Search results for: real-world learning experiences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9252

Search results for: real-world learning experiences

5772 Enhancing Children’s English Vocabulary Acquisition through Digital Storytelling at Happy Kids Kindergarten, Palembang, Indonesia

Authors: Gaya Tridinanti

Abstract:

Enhanching English vocabulary in early childhood is the main problem often faced by teachers. Thus, the purpose of this study was to determine the enhancement of children’s English vocabulary acquisition by using digital storytelling. This type of research was an action research. It consisted of a series of four activities done in repeated cycles: planning, implementation, observation, and reflection. The subject of the study consisted of 30 students of B group (5-6 years old) attending Happy Kids Kindergarten Palembang, Indonesia. This research was conducted in three cycles. The methods used for data collection were observation and documentation. Descriptive qualitative and quantitative methods were also used to analyse the data. The research showed that the digital storytelling learning activities could enhance the children’s English vocabulary acquisition. It is based on the data in which the enhancement in pre-cycle was 37% and 51% in Cycle I. In Cycle II it was 71% and in Cycle III it was 89.3%. The results showed an enhancement of about 14% from the pre-cycle to Cycle I, 20% from Cycle I to Cycle II, and enhancement of about 18.3% from Cycle II to Cycle III. The conclusion of this study suggests that digital storytelling learning method could enhance the English vocabulary acquisition of B group children at the Happy Kids Kindergarten Palembang. Therefore, digital storytelling can be considered as an alternative to improve English language learning in the classroom.

Keywords: acquisition, enhancing, digital storytelling, English vocabulary

Procedia PDF Downloads 257
5771 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 78
5770 A National Systematic Review on Determining Prevalence of Mobbing Exposure in Turkish Nurses

Authors: Betül Sönmez, Aytolan Yıldırım

Abstract:

Objective: This systematic review aims to methodically analyze studies regarding mobbing behavior prevalence, individuals performing this behavior and the effects of mobbing on Turkish nurses. Background: Worldwide reports on mobbing cases have increased in the past years, a similar trend also observable in Turkey. It has been demonstrated that among healthcare workers, mobbing is significantly widespread in nurses. The number of studies carried out in this regard has also increased. Method: The main criteria for choosing articles in this systematic review were nurses located in Turkey, regardless of any specific date. In November 2014, a search using the keywords 'mobbing, bullying, psychological terror/violence, emotional violence, nurses, healthcare workers, Turkey' in PubMed, Science Direct, Ebscohost, National Thesis Centre database and Google search engine led to 71 studies in this field. 33 studies were not met the inclusion criteria specified for this study. Results: The findings were obtained using the results of 38 studies carried out in the past 13 years in Turkey, a large sample consisting of 8,877 nurses. Analysis of the incidences of mobbing behavior revealed a broad spectrum, ranging from none-slight experiences to 100% experiences. The most frequently observed mobbing behaviors include attacking personality, blocking communication and attacking professional and social reputation. Victims mostly experienced mobbing from their managers, the most common consequence of these actions being psychological effects. Conclusions: The results of studies with various scales indicate exposure of nurses to similar mobbing behavior. The high frequency of exposure of nurses to mobbing behavior in such a large sample highlights the importance of considering this issue in terms of individual and institutional consequences that adversely affect the performance of nurses.

Keywords: mobbing, bullying, workplace violence, nurses, Turkey

Procedia PDF Downloads 277
5769 Media Literacy Development: A Methodology to Systematically Integrate Post-Contemporary Challenges in Early Childhood Education

Authors: Ana Mouta, Ana Paulino

Abstract:

The following text presents the ik.model, a theoretical framework that guided the pedagogical implementation of meaningful educational technology-based projects in formal education worldwide. In this paper, we will focus on how this framework has enabled the development of media literacy projects for early childhood education during the last three years. The methodology that guided educators through the challenge of systematically merging analogic and digital means in dialogic high-quality opportunities of world exploration is explained throughout these lines. The effects of this methodology on early age media literacy development are considered. Also considered is the relevance of this skill in terms of post-contemporary challenges posed to learning.

Keywords: early learning, ik.model, media literacy, pedagogy

Procedia PDF Downloads 324
5768 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning

Authors: Rik van Leeuwen, Ger Koole

Abstract:

Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.

Keywords: hierarchical cluster analysis, hospitality, market segmentation

Procedia PDF Downloads 108
5767 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm

Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.

Abstract:

Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.

Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control

Procedia PDF Downloads 130
5766 Strategies for Improving and Sustaining Quality in Higher Education

Authors: Anshu Radha Aggarwal