Search results for: optimization algorithms
1431 Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure
Authors: Kai-Chee Loh, Jingxin Zhang, Yen-Wah Tong
Abstract:
Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors.Keywords: anaerobic digestion, high-solids, food waste and horse manure, microbial community
Procedia PDF Downloads 4211430 Seaweed as a Future Fuel Option: Potential and Conversion Technologies
Authors: Muhammad Rizwan Tabassum, Ao Xia, Jerry D. Murphy
Abstract:
The purpose of this work is to provide a comprehensive overview of seaweed as the alternative feedstock for biofuel production and key conversion technologies. Resource depletion and climate change are the driving forces to hunt for renewable sources of energy. Macroalgae can be preferred over land based crops for biofuel production because they are not in competition with food crops for arable land, high growth rates and low lignin contents which require less energy-intensive pre-treatments. However, some disadvantages, such as high moisture content, seasonal variation in chemical composition and process inhibition limit its economic feasibility. Seaweed can be converted into gaseous and liquid fuel by different conversion technologies, but biogas via anaerobic digestion from seaweed is attracting increased attention due to its dual benefit of an economic source of bio-fuel and environment-friendly technology. Biodiesel and bioethanol conversion technologies from seaweed are still under development. A selection of high yielding seaweed species, optimal harvesting season and process optimization make them economically feasible for the alternative source of renewable and sustainable feedstock for biofuel in future.Keywords: anaerobic digestion, biofuel, bio-methane, conversion technologies, seaweed
Procedia PDF Downloads 4751429 Multi-Granularity Feature Extraction and Optimization for Pathological Speech Intelligibility Evaluation
Authors: Chunying Fang, Haifeng Li, Lin Ma, Mancai Zhang
Abstract:
Speech intelligibility assessment is an important measure to evaluate the functional outcomes of surgical and non-surgical treatment, speech therapy and rehabilitation. The assessment of pathological speech plays an important role in assisting the experts. Pathological speech usually is non-stationary and mutational, in this paper, we describe a multi-granularity combined feature schemes, and which is optimized by hierarchical visual method. First of all, the difference granularity level pathological features are extracted which are BAFS (Basic acoustics feature set), local spectral characteristics MSCC (Mel s-transform cepstrum coefficients) and nonlinear dynamic characteristics based on chaotic analysis. Latterly, radar chart and F-score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96-dimensions.The experimental results denote that new features by support vector machine (SVM) has the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.Keywords: pathological speech, multi-granularity feature, MSCC (Mel s-transform cepstrum coefficients), F-score, radar chart
Procedia PDF Downloads 2851428 Optimization of Pyrogallol Based Manganese / Ferroin Catalyzed Nonlinear Chemical Systems and Interaction with Monomeric and Polymeric Entities
Authors: Ghulam Mustafa Peerzada, Shagufta Rashid, Nadeem Bashir
Abstract:
These the influence of initial reagent concentrations on the Belousov-Zhabotinsky (BZ) system with Mn2+/Mn3+ as redox catalyst, inorganic bromate as oxidant and pyrogallol as organic substrate was studied. The reactions were monitored by potentiometery in oxidation reduction potential (ORP) mode. The aforesaid reagents were mixed with varying concentrations to evolve the optimal concentrations at which the reaction system exhibited better oscillations. The various oscillatory parameters such as induction period (tin), time period (tp), frequency (v), amplitude (A) and number of oscillations (n) were derived and the dependence of concentration of the reacting species on these oscillatory parameters was interpreted on the basis of the Field-Koros-Noyes mechanism. Ferroin based BZ system with pyrogallol as organic substrate was optimized under CSTR condition at temperature of 30±0.1oC Effect of molecules like monomer and polymer as additives to the system was checked and their interaction with the system was also studied. It has been observed that the monomer affects the time period, while the polymer has its effect on the amplitude of oscillations because of monomer’s interaction with the bromine and polymer’s with that of the Ferroin.Keywords: Belousov Zhabotinsky reaction, oscillatory parameters, polymer, pyrogallol
Procedia PDF Downloads 3141427 Optimization of Laser Doping Selective Emitter for Silicon Solar Cells
