Search results for: NK cell expansion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4771

Search results for: NK cell expansion

1261 Research and Design of Functional Mixed Community: A Model Based on the Construction of New Districts in China

Authors: Wu Chao

Abstract:

The urban design of the new district in China is different from other existing cities at the city planning level, including Beijing, Shanghai, Guangzhou, etc. And the urban problems of these super-cities are same as many big cities around the world. The goal of the new district construction plan is to enable people to live comfortably, to improve the well-being of residents, and to create a way of life different from that of other urban communities. To avoid the emergence of the super community, the idea of "decentralization" is taken as the overall planning idea, and the function and form of each community are set up with a homogeneous allocation of resources so that the community can grow naturally. Similar to the growth of vines in nature, each community groups are independent and connected through roads, with clear community boundaries that limit their unlimited expansion. With a community contained 20,000 people as a case, the community is a mixture for living, production, office, entertainment, and other functions. Based on the development of the Internet, to create more space for public use, and can use data to allocate resources in real time. And this kind of shared space is the main part of the activity space in the community. At the same time, the transformation of spatial function can be determined by the usage feedback of all kinds of existing space, and the use of space can be changed by the changing data. Take the residential unit as the basic building function mass, take the lower three to four floors of the building as the main flexible space for use, distribute functions such as entertainment, service, office, etc. For the upper living space, set up a small amount of indoor and outdoor activity space, also used as shared space. The transformable space of the bottom layer is evenly distributed, combined with the walking space connected the community, the service and entertainment network can be formed in the whole community, and can be used in most of the community space. With the basic residential unit as the replicable module, the design of the other residential units runs through the idea of decentralization and the concept of the vine community, and the various units are reasonably combined. At the same time, a small number of office buildings are added to meet the special office needs. The new functional mixed community can change many problems of the present city in the future construction, at the same time, it can keep its vitality through the adjustment function of the Internet.

Keywords: decentralization, mixed functional community, shared space, spatial usage data

Procedia PDF Downloads 103
1260 The Relationship between First-Day Body Temperature and Mortality in Traumatic Patients

Authors: Neda Valizadeh, Mani Mofidi, Sama Haghighi, Ali Hashemaghaee, Soudabeh Shafiee Ardestani

Abstract:

Background: There are many systems and parameters to evaluate trauma patients in the emergency department. Most of these evaluations are to distinguish patients with worse conditions so that the care systems have a better prediction of condition for a better care-giving. The purpose of this study is to determine the relationship between axillary body temperature and mortality in patients hospitalized in the intensive care unit (ICU) with multiple traumas and with other clinical and para-clinical factors. Methods: All patients between 16 and 75 years old with multiple traumas who were admitted into Emergency Department then hospitalized in the ICU were included in our study. An axillary temperature in the first and the second day of admission, Glasgow cola scale (GCS), systolic blood pressure, Serum glucose levels, and white blood cell counts of all patients at the admission day were recorded and their relationship with mortality were analyzed by SPSS software with suitable statistical tests. Results: Axillary body temperatures in the first and second day were statistically lower in expired traumatic patients (p=0.001 and p<0,001 respectively). Patients with lower GCS had a significantly lower first-day temperature and a significantly higher mortality. (p=0.006 and p=0.006 respectively). Furthermore, the first-day axillary temperature was significantly lower in patients with a lower first-day systolic blood pressure (p=0.014). Conclusion: Our results showed that lower axillary body temperature in the first day is associated with higher mortality, lower GCS, and lower systolic blood pressure. Thus, this could be used as a predictor of mortality in evaluation of traumatic patients in emergency settings.

Keywords: fever, trauma, mortality, emergency

Procedia PDF Downloads 359
1259 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform

Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr

Abstract:

Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.

Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing

Procedia PDF Downloads 67
1258 Impregnation Reduction Method for the Preparation of Platinum-Nickel/Carbon Black Alloy Nanoparticles as Faor Electrocatalyst

Authors: Maryam Kiani

Abstract:

In order to enhance the efficiency and stability of an electrocatalyst for formic acid electro-oxidation reaction (FAOR), we developed a method to create Pt/Ni nanoparticles with carbon black. These nanoparticles were prepared using a simple impregnation reduction technique. During the observation, it was found that the nanoparticles had a spherical shape. Additionally, the average particle size remained consistent, falling within the range of about 4 nm. This approach aimed to obtain a loaded Pt-based electrocatalyst that would exhibit improved performance and stability when used in FAOR applications. By utilizing the impregnation reduction method and incorporating Ni nanoparticles along with Pt, we sought to enhance the catalytic properties of the material. By incorporating Ni atoms into the Pt structure, the electronic properties of Pt are modified, resulting in a delay in the chemisorption of harmful CO intermediate species. This modification also promotes the dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Through electrochemical analysis, it has been observed that the Pt3Ni-C catalyst exhibits enhanced performance in FAOR compared to traditional Pt catalysts. This means that the addition of Ni atoms improves the efficiency and effectiveness of the Pt3Ni-C catalyst in facilitating the FAOR process. Overall, the utilization of these alloy nanoparticles as electrocatalysts represents a significant advancement in fuel cell technology.

