotropic Diffusion
Authors: Shafiullah Soomro
Abstract:
Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.Keywords: active contours, anisotropic diffusion, level-set, partial differential equations
Procedia PDF Downloads 1611245 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 2281244 Impact of Macroeconomic Variables on Indian Mutual Funds: A Time Series Analysis
Authors: Sonali Agarwal
Abstract:
The investor perception about investment avenues is affected to a great degree by the current happenings, within the country, and on the global stage. The influencing events can range from government policies, bilateral trade agreements, election agendas, to changing exchange rates, appreciation and depreciation of currency, recessions, meltdowns, bankruptcies etc. The current research attempts to discover and unravel the effect of various macroeconomic variables (crude oil price, gold price, silver price and USD exchange rate) on the Indian mutual fund industry in general and the chosen funds (Axis Gold Fund, BSL Gold Fund, Kotak Gold Fund & SBI gold fund) in particular. Cointegration tests and Vector error correction equations prove that the chosen variables have strong effect on the NAVs (net asset values) of the mutual funds. However, the greatest influence is felt from the fund’s own past and current information and it is found that when an innovation of fund’s own lagged NAVs is given, variance caused is high that changes the current NAVs markedly. The study helps to highlight the interplay of macroeconomic variables and their repercussion on mutual fund industry.Keywords: cointegration, Granger causality, impulse response, macroeconomic variables, mutual funds, stationarity, unit root test, variance decomposition, VECM
Procedia PDF Downloads 2441243 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase
Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez
Abstract:
A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control
Procedia PDF Downloads 1171242 Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth
Authors: Sumit Kumar Vishawakarma, Tapas Ranjan Panihari
Abstract:
The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms.Keywords: cross-anisotropic, inhomogeneity, P-wave, SH-wave, SV-wave, shear modulus, Young’s modulus
Procedia PDF Downloads 1201241 Capital Adequacy and Islamic Banks Behavior: Evidence from Middle East Countries
Authors: Khaled Alkadamani
Abstract:
Using the simultaneous equations model, this paper examines the impact of capital requirements on bank risk-taking during the recent financial crisis. It also explores the relationship between capital and risk decisions and the impact of economic instability on this relationship. By analyzing the data of 20 Islamic commercial banks between 2004 and 2014 from four Middle East countries, the study concludes a positive effect of regulatory pressure on bank capital in Saudi Arabia and UAE and a negative effect in Jordan and Kuwait. Moreover, the results show a negative impact of regulatory pressure on bank risk taking in Saudi Arabia, Jordan and UAE. The findings reveal also that banks close to the minimum regulatory capital requirements improve their capital adequacy by increasing their capital and decreasing their risk taking. Furthermore, the results show that economic crisis negatively affects bank risk changes, suggesting that banks react to the impact of uncertainty by reducing their risk taking. Finally, the estimations show a negative correlation between banks profitability and capital adequacy ratio (CAR), implying that as more capital is set aside as a buffer for banks safety; it affects the performance of Islamic banks.Keywords: bank capital, bank regulation, crisis, Islamic banks, risk taking
Procedia PDF Downloads 4411240 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres
Authors: Krutika K. Sawant, Anil Solanki
Abstract:
The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design
Procedia PDF Downloads 4581239 Survey of Methods for Solutions of Spatial Covariance Structures and Their Limitations
Authors: Joseph Thomas Eghwerido, Julian I. Mbegbu
Abstract:
In modelling environment processes, we apply multidisciplinary knowledge to explain, explore and predict the Earth's response to natural human-induced environmental changes. Thus, the analysis of spatial-time ecological and environmental studies, the spatial parameters of interest are always heterogeneous. This often negates the assumption of stationarity. Hence, the dispersion of the transportation of atmospheric pollutants, landscape or topographic effect, weather patterns depends on a good estimate of spatial covariance. The generalized linear mixed model, although linear in the expected value parameters, its likelihood varies nonlinearly as a function of the covariance parameters. As a consequence, computing estimates for a linear mixed model requires the iterative solution of a system of simultaneous nonlinear equations. In other to predict the variables at unsampled locations, we need to know the estimate of the present sampled variables. The geostatistical methods for solving this spatial problem assume covariance stationarity (locally defined covariance) and uniform in space; which is not apparently valid because spatial processes often exhibit nonstationary covariance. Hence, they have globally defined covariance. We shall consider different existing methods of solutions of spatial covariance of a space-time processes at unsampled locations. This stationary covariance changes with locations for multiple time set with some asymptotic properties.Keywords: parametric, nonstationary, Kernel, Kriging
Procedia PDF Downloads 2551238 Evaluating the Fire Resistance of Offshore Tubular K-Joints Subjected to Balanced Axial Loads
Authors: Neda Azari Dodaran, Hamid Ahmadi
Abstract:
Results of 405 finite element (FE) analyses were used in the present research to study the effect of the joint geometry on the ultimate strength and initial stiffness of tubular K-joints subjected to axial loading at fire-induced elevated temperatures. The FE models were validated against the data available from experimental tests. Structural behavior under different temperatures (200ºC, 400ºC, 500ºC, and 700ºC) was investigated and compared to the behavior at ambient temperature (20ºC). A parametric study was conducted to investigate the effect of dimensionless geometrical parameters (β, γ, θ, and τ) on the ultimate strength and initial stiffness. Afterwards, ultimate strength data extracted from the FE analyses were compared with the values calculated from the equations proposed by available design codes in which the ultimate strength of the joint at elevated temperatures is obtained by replacing the yield stress of the steel at ambient temperature with the corresponding value at elevated temperature. It was indicated that this method may not have acceptable accuracy for K-joints under axial loading. Hence, a design formula was developed, through nonlinear regression analyses, to determine the ultimate strength of K-joints subjected to balanced axial loads at elevated temperatures.Keywords: axial loading, elevated temperature, parametric equation, static strength, tubular K-joint
Procedia PDF Downloads 1491237 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 1541236 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil
Authors: H. Bensouilah, H. Boucherit, M. Lahmar
Abstract:
A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.Keywords: elasto-aerodynamic lubrication, air foil bearing, steady-state deformation, dynamic deformation, stiffness and damping coefficients, perturbation method, fluid-structure interaction, Galerk infinite element method, finite difference method
Procedia PDF Downloads 392