Authors: Meziani Samir, Moussi Abderrahmane, Chaouchi Sofiane, Guendouzi Awatif, Djema Oussama
Abstract:
Laser doping has a large potential for integration into silicon solar cell technologies. The ability to process local, heavily diffused regions in a self-aligned manner can greatly simplify processing sequences for the fabrication of selective emitter. The choice of laser parameters for a laser doping process with 532nm is investigated. Solid state lasers with different power and speed were used for laser doping. In this work, the aim is the formation of selective emitter solar cells with a reduced number of technological steps. In order to have a highly doped localized emitter region, we used a 532 nm laser doping. Note that this region will receive the metallization of the Ag grid by screen printing. For this, we use SOLIDWORKS software to design a single type of pattern for square silicon cells. Sheet resistances, phosphorus doping concentration and silicon bulk lifetimes of irradiated samples are presented. Additionally, secondary ion mass spectroscopy (SIMS) profiles of the laser processed samples were acquired. Scanning electron microscope and optical microscope images of laser processed surfaces at different parameters are shown and compared.Keywords: laser doping, selective emitter, silicon, solar cells
Procedia PDF Downloads 1051426 Research on the Strategy of Old City Reconstruction under Market Orientation: Taking Mutoulong Community in Shenzhen as an Example
Authors: Ziwei Huang
Abstract:
In order to promote Inventory development in Shenzhen, the market-oriented real estate development mode has occupied a dominant position in the urban renewal activities of Shenzhen. This research is based on the theory of role relationship and urban regime, taking the Mutoulong community as the research object. Carries on the case depth analysis found that: Under the situation of absence and dislocation of the government's role, land property rights disputes and lack of communication platforms is the main reason for the problems of nail households and market failures, and the long-term delay in the progress of old city reconstruction. Through the analysis of the cause of the transformation problem and the upper planning and interest coordination mechanism, the optimization strategy of the old city transformation is finally proposed as follows: the establishment of interest coordination platform, the risk assessment of the government's intervention in the preliminary construction of the land, the adaptive construction of laws and regulations, and the re-examination of the interest relationship between the government and the market.Keywords: Shenzhen city, Mutoulong community, urban regeneration, urban regime theory, role relationship theory
Procedia PDF Downloads 1011425 A Review on the Usage of Ceramic Wastes in Concrete Production
Authors: O. Zimbili, W. Salim, M. Ndambuki
Abstract:
Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900 ⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution), the cement blend performs better, with no morphological differences between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production.Keywords: blended, morphological, pozzolanic, waste
Procedia PDF Downloads 3731424 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building
Authors: Aaditya U. Jhamb
Abstract:
Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.Keywords: energy efficient buildings, heating load, cooling load, machine learning models
Procedia PDF Downloads 1021423 One-Dimensional Performance Improvement of a Single-Stage Transonic Compressor
Authors: A. Shahsavari, M. Nili-Ahmadabadi
Abstract:
This paper presents an innovative one-dimensional optimization of a transonic compressor based on the radial equilibrium theory by means of increasing blade loading. Firstly, the rotor blade of the transonic compressor is redesigned based on the constant span-wise deHaller number and diffusion. The code is applied to extract compressor meridional plane and blade to blade geometry containing rotor and stator in order to design blade three-dimensional view. A structured grid is generated for the numerical domain of fluid. Finer grids are used for regions near walls to capture boundary layer effects and behavior. RANS equations are solved by finite volume method for rotating zones (rotor) and stationary zones (stator). The experimental data, available for the performance map of NASA Rotor67, is used to validate the results of simulations. Then, the capability of the design method is validated by CFD that is capable of predicting the performance map. The numerical results of new geometry show about 19% increase in pressure ratio and 11% improvement in overall efficiency of the transonic stage; however, the design point mass flow rate of the new compressor is 5.7% less than that of the original compressor.Keywords: deHaller number, one dimensional design, radial equilibrium, transonic compressor