Keywords: electrocatalyst, impregnation reduction method, formic acid electro-oxidation reaction, fuel cells

Procedia PDF Downloads 93
1257 Renewable Energy Storage Capacity Rating: A Forecast of Selected Load and Resource Scenario in Nigeria

Authors: Yakubu Adamu, Baba Alfa, Salahudeen Adamu Gene

Abstract:

As the drive towards clean, renewable and sustainable energy generation is gradually been reshaped by renewable penetration over time, energy storage has thus, become an optimal solution for utilities looking to reduce transmission and capacity cost, therefore the need for capacity resources to be adjusted accordingly such that renewable energy storage may have the opportunity to substitute for retiring conventional energy systems with higher capacity factors. Considering the Nigeria scenario, where Over 80% of the current Nigerian primary energy consumption is met by petroleum, electricity demand is set to more than double by mid-century, relative to 2025 levels. With renewable energy penetration rapidly increasing, in particular biomass, hydro power, solar and wind energy, it is expected to account for the largest share of power output in the coming decades. Despite this rapid growth, the imbalance between load and resources has created a hindrance to the development of energy storage capacity, load and resources, hence forecasting energy storage capacity will therefore play an important role in maintaining the balance between load and resources including supply and demand. Therefore, the degree to which this might occur, its timing and more importantly its sustainability, is the subject matter of the current research. Here, we forecast the future energy storage capacity rating and thus, evaluate the load and resource scenario in Nigeria. In doing so, We used the scenario-based International Energy Agency models, the projected energy demand and supply structure of the country through 2030 are presented and analysed. Overall, this shows that in high renewable (solar) penetration scenarios in Nigeria, energy storage with 4-6h duration can obtain over 86% capacity rating with storage comprising about 24% of peak load capacity. Therefore, the general takeaway from the current study is that most power systems currently used has the potential to support fairly large penetrations of 4-6 hour storage as capacity resources prior to a substantial reduction in capacity ratings. The data presented in this paper is a crucial eye-opener for relevant government agencies towards developing these energy resources in tackling the present energy crisis in Nigeria. However, if the transformation of the Nigeria. power system continues primarily through expansion of renewable generation, then longer duration energy storage will be needed to qualify as capacity resources. Hence, the analytical task from the current survey will help to determine whether and when long-duration storage becomes an integral component of the capacity mix that is expected in Nigeria by 2030.

Keywords: capacity, energy, power system, storage

Procedia PDF Downloads 20
1256 Antibacterial Activity and Cytotoxicity of Silver Nanoparticles Synthesized by Moringa oleifera Extract as Reducing Agent

Authors: Temsiri Suwan, Penpicha Wanachantararak, Sakornrat Khongkhunthian, Siriporn Okonogi

Abstract:

In the present study, silver nanoparticles (AgNPs) were synthesized by green synthesis approach using Moringa oleifera aqueous extract (ME) as a reducing agent and silver nitrate as a precursor. The obtained AgNPs were characterized using UV-Vis spectroscopy (UV-Vis), dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffractometry (XRD). The results from UV-Vis revealed that the maximum absorption of AgNPs was at 430 nm and the EDX spectrum confirmed Ag element. The results from DLS indicated that the amount of ME played an important role in particle size, size distribution, and zeta potential of the obtained AgNPs. The smallest size (62.4 ± 1.8 nm) with narrow distribution (0.18 ± 0.02) of AgNPs was obtained after using 1% w/v of ME. This system gave high negative zeta potential of -36.5 ± 2.8 mV. SEM results indicated that the obtained AgNPs were spherical in shape. Antibacterial activity using dilution method revealed that the minimum inhibitory and minimum bactericidal concentrations of the obtained AgNPs against Streptococcus mutans were 0.025 and 0.1 mg/mL, respectively. Cytotoxicity test of AgNPs on adenocarcinomic human alveolar basal epithelial cells (A549) indicated that the particles impacted against A549 cells. The percentage of cell growth inhibition was 87.5 ± 3.6 % when only 0.1 mg/mL AgNPs was used. These results suggest that ME is the potential reducing agent for green synthesis of AgNPs.

Keywords: antibacterial activity, Moringa oleifera extract, reducing agent, silver nanoparticles

Procedia PDF Downloads 97
1255 Knee Pain Reduction: Holistic vs. Traditional

Authors: Renee Moten

Abstract:

Introduction: Knee pain becomes chronic because the therapy used focuses only on the symptoms of knee pain and not the causes of knee pain. Preventing knee injuries is not in the toolbox of the traditional practitioner. This research was done to show that we must reduce the inflammation (holistically), reduce the swelling and regain flexibility before considering any type of exercise. This method of performing the correct exercise stops the bowing of the knee, corrects the walking gait, and starts to relieve knee, hip, back, and shoulder pain. Method: The holistic method that is used to heal knees is called the Knee Pain Recipe. It’s a six step system that only uses alternative medicine methods to reduce, relieve and restore knee joint mobility. The system is low cost, with no hospital bills, no physical therapy, and no painkillers that can cause damage to the kidneys and liver. This method has been tested on 200 women with knee, back, hip, and shoulder pain. Results: All 200 women reduce their knee pain by 50%, some by as much as 90%. Learning about ankle and foot flexibility, along with understanding the kinetic chain, helps improve the walking gait, which takes the pressure off the knee, hip and back. The knee pain recipe also has helped to reduce the need for a cortisone injection, stem cell procedures, to take painkillers, and surgeries. What has also been noted in the research was that if the women's knees were too far gone, the Knee Pain Recipe helped prepare the women for knee replacement surgery. Conclusion: It is believed that the Knee Pain Recipe, when performed by men and women from around the world, will give them a holistic alternative to drugs, injections, and surgeries.

Keywords: knee, surgery, healing, holistic

Procedia PDF Downloads 61
1254 Characterization of Solanum tuberosum Ammonium Transporter Gene Using Bioinformatics Approach

Authors: Adewole Tomiwa Adetunji, Francis Bayo Lewu, Richard Mundembe

Abstract:

Plants require nitrogen (N) to support desired production levels. There is a need for better understanding of N transport mechanism in order to improve N assimilation by plant root. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which N is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was amplified, sequenced and characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design 976 base pairs AMT1-specific primers which include forward primer 5’- GCCATCGCCGCCGCCGG-3’ and reverse primer 5’-GGGTCAGATCCATACCCGC-3’. These primers were used to amplify the Solanum tuberosum AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family due to the clade and high similarity it shared with other plant AMT1 genes. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1, and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th-10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport.

Keywords: ammonium transporter, bioinformatics, nitrogen, primers, Solanum tuberosum

Procedia PDF Downloads 213
1253 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery

Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi

Abstract:

Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.

Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell

Procedia PDF Downloads 98
1252 Drug Susceptibility and Genotypic Assessment of Mycobacterial Isolates from Pulmonary Tuberculosis Patients in North East Ethiopia

Authors: Minwuyelet Maru, Solomon Habtemariam, Endalamaw Gadissa, Abraham Aseffa

Abstract:

Background: Tuberculosis is a major public health problem in Ethiopia. The burden of TB is aggravated by emergence and expansion of drug resistant tuberculosis and different lineages of Mycobacterium tuberculosis (M. tuberculosis) have been reported in many parts of the country. Describing strains of Mycobacterial isolates and drug susceptibility pattern is necessary. Method: Sputum samples were collected from smear positive pulmonary TB patients age >= 7 years between October 1, 2012 to September 30, 2013 and Mycobacterial strains isolated on Loweensten Jensen (LJ) media. Each strain was characterized by deletion typing and Spoligotyping. Drug sensitivity testing was determined with the indirect proportion method using Middle brook 7H10 media and association to determine possible risk factors to drug resistance was done. Result: A total of 144 smear positive pulmonary tuberculosis patients were enrolled. The age of participants ranged from 7 to 78 with mean age of 29.22 (±10.77) years. In this study 82.2% (n=97) of the isolates were sensitive to the four first line anti-tuberculosis drugs and resistance to any of the four drugs tested was 17.8% (n=21). A high frequency of any resistance was observed in isoniazid, 13.6%, (n=16) followed by streptomycin, 11.8% (n=14). No significant association of isoniazid resistance with HIV, sex and history of previous TB treatment was observed but there was significant association with age, high between 31-35 years of age (p=0.01). Majority, 89.9% (n=128) of participants were new cases and only 11.1% (n=16) had history of previous TB treatment. No MDR-TB from new cases and 2 MDRTB (13.3%) was isolated from re-treatment cases which was significantly associated with previous TB treatment (p<0.01). Thirty two different types of spoligotype patterns were identified and 74.1% were grouped in to 13 clusters. The dominant strains were SIT 25, 18.1% (n=21), SIT 53, 17.2% (n=20) and SIT 149, 8.6% (n=10). Lineage 4 is the predominant lineage followed by lineage 3 and lineage 7 comprising 65.5% (n=76), 28.4% (n=33) and 6% (n=7) respectively. Majority of strains from lineage 3 and 4 were SIT 25 (63.6%) and SIT 53 (26.3%) whereas SIT 343 was the dominant strain from lineage 7 (71.4%). Conclusion: Wide spread of lineage 3 and lineage 4 of the modern lineage and high number of strain cluster indicates high ongoing transmission. The high proportion resistance to any of the first line anti-tuberculosis drugs may be a potential source in the emergence of MDR-TB. Wide spread of SIT 25 and SIT 53 having a tendency of ease transmission and presence of higher resistance of isoniazid in working and mobile age group, 31-35 years of age may increase risk of drug resistant strains transmission.

Keywords: tuberculosis, drug susceptibility, strain diversity, lineage, Ethiopia, spoligotyping

Procedia PDF Downloads 362
1251 Production of Nitric Oxide by Thienopyrimidine TP053

Authors: Elena G. Salina, Laurent R. Chiarelli, Maria R. Pasca, Vadim A. Makarov

Abstract:

Tuberculosis is one of the most challenging threats to human health, confronted by the problem of drug resistance. Evidently, new drugs for tuberculosis are urgently needed. Thienopyrimidine TP053 is one of the most promising new antitubercular prodrugs. Mycothiol-dependent reductase Mrx2, encoded by rv2466c, is known to be a TP053 activator; however, the precise mode of action of this compound remained unclear. Being highly active against both replicating and non-replicating tuberculosis bacilli, TP053 also revealed dose-escalating activity for M. tuberculosis-infected murine macrophages. The chemical structure of TP053 is characterized by the presence of NO₂ group which was suggested to be responsible for the toxic effects of the activated compound. Reduction of a nitroaromatic moiety of TP53 by Mrx2 was hypothesized to result in NO release. Analysis of the products of enzymatic activation of TP053 by Mrx2 by the Greiss reagent clearly demonstrated production of nitric oxide in a time-dependent manner. Mass-spectra of cell lysates of TP-treated M. tuberculosis bacilli demonstrated the transformation of TP053 to its non-active metabolite with Mw=261 that corresponds NO release. The mechanism of NO toxicity for bacteria includes DNA damage and degradation of iron-sulfur centers, especially under oxygen depletion. Thus, TP-053 drug-like scaffold is prospective for further development of novel anti-TB drug. This work was financially supported by the Russian Foundation for Basic Research (Grant 17-04-00342).

Keywords: drug discovery, M. tuberculosis, nitric oxide, NO donors

Procedia PDF Downloads 136
1250 Delivering on Infrastructure Maintenance for Socio-Economic Growth: Exploration of South African Infrastructure for a Sustained Maintenance Strategy

Authors: Deenadayalan Govender

Abstract:

In South Africa, similar to nations globally, the prevailing tangible link between people and the state is public infrastructure. Services delivered through infrastructure to the people and to the state form a critical enabler for social development in communities and economic development in the country. In this regard, infrastructure, being the backbone to a nation’s prosperity, ideally should be effectively maintained for seamless delivery of services. South African infrastructure is in a state of deterioration, which is leading to infrastructure dysfunction and collapse and is negatively affecting development of the economy. This infrastructure deterioration stems from deficiencies in maintenance practices and strategies. From the birth of South African democracy, government has pursued socio-economic transformation and the delivery of critical basic services to decrease the broadening boundaries of disparity. In this regard, the National Infrastructure Plan borne from strategies encompassed in the National Development Plan is given priority by government in delivering strategic catalytic infrastructure projects. The National Infrastructure Plan is perceived to be the key in unlocking opportunities that generate economic growth, kerb joblessness, alleviate poverty, create new entrepreneurial prospects, and mitigate population expansion and rapid urbanisation. Socio-economic transformation benefits from new infrastructure spend is not being realised as initially anticipated. In this context, South Africa is currently in a state of weakening economic growth, with further amassed levels of joblessness, unremitting poverty and inequality. Due to investor reluctance, solicitation of strategic infrastructure funding is progressively becoming a debilitating challenge in all government institutions. Exacerbating these circumstances further, is substandard functionality of existing infrastructure subsequent to inadequate maintenance practices. This in-depth multi-sectoral study into the state of infrastructure is to understand the principal reasons for infrastructure functionality regression better; furthermore, prioritised investigations into progressive maintenance strategies is focused upon. Resultant recommendations reveal enhanced maintenance strategies, with a vision to capitalize on infrastructure design life, and also give special emphasis to socio-economic development imperatives in the long-term. The research method is principally based on descriptive methods (survey, historical, content analysis, qualitative).