Procedia PDF Downloads 3451422 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection
Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu
Abstract:
In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.Keywords: space-based detection, aerial targets, optical system design, detectability characterization
Procedia PDF Downloads 1711421 Designing and Prototyping Permanent Magnet Generators for Wind Energy
Authors: T. Asefi, J. Faiz, M. A. Khan
Abstract:
This paper introduces dual rotor axial flux machines with surface mounted and spoke type ferrite permanent magnets with concentrated windings; they are introduced as alternatives to a generator with surface mounted Nd-Fe-B magnets. The output power, voltage, speed and air gap clearance for all the generators are identical. The machine designs are optimized for minimum mass using a population-based algorithm, assuming the same efficiency as the Nd-Fe-B machine. A finite element analysis (FEA) is applied to predict the performance, emf, developed torque, cogging torque, no load losses, leakage flux and efficiency of both ferrite generators and that of the Nd-Fe-B generator. To minimize cogging torque, different rotor pole topologies and different pole arc to pole pitch ratios are investigated by means of 3D FEA. It was found that the surface mounted ferrite generator topology is unable to develop the nominal electromagnetic torque, and has higher torque ripple and is heavier than the spoke type machine. Furthermore, it was shown that the spoke type ferrite permanent magnet generator has favorable performance and could be an alternative to rare-earth permanent magnet generators, particularly in wind energy applications. Finally, the analytical and numerical results are verified using experimental results.Keywords: axial flux, permanent magnet generator, dual rotor, ferrite permanent magnet generator, finite element analysis, wind turbines, cogging torque, population-based algorithms
Procedia PDF Downloads 1561420 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 4061419 Using Cyclic Structure to Improve Inference on Network Community Structure
Authors: Behnaz Moradijamei, Michael Higgins
Abstract:
Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.Keywords: hypothesis testing, RNBRW, network inference, community structure
Procedia PDF Downloads 1541418 Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View
Authors: T. Häfele, J. Kaspar, M. Vielhaber, W. Calles, J. Griebsch
Abstract:
The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.Keywords: additive manufacturing, fiber-reinforced plastics (FRP), hybrid design, lightweight design
Procedia PDF Downloads 3001417 Programming without Code: An Approach and Environment to Conditions-On-Data Programming
Authors: Philippe Larvet
Abstract:
This paper presents the concept of an object-based programming language where tests (if... then... else) and control structures (while, repeat, for...) disappear and are replaced by conditions on data. According to the object paradigm, by using this concept, data are still embedded inside objects, as variable-value couples, but object methods are expressed into the form of logical propositions (‘conditions on data’ or COD).For instance : variable1 = value1 AND variable2 > value2 => variable3 = value3. Implementing this approach, a central inference engine turns and examines objects one after another, collecting all CODs of each object. CODs are considered as rules in a rule-based system: the left part of each proposition (left side of the ‘=>‘ sign) is the premise and the right part is the conclusion. So, premises are evaluated and conclusions are fired. Conclusions modify the variable-value couples of the object and the engine goes to examine the next object. The paper develops the principles of writing CODs instead of complex algorithms. Through samples, the paper also presents several hints for implementing a simple mechanism able to process this ‘COD language’. The proposed approach can be used within the context of simulation, process control, industrial systems validation, etc. By writing simple and rigorous conditions on data, instead of using classical and long-to-learn languages, engineers and specialists can easily simulate and validate the functioning of complex systems.Keywords: conditions on data, logical proposition, programming without code, object-oriented programming, system simulation, system validation
Procedia PDF Downloads 2251416 Generation of 3d Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones
Authors: Julio Manuel De Luis Ruiz, Javier Sedano Cibrián, RubéN Pérez Álvarez, Raúl Pereda García, Felipe Piña García
Abstract:
Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In this sense, the classic 3D models are being applied to investigate the direction towards which the generally subterranean structures of an archaeological site may continue and therefore, to help in making the decisions that define the location of new excavations. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimise the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain).Keywords: process optimization, RGB models, thermal models, , UAV, workflow
Procedia PDF Downloads 1421415 Treatment of Rice Industry Waste Water by Flotation-Flocculation Method
Authors: J. K. Kapoor, Shagufta Jabin, H. S. Bhatia
Abstract:
Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment.Keywords: coagulation, flocculation, air flotation technique, polyelectrolyte, turbidity
Procedia PDF Downloads 4851414 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass
Authors: Goodness Onwuka, Khaled Abou-El-Hossein
Abstract:
Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding
Procedia PDF Downloads 3051413 Urban Traffic: Understanding the Traffic Flow Factor Through Fluid Dynamics
Authors: Sathish Kumar Jayaraj
Abstract:
The study of urban traffic dynamics, underpinned by the principles of fluid dynamics, offers a distinct perspective to comprehend and enhance the efficiency of traffic flow within bustling cityscapes. Leveraging the concept of the Traffic Flow Factor (TFF) as an analog to the Reynolds number, this research delves into the intricate interplay between traffic density, velocity, and road category, drawing compelling parallels to fluid dynamics phenomena. By introducing the notion of Vehicle Shearing Resistance (VSR) as an analogy to dynamic viscosity, the study sheds light on the multifaceted influence of traffic regulations, lane management, and road infrastructure on the smoothness and resilience of traffic flow. The TFF equation serves as a comprehensive metric for quantifying traffic dynamics, enabling the identification of congestion hotspots, the optimization of traffic signal timings, and the formulation of data-driven traffic management strategies. The study underscores the critical significance of integrating fluid dynamics principles into the domain of urban traffic management, fostering sustainable transportation practices, and paving the way for a more seamless and resilient urban mobility ecosystem.Keywords: traffic flow factor (TFF), urban traffic dynamics, fluid dynamics principles, vehicle shearing resistance (VSR), traffic congestion management, sustainable urban mobility
Procedia PDF Downloads 671412 Optimizing of the Micro EDM Parameters in Drilling of Titanium Ti-6Al-4V Alloy for Higher Machining Accuracy-Fuzzy Modelling
Authors: Ahmed A. D. Sarhan, Mum Wai Yip, M. Sayuti, Lim Siew Fen
Abstract:
Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy
Procedia PDF Downloads 4981411 Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon
Authors: Badache Messaoud
Abstract:
Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously.Keywords: geothermal thermosiphon, co2, Response surface methodology, heat transfer performance
Procedia PDF Downloads 721410 Optimization of Gold Adsorption from Aqua-Regia Gold Leachate Using Baggase Nanoparticles
Authors: Oluwasanmi Teniola, Abraham Adeleke, Ademola Ibitoye, Moshood Shitu
Abstract:
To establish an economical and efficient process for the recovery of gold metal from refractory gold ore obtained from Esperando axis of Osun state Nigeria, the adsorption of gold (III) from aqua reqia leached solution of the ore using bagasse nanoparticles has been studied under various experimental variables using batch technique. The extraction percentage of gold (III) on the prepared bagasse nanoparticles was determined from its distribution coefficients as a function of solution pH, contact time, adsorbent, adsorbate concentrations, and temperature. The rate of adsorption of gold (III) on the prepared bagasse nanoparticles is dependent on pH, metal concentration, amount of adsorbate, stirring rate, and temperature. The adsorption data obtained fit into the Langmuir and Freundlich equations. Three different temperatures were used to determine the thermodynamic parameters of the adsorption of gold (III) on bagasse nanoparticles. The heat of adsorption was measured to be a positive value ΔHo = +51.23kJ/mol, which serves as an indication that the adsorption of gold (III) on bagasse nanoparticles is endothermic. Also, the negative value of ΔGo = -0.6205 kJ/mol at 318K shows the spontaneity of the process. As the temperature was increased, the value of ΔGo becomes more negative, indicating that an increase in temperature favors the adsorption process. With the application of optimal adsorption variables, the adsorption capacity of gold was 0.78 mg/g of the adsorbent, out of which 0.70 mg of gold was desorbed with 0.1 % thiourea solution.Keywords: adsorption, bagasse, extraction, nanoparticles, recovery
Procedia PDF Downloads 1591409 Correlation and Prediction of Biodiesel Density
Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos
Abstract:
The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg.m^-3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg•m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.Keywords: biodiesel density, correlation, equation of state, prediction
Procedia PDF Downloads 6201408 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction
Procedia PDF Downloads 1881407 A Multi-Layer Based Architecture for the Development of an Open Source CAD/CAM Integration Virtual Platform
Authors: Alvaro Aguinaga, Carlos Avila, Edgar Cando
Abstract:
This article proposes a n-layer architecture, with a web client as a front-end, for the development of a virtual platform for process simulation on CNC machines. This Open-Source platform includes a CAD-CAM interface drawing primitives, and then used to furnish a CNC program that triggers a touch-screen virtual simulator. The objectives of this project are twofold. First one is an educational component that fosters new alternatives for the CAD-CAM/CNC learning process in undergrad and grade schools and technical and technological institutes emphasizing in the development of critical skills, discussion and collaborative work. The second objective puts together a research and technological component that will take the state of the art in CAD-CAM integration to a new level with the development of optimal algorithms and virtual platforms, on-line availability, that will pave the way for the long-term goal of this project, that is, to have a visible and active graduate school in Ecuador and a world wide Open-Innovation community in the area of CAD-CAM integration and operation of CNC machinery. The virtual platform, developed as a part of this study: (1) delivers improved training process of students, (2) creates a multidisciplinary team and a collaborative work space that will push the new generation of students to face future technological challenges, (3) implements industry standards for CAD/CAM, (4) presents a platform for the development of industrial applications. A protoype of this system was developed and implemented in a network of universities and technological institutes in Ecuador.Keywords: CAD-CAM integration, virtual platforms, CNC machines, multi-layer based architecture
Procedia PDF Downloads 4321406 Characteristics and Flight Test Analysis of a Fixed-Wing UAV with Hover Capability
Authors: Ferit Çakıcı, M. Kemal Leblebicioğlu
Abstract:
In this study, characteristics and flight test analysis of a fixed-wing unmanned aerial vehicle (UAV) with hover capability is analyzed. The base platform is chosen as a conventional airplane with throttle, ailerons, elevator and rudder control surfaces, that inherently allows level flight. Then this aircraft is mechanically modified by the integration of vertical propellers as in multi rotors in order to provide hover capability. The aircraft is modeled using basic aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. Flight characteristics are analyzed by benefiting from linear control theory’s state space approach. Distinctive features of the aircraft are discussed based on analysis results with comparison to conventional aircraft platform types. A hybrid control system is proposed in order to reveal unique flight characteristics. The main approach includes design of different controllers for different modes of operation and a hand-over logic that makes flight in an enlarged flight envelope viable. Simulation tests are performed on mathematical models that verify asserted algorithms. Flight tests conducted in real world revealed the applicability of the proposed methods in exploiting fixed-wing and rotary wing characteristics of the aircraft, which provide agility, survivability and functionality.Keywords: flight test, flight characteristics, hybrid aircraft, unmanned aerial vehicle
Procedia PDF Downloads 3321405 Gas Lift Optimization Using Smart Gas Lift Valve
Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, M. Babaie
Abstract:
Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance.Keywords: Effect of gas lift valve port size, effect water cut, vertical flow performance
Procedia PDF Downloads 2961404 Energy Saving Study of Mass Rapid Transit by Optimal Train Coasting Operation