Keywords: infrastructure, maintenance, socio-economic, strategies

Procedia PDF Downloads 123
1249 Design of Liquid Crystal Based Interface to Study the Interaction of Gram Negative Bacterial Endotoxin with Milk Protein Lactoferrin

Authors: Dibyendu Das, Santanu Kumar Pal

Abstract:

Milk protein lactoferrin (Lf) exhibits potent antibacterial activity due to its interaction with Gram-negative bacterial cell membrane component, lipopolysaccharide (LPS). This paper represents fabrication of new Liquid crystals (LCs) based biosensors to explore the interaction between Lf and LPS. LPS self-assembled at aqueous/LCs interface and orients interfacial nematic 4-cyano-4’- pentylbiphenyl (5CB) LCs in a homeotropic fashion (exhibiting dark optical image under polarized optical microscope). Interestingly, on the exposure of Lf on LPS decorated aqueous/LCs interface, an optical image of LCs changed from dark to bright indicating an ordering alteration of interfacial LCs from homeotropic to tilted/planar state. The ordering transition reflects strong binding between Lf and interfacial LPS that, in turn, perturbs the orientation of LCs. With the help of epifluorescence microscopy, we further affirmed the interfacial LPS-Lf binding event by imaging the presence of FITC tagged Lf at the LPS laden aqueous/LCs interface. Finally, we have investigated the conformational behavior of Lf in solution as well as in the presence of LPS using Circular Dichroism (CD) spectroscopy and further reconfirmed with Vibrational Circular Dichroism (VCD) spectroscopy where we found that Lf undergoes alpha-helix to random coil-like structure in the presence of LPS. As a whole the entire results described in this paper establish a robust approach to envisage the interaction between LPS and Lf through the ordering transitions of LCs at aqueous/LCs interface.

Keywords: endotoxin, interface, lactoferrin, lipopolysaccharide

Procedia PDF Downloads 251
1248 Land Suitability Analysis Based on Ecosystems Service Approach for Wind Farm Location in South-Central Chile: Net Primary Production as Proxy

Authors: Yenisleidy Martínez-Martínez, Yannay Casas-Ledón, Jo Dewulf

Abstract:

Wind power constitutes a cleaner energy source with smaller unfavorable impacts on the environment than fossil fuels. Its development could be an alternative to fight climate change while meeting energy demands. However, wind energy development requires first determining the existing potential and areas with aptitude. Also, potential socio-economic and environmental impacts should be analyzed to prevent social rejection of this technology. In this context, this work performs a suitability assessment on a GIS environment to locate suitable areas for wind energy expansion in South-Central Chile. In addition, suitable areas were characterized in terms of potential goods and services to be produced as a proxy for analyzing potential impacts and trade-offs. First, layers of annual wind speed were generated as they represent the resource potential, and layer representing previously defined territorial constraints were created. Zones depicting territorial constraints were removed from resource measurement layers to identify suitable sites. Then, the appropriation of the primary production in suitable sites was determined to measure potential ecosystem services derived from human interventions in those areas. Results show that approximately 52% of the total surface of the study area has a good aptitude to install wind farms. In this area, provisioning services like food crops production, timber, and other forest resources like firewood play a key role in the regional economy and thus are the main cause of human interventions. This is reflected by human appropriation of the primary production values of 0.71 KgC/m².yr, 0.36 KgC/m².yr, and 0.14 KgC/m².yr, respectively. In this sense, wind energy development could be compatible with croplands, which is the predominant land use in suitable areas, and provide farmers with cheaper energy and extra income. Also, studies have reported changes in local temperature associated with wind turbines, which could be beneficial to crop growth. The results obtained in this study prove to be useful for identifying available areas for wind development, which could be very useful in decision-making processes related to energy planning.

Keywords: net primary productivity, provisioning services, suitability assessment, wind energy

Procedia PDF Downloads 141
1247 Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films

Authors: H. Djaaboube, I. Loucif, Y. Bouachiba, R. Aouati, A. Maameri, A. Taabouche, A. Bouabellou

Abstract:

Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.

Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO

Procedia PDF Downloads 65
1246 Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling

Authors: Sandra Tapin-Lingua, Katia Ruel, Jean-Paul Joseleau, Daouia Messaoudi, Olivier Fahy, Michel Petit-Conil

Abstract:

The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls.

Keywords: cypermethrin, insecticide, wood penetration, wood retention, immuno-transmission electron microscopy, polyclonal antibody

Procedia PDF Downloads 395
1245 The Effect of Gamma-Aminobutyric Acid on Mechanical Properties, Water Vapor Permeability and Solubility of Pectin Films

Authors: Jitrawadee Meerasri, Rungsinee Sothornvit

Abstract:

Pectin is a structural polysaccharide from plant cell walls and can be used as a stabilizer, gelling and film-forming agents to improve many food products. Moreover, pectin film as a natural biopolymer can be a carrier of several active ingredients such as antioxidant and antimicrobial to provide an active or functional film. Gamma-aminobutyric acid (GABA) is a well-known agent to reduce neuronal excitability throughout the nervous system and it is interesting to investigate the GABA effect as a substitute of normal plasticizer (glycerol) on edible film properties. Therefore, the objective of this study was to determine the effect of GABA concentrations (5-15% of pectin) on film mechanical properties, moisture content, water vapor permeability, and solubility compared with those from glycerol (10% of pectin) plasticized pectin film including a control film (pectin film without any plasticizer). It was found that an increase in GABA concentrations decreased film tensile strength, modulus, solubility and water vapor permeability, but elongation was increased without a change in the moisture content. The smaller amount of GABA showed the equivalent film properties as using a higher amount of glycerol. Consequently, GABA can act as an alternative plasticizer substitute of glycerol at the lower amount used. Moreover, GABA provides the nutritional high value in the food products when the edible packaging material is consumed with products.

Keywords: gamma-aminobutyric acid, pectin, plasticizer, edible film

Procedia PDF Downloads 113
1244 Properties of Sustainable Artificial Lightweight Aggregate

Authors: Wasan Ismail Khalil, Hisham Khalid Ahmed, Zainab Ali

Abstract:

Structural Lightweight Aggregate Concrete (SLWAC) has been developed in recent years because it reduces the dead load, cost, thermal conductivity and coefficient of thermal expansion of the structure. So SLWAC has the advantage of being a relatively green building material. Lightweight Aggregate (LWA) is either occurs as natural material such as pumice, scoria, etc. or as artificial material produced from different raw materials such as expanded shale, clay, slate, etc. The use of SLWAC in Iraq is limited due to the lack in natural LWA. The existence of Iraqi clay deposit with different types and characteristics leads to the idea of producing artificial expanded clay aggregate. The main aim in this work is to present of the properties of artificial LWA produced in the laboratory. Available local bentonite clay which occurs in the Western region of Iraq was used as raw material to produce the LWA. Sodium silicate as liquid industrial waste material from glass plant was mixed with bentonite clay in mix proportion 1:1 by weight. The manufacturing method of the lightweight aggregate including, preparation and mixing of clay and sodium silicate, burning of the mixture in the furnace at the temperature between 750-800˚C for two hours, and finally gradually cooling process. The produced LWA was then crushed to small pieces then screened on standard sieve series and prepared with grading which conforms to the specifications of LWA. The maximum aggregate size used in this investigation is 10 mm. The chemical composition and the physical properties of the produced LWA are investigated. The results indicate that the specific gravity of the produced LWA is 1.5 with the density of 543kg/m3 and water absorption of 20.7% which is in conformity with the international standard of LWA. Many trail mixes were carried out in order to produce LWAC containing the artificial LWA produced in this research. The selected mix proportion is 1:1.5:2 (cement: sand: aggregate) by weight with water to cement ratio of 0.45. The experimental results show that LWAC has oven dry density of 1720 kg/m3, water absorption of 8.5%, the thermal conductivity of 0.723 W/m.K and compressive strength of 23 N/mm2. The SLWAC produced in this research can be used in the construction of different thermal insulated buildings and masonry units. It can be concluded that the SLWA produced in this study contributes to sustainable development by, using industrial waste materials, conserving energy, enhancing the thermal and structural efficiency of concrete.

Keywords: expanded clay, lightweight aggregate, structural lightweight aggregate concrete, sustainable

Procedia PDF Downloads 315
1243 Demetallization of Crude Oil: Comparative Analysis of Deasphalting and Electrochemical Removal Methods of Ni and V

Authors: Nurlan Akhmetov, Abilmansur Yeshmuratov, Aliya Kurbanova, Gulnar Sugurbekova, Murat Baisariyev

Abstract:

Extraction of the vanadium and nickel compounds is complex due to the high stability of porphyrin, nickel is catalytic poison which deactivates catalysis during the catalytic cracking of the oil, while vanadyl is abrasive and valuable metal. Thus, high concentration of the Ni and V in the crude oil makes their removal relevant. Two methods of the demetallization of crude oil were tested, therefore, the present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits in to the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for Ni and 51.2% for V. Thus, applying the voltammetry, ICP MS (Inductively coupled plasma mass spectrometry) and AAS (atomic absorption spectroscopy), these mentioned types of metal extraction methods were compared in this paper.

Keywords: electrochemistry, deasphalting of crude oil, demetallization of crude oil, petrolium engineering

Procedia PDF Downloads 217
1242 Enhancement of Dissolved Oxygen Concentration during the Electrocoagulation Process Using an Innovative Flow Columns-Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar

Abstract:

Dissolved oxygen concentration (DO) plays a key role in the electrocoagulation process (EC) as it oxidizes the heavy metals, ammonia, and cyanide into other forms that can be removed easily from water. For instance, the DO oxidises Fe (II) to Fe (III), As (III) to As (V), and cyanide to cyanate and then to ammonia. As well as, removal of nitrogenous compounds accomplishes by the presence of DO. Hence, many of the previous investigations used external aerators to provide the required DO inside EC reactors especially when the water being treated has low DO (such as leachate and highly polluted waters with organic matter); or when the DO depleted during the EC treatment. Although the external aeration process effectively enhances the DO concentration, it has a significant impact on energy consumption. Where, the presence of air bubbles increases the electrical resistance of the EC cell that increase the energy consumption in consequence. Thus, the present project aims to fill this gap by an innovative use of perforated flow columns in the designing of a new EC reactor (ECR1). The new reactor (ECR1) consisted of a Perspex made cylinder container having a controllable working volume of 0.5 to 1 L. It supplied with a flow column that consisted of perorated discoid electrodes that made from aluminium. In order to investigate the performance of ECR1; water samples with a controlled DO concentration were pumped at different flow rates (110, 220, and 440 ml/min) to the ECR1 for 10 min. The obtained results demonstrated that the ECR1 increased the DO concentration from 5.0 to 9.54, 10.53, and 11.0 mg/L which equivalent to 90.8%, 110.6%, and 120% at flow rates of 110, 220, and 440 mL/min respectively.

Keywords: dissolved oxygen, flow column, electrocoagulation, aluminium electrodes

Procedia PDF Downloads 260
1241 Prospects of Iraq’s Maritime Openness and Their Effect on Its Economy

Authors: Mohanad Hammad

Abstract:

Port institutions serve as a link connecting the land areas that receive the goods and the areas from where ships sail. These areas hold great significance for the conversion of goods into commodities of economic value, capable of meeting the needs of the society. Development of ports constitutes a fundamental component of the comprehensive economic development process. Recognizing this fact, developing countries have always resorted to this infrastructural element to resolve the numerous problems they face, taking into account its contribution to the reformation of their economic conditions. Iraqi ports have played a major role in boosting the commercial movement in Iraq, as they are the starting point of its oil exports and a key constituent in fulfilling the consumer and production needs of the various economic sectors of Iraq. With the Gulf wars and the economic blockade, Iraqi ports have continued to deteriorate and become unable to perform their functions as first-generation ports, prompting Iraq to use the ports of neighboring countries such as Jordan's Aqaba commercial port. Meanwhile, Iraqi ports face strong competition from the ports of neighboring countries, which have achieved progress and advancement as opposed to the declining performance and efficiency of Iraqi ports. The great developments in the economic conditions of Iraq lay a too great burden on the Iraqi maritime transport and ports, which require development in order to be able to meet the challenges arising from the fierce international and regional competition in the markets. Therefore, it is necessary to find appropriate solutions in support of the role that can be played by Iraqi ports in serving Iraq's foreign trade transported by sea and in keeping up with the development of foreign trade. Thus, this research aims at tackling the current situation of the Iraqi ports and their commercial activity and studying the problems and obstacles they face. The research also studies the future prospects of these ports, the potentials of maritime openness to Iraq under the fierce competition of neighboring ports, and the possibility of enhancing Iraqi ports’ competitiveness. Among the results produced by this research is the future scenario it proposes for Iraqi ports, mainly represented in the establishment of Al-Faw Port, which will contribute to a greater openness of maritime transport in Iraq, and the rehabilitation and expansion of existing ports. This research seeks to develop solutions to Iraq ports so that they can be repositioned as a vital means of promoting economic development.

Keywords: maritime transport, port, future prospects, regional integration

Procedia PDF Downloads 134
1240 Uncertainty Quantification of Fuel Compositions on Premixed Bio-Syngas Combustion at High-Pressure

Authors: Kai Zhang, Xi Jiang

Abstract:

Effect of fuel variabilities on premixed combustion of bio-syngas mixtures is of great importance in bio-syngas utilisation. The uncertainties of concentrations of fuel constituents such as H2, CO and CH4 may lead to unpredictable combustion performances, combustion instabilities and hot spots which may deteriorate and damage the combustion hardware. Numerical modelling and simulations can assist in understanding the behaviour of bio-syngas combustion with pre-defined species concentrations, while the evaluation of variabilities of concentrations is expensive. To be more specific, questions such as ‘what is the burning velocity of bio-syngas at specific equivalence ratio?’ have been answered either experimentally or numerically, while questions such as ‘what is the likelihood of burning velocity when precise concentrations of bio-syngas compositions are unknown, but the concentration ranges are pre-described?’ have not yet been answered. Uncertainty quantification (UQ) methods can be used to tackle such questions and assess the effects of fuel compositions. An efficient probabilistic UQ method based on Polynomial Chaos Expansion (PCE) techniques is employed in this study. The method relies on representing random variables (combustion performances) with orthogonal polynomials such as Legendre or Gaussian polynomials. The constructed PCE via Galerkin Projection provides easy access to global sensitivities such as main, joint and total Sobol indices. In this study, impacts of fuel compositions on combustion (adiabatic flame temperature and laminar flame speed) of bio-syngas fuel mixtures are presented invoking this PCE technique at several equivalence ratios. High-pressure effects on bio-syngas combustion instability are obtained using detailed chemical mechanism - the San Diego Mechanism. Guidance on reducing combustion instability from upstream biomass gasification process is provided by quantifying the significant contributions of composition variations to variance of physicochemical properties of bio-syngas combustion. It was found that flame speed is very sensitive to hydrogen variability in bio-syngas, and reducing hydrogen uncertainty from upstream biomass gasification processes can greatly reduce bio-syngas combustion instability. Variation of methane concentration, although thought to be important, has limited impacts on laminar flame instabilities especially for lean combustion. Further studies on the UQ of percentage concentration of hydrogen in bio-syngas can be conducted to guide the safer use of bio-syngas.

Keywords: bio-syngas combustion, clean energy utilisation, fuel variability, PCE, targeted uncertainty reduction, uncertainty quantification

Procedia PDF Downloads 264
1239 Multifunctional Polydopamine-Silver-Polydopamine Nanofilm With Applications in Digital Microfluidics and SERS

Authors: Yilei Xue, Yat-Hing Ham, Wenting Qiu, Wan Chan, Stefan Nagl

Abstract:

Polydopamine (PDA) is a popular material in biological and medical applications due to its excellent biocompatibility, outstanding physicochemical properties, and facile fabrication. In this project, a new sandwich-structured PDA and silver (Ag) hybrid material named PDA-Ag-PDA was synthesized and characterized layer-by-layer, where silver nanoparticles (Ag NPs) are wrapped in PDA coatings, using SEM, AFM, 3D surface metrology, and contact angle meter. The silver loading capacity is positively proportional to the roughness value of the initial PDA film. This designed film was subsequently integrated within a digital microfluidic (DMF) platform coupling with an oxygen sensor layer for on-chip antibacterial assay. The concentration of E. coli was quantified on DMF by real-time monitoring oxygen consumption during E. coli growth with the optical oxygen sensor layer. The PDA-Ag-PDA coating shows an 99.9% reduction in E. coli population under non-nutritive condition with 1-hour treatment and has a strong growth inhibition of E. coliin nutrient LB broth as well. Furthermore, PDA-Ag-PDA film maintaining a low cytotoxicity effect to human cells. After treating with PDA-Ag-PDA film for 24 hours, 82% HEK 293 and 86% HeLa cells were viable. The SERS enhancement factor of PDA-Ag-PDA is estimated to be 1.9 × 104 using Rhodamine 6G (R6G). Multifunctional PDA-Ag-PDA coating provides an alternative platform to conjugate biomolecules and perform biological applications on DMF, in particular, for the adhesive protein and cell study.

Keywords: polydopamine, silver nanoparticles, digital microfluidic, optical sensor, antimicrobial assay, SERS

Procedia PDF Downloads 81
1238 Treatment of Leather Industry Wastewater with Advance Treatment Methods

Authors: Seval Yilmaz, Filiz Bayrakci Karel, Ali Savas Koparal

Abstract:

Textile products produced by leather have been indispensable for human consumption. Various chemicals are used to enhance the durability of end-products in the processing of leather products. The wastewaters from the leather industry which contain these chemicals exhibit toxic effects on the receiving environment and threaten the natural ecosystem. In this study, leather industry wastewater (LIW), which has high loads of contaminants, was treated using advanced treatment techniques instead of conventional methods. During the experiments, the performance of electrochemical methods was investigated. During the electrochemical experiments, the performance of batch electrooxidation (EO) using boron-doped diamond (BDD) electrodes with monopolar configuration for removal of chemical oxygen demand (COD) from LIW were investigated. The influences of electrolysis time, current density (which varies as 5 mA/cm², 10 mA/cm², 20 mA/cm², 30 mA/cm², 50 mA/cm²) and initial pH (which varies as 3,80 (natural pH of LIW), 7, 9) on removal efficiency were investigated in a batch stirred cell to determine the best treatment conditions. The current density applied to the electrochemical reactors is directly proportional to the consumption of electric energy, so electrical energy consumption was monitored during the experiment. The best experimental conditions obtained in electrochemical studies were as follows: electrolysis time = 60 min, current density = 30.0 mA/cm², pH 7. Using these parameters, 53.59% COD removal rates for LIW was achieved and total energy consumption was obtained as 13.03 kWh/m³. It is concluded that electrooxidation process constitutes a plausible and developable method for the treatment of LIW.

Keywords: BDD electrodes, COD removal, electrochemical treatment, leather industry wastewater

Procedia PDF Downloads 146
1237 Therapeutic Evaluation of Bacopa Monnieri Extract on Liver Fibrosis in Rats

Authors: Yu Wen Wang, Shyh Ming Kuo, Hsia Ying Cheng, Yu Chiuan Wu

Abstract:

Liver fibrosis is caused by the activation of hepatic stellate cells in the liver to secrete excessive and deposition of extracellular matrix. In recent years, many treatment strategies have been developed to reduce the activation of hepatic stellate cells and therefore to increase the decomposition of extracellular matrix. Bacopa monnieri, an herbaceous plant of the scrophulariaceae, containing saponins and glycosides, which with antioxidant, anti-inflammation, pain relief and free radical scavenging characteristics. This study was to evaluate the inhibition of hepatic stellate cell activity by Bacopa monnieri extract and its therapeutic potential in treating thioacetamide-induced liver fibrosis in rats. The results showed that the IC50 of Bacopa monnieri extract was 0.39 mg/mL. Bacopa monnieri extract could effectively reduce H2O2-induced hepatic stellate cells inflammation. In the TAA-induced liver fibrosis animal studies, albumin secretion recovered to normal level after treated with Bacopa monnieri extract for 2-w, and fibrosis related proteins, α-SMA and TGF-1levels decreased indicating the extract exerted therapeutic effect on the liver fibrosis. However, inflammatory factors TNF- obviously decreased after 4-w treatment. In summary, we could successfully extract the main component-Bacopaside I from the plant and acquired a potential therapy using this component in treating TAA-induced liver fibrosis in rat.

Keywords: anti-inflammatory, Bacopa monnieri, fibrosis, hepatic stellate cells, water extract

Procedia PDF Downloads 92
1236 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), and Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased % 29 between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32 °C in 1984 and 27-33 °C in 2014. Minimum temperature of agricultural lands was increased 3 °C and reached to 23 °C. In contrast, maximum temperature of A class decreased to 41 °C from 44 °C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2 °C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.

Keywords: census data, landsat, land surface temperature (LST), land use land cover (LULC)

Procedia PDF Downloads 377
1235 Erosion Wear of Cast Al-Si Alloys

Authors: Pooja Verma, Rajnesh Tyagi, Sunil Mohan

Abstract:

Al-Si alloys are widely used in various components such as liner-less engine blocks, piston, compressor bodies and pumps for automobile sector and aerospace industries due to their excellent combination of properties like low thermal expansion coefficient, low density, excellent wear resistance, high corrosion resistance, excellent cast ability, and high hardness. The low density and high hardness of primary Si phase results in significant reduction in density and improvement in wear resistance of hypereutectic Al-Si alloys. Keeping in view of the industrial importance of the alloys, hypereutectic Al-Si alloys containing 14, 16, 18 and 20 wt. % of Si were prepared in a resistance furnace using adequate amount of deoxidizer and degasser and their erosion behavior was evaluated by conducting tests at impingement angles of 30°, 60°, and 90° with an erodent discharge rate of 7.5 Hz, pressure 1 bar using erosion test rig. Microstructures of the cast alloys were examined using Optical microscopy (OM) and scanning electron microscopy (SEM) and the presence of Si particles was confirmed by x-ray diffractometer (XRD). The mechanical properties and hardness were measured using uniaxial tension tests at a strain rate of 10-3/s and Vickers hardness tester. Microstructures of the alloys and X-ray examination revealed the presence of primary and eutectic Si particles in the shape of cuboids or polyhedral and finer needles. Yield strength (YS), ultimate tensile strength (UTS), and uniform elongation of the hypereutectic Al-Si alloys were observed to increase with increasing content of Si. The optimal strength and ductility was observed for Al-20 wt. % Si alloy which is significantly higher than the Al-14 wt. % Si alloy. The increased hardness and the strength of the alloys with increasing amount of Si has been attributed presence of Si in the solid solution which creates strain, and this strain interacts with dislocations resulting in solid-solution strengthening. The interactions between distributed primary Si particles and dislocations also provide Orowan strengthening leading to increased strength. The steady state erosion rate was found to decrease with increasing angle of impact as well as Si content for all the alloys except at 900 where it was observed to increase with the increase in the Si content. The minimum erosion rate is observed in Al-20 wt. % Si alloy at 300 and 600 impingement angles because of its higher hardness in comparison to other alloys. However, at 90° impingement angle the wear rate for Al-20 wt. % Si alloy is found to be the minimum due to deformation, subsequent cracking and chipping off material.

Keywords: Al-Si alloy, erosion wear, cast alloys, dislocation, strengthening

Procedia PDF Downloads 52
1234 Research on Territorial Ecological Restoration in Mianzhu City, Sichuan, under the Dual Evaluation Framework

Authors: Wenqian Bai

Abstract:

Background: In response to the post-pandemic directives of Xi Jinping concerning the new era of ecological civilization, China has embarked on ecological restoration projects across its territorial spaces. This initiative faces challenges such as complex evaluation metrics and subpar informatization standards. Methodology: This research focuses on Mianzhu City, Sichuan Province, to assess its resource and environmental carrying capacities and the appropriateness of land use for development from ecological, agricultural, and urban perspectives. The study incorporates a range of spatial data to evaluate factors like ecosystem services (including water conservation, soil retention, and biodiversity), ecological vulnerability (addressing issues like soil erosion and desertification), and resilience. Utilizing the Minimum Cumulative Resistance model along with the ‘Three Zones and Three Lines’ strategy, the research maps out ecological corridors and significant ecological networks. These frameworks support the ecological restoration and environmental enhancement of the area. Results: The study identifies critical ecological zones in Mianzhu City's northwestern region, highlighting areas essential for protection and particularly crucial for water conservation. The southeastern region is categorized as a generally protected ecological zone with respective ratings for water conservation functionality and ecosystem resilience. The research also explores the spatial challenges of three ecological functions and underscores the substantial impact of human activities, such as mining and agricultural expansion, on the ecological baseline. The proposed spatial arrangement for ecological restoration, termed ‘One Mountain, One Belt, Four Rivers, Five Zones, and Multiple Corridors’, strategically divides the city into eight major restoration zones, each with specific tasks and projects. Conclusion: With its significant ‘mountain-plain’ geography, Mianzhu City acts as a crucial ecological buffer for the Yangtze River's upper reaches. Future development should focus on enhancing ecological corridors in agriculture and urban areas, controlling soil erosion, and converting farmlands back to forests and grasslands to foster ecosystem rehabilitation.

Keywords: ecological restoration, resource and environmental carrying capacity, land development suitability, ecosystem services, ecological vulnerability, ecological networks

Procedia PDF Downloads 24
1233 The Transcriptome of Carnation (Dianthus Caryophyllus) of Elicited Cells with Fusarium Oxysporum f.sp. Dianthi

Authors: Juan Jose Filgueira, Daniela Londono-Serna, Liliana Maria Hoyos

Abstract:

Carnation (Dianthus caryophyllus) is one of the most important products of exportation in the floriculture industry worldwide. Fusariosis is the disease that causes the highest losses on farms, in particular the one produced by Fusarium oxysporum f.sp. dianthi, called vascular wilt. Gene identification and metabolic routes of the genes that participate in the building of the plant response to Fusarium are some of the current targets in the carnation breeding industry. The techniques for the identifying of resistant genes in the plants, is the analysis of the transcriptome obtained during the host-pathogen interaction. In this work, we report the cell transcriptome of different varieties of carnation that present differential response from Fusarium oxysporum f.sp. dianthi attack. The cells of the different hybrids produced in the outbreeding program were cultured in vitro and elicited with the parasite in a dual culture. The isolation and purification of mRNA was achieved by using affinity chromatography Oligo dT columns and the transcriptomes were obtained by using Illumina NGS techniques. A total of 85,669 unigenes were detected in all the transcriptomes analyzed and 31,000 annotations were found in databases, which correspond to 36.2%. The library construction of genic expression techniques used, allowed to recognize the variation in the expression of genes such as Germin-like protein, Glycosyl hydrolase family and Cinnamate 4-hydroxylase. These have been reported in this study for the first time as part of the response mechanism to the presence of Fusarium oxysporum.

Keywords: Carnation, Fusarium, vascular wilt, transcriptome

Procedia PDF Downloads 129
1232 Therapeutic Application of Light and Electromagnetic Fields to Reduce Hyper-Inflammation Triggered by COVID-19

Authors: Blanche Aguida, Marootpong Pooam, Nathalie Jourdan, Margaret Ahmad

Abstract:

COVID-19-related morbidity is associated with exaggerated inflammation and cytokine production in the lungs, leading to acute respiratory failure. The cellular mechanisms underlying these so-called ‘cytokine storms’ are regulated through the Toll-like receptor 4 (TLR4) signaling pathway and by reactive oxygen species (ROS). Both light (photobiomodulation) and magnetic fields (e.g., pulsed electromagnetic field) stimulation are non-invasive therapies known to confer anti-inflammatory effects and regulate ROS signaling pathways. Here we show that daily exposure to two 10-minute intervals of moderate-intensity infra-red light significantly lowered the inflammatory response induced via the TLR4 receptor signaling pathway in human cell cultures. Anti-inflammatory effects were likewise achieved by electromagnetic field exposure of cells to daily 10-minute intervals of either pulsed electromagnetic fields (PEMF) or to low-level static magnetic fields. Because current illumination and electromagnetic field therapies have no known side effects and are already approved for some medical uses, we have here developed protocols for verification in clinical trials of COVID 19 infection. These treatments are affordable, simple to implement, and may help to resolve the acute respiratory distress of COVID 19 patients both in the home and in the hospital.

Keywords: COVID 19, electromagnetic fields therapy, inflammation, photobiomodulation therapy

Procedia PDF Downloads 125