Authors: Artiya Sopharak, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong
Abstract:
This paper presents an energy-saving study of Mass Rapid Transit (MRT) using an optimal train coasting operation. For the dynamic train movement with four modes of operation, including accelerating mode, constant speed or cruising mode, coasting mode, and braking mode are considered in this study. The acceleration rate, the deceleration rate, and the starting coasting point are taken into account the optimal train speed profile during coasting mode with considering the energy saving and acceptable travel time comparison to the based case with no coasting operation. In this study, the mathematical method as a Quadratic Search Method (QDS) is conducted to carry out the optimization problem. A single train of MRT services between two stations with a distance of 2 km and a maximum speed of 80 km/h is taken to be the case study. Regarding the coasting mode operation, the results show that the longer distance of costing mode, the less energy consumption in cruising mode and the less braking energy. On the other hand, the shorter distance of coasting mode, the more energy consumption in cruising mode and the more braking energy.Keywords: energy saving, coasting mode, mass rapid transit, quadratic search method
Procedia PDF Downloads 3051403 Social Media Resignation the Only Way to Protect User Data and Restore Cognitive Balance, a Literature Review
Authors: Rajarshi Motilal
Abstract:
The birth of the Internet and the rise of social media marked an important chapter in the history of humankind. Often termed the fourth scientific revolution, the Internet has changed human lives and cognisance. The birth of Web 2.0, followed by the launch of social media and social networking sites, added another milestone to these technological advancements where connectivity and influx of information became dominant. With billions of individuals using the internet and social media sites in the 21st century, “users” became “consumers”, and orthodox marketing reshaped itself to digital marketing. Furthermore, organisations started using sophisticated algorithms to predict consumer purchase behaviour and manipulate it to sustain themselves in such a competitive environment. The rampant storage and analysis of individual data became the new normal, raising many questions about data privacy. The excessive usage of the Internet among individuals brought in other problems of them becoming addicted to it, scavenging for societal approval and instant gratification, subsequently leading to a collective dualism, isolation, and finally, depression. This study aims to determine the relationship between social media usage in the modern age and the rise of psychological and cognitive imbalances in human minds. The literature review is positioned timely as an addition to the existing work at a time when the world is constantly debating on whether social media resignation is the only way to protect user data and restore the decaying cognitive balance.Keywords: social media, digital marketing, consumer behaviour, internet addiction, data privacy
Procedia PDF Downloads 801402 Heater and Substrate Profile Optimization for Low Power Portable Breathalyzer to Diagnose Diabetes Mellitus
Authors: Ramji Kalidoss, Snekhalatha Umapathy, V. Dhinakaran, J. M. Mathana
Abstract:
Chemi-resistive sensors used in breathalyzers have become a hotspot between the international breath research communities. These sensors exhibit a significant change in its resistance depending on the temperature it gets heated thus demanding high power leading to non-portable instrumentation. In this work, numerical simulation to identify the suitable combination of substrate and heater profile using COMSOL multiphysics was studied. Ni-Cr and Pt-100 joule resistive heater with various profiles were studied beneath the square and circular alumina substrates. The temperature distribution was uniform throughout the square substrate with the meander shaped pt100 heater with 48 mW power consumption for 200 oC. Moreover, this heater profile induced minimal stress on the substrate with 0.5 mm thick. A novel Graphene based ternary metal oxide nanocomposite (GO/SnO2/TiO2) was coated on the optimized substrate and heater to elucidate the response of diabetes biomarker (acetone). The sensor exhibited superior gas sensing performance towards acetone in the exhaled breath concentration range for diabetes (0.25 – 3 ppm). These results indicated the importance of substrate and heater properties along with sensing material for low power portable breathalyzers.Keywords: Breath Analysis, Chemical Sensors, Diabetes Mellitus, Graphene Nanocomposites, Heater, Substrate
Procedia PDF Downloads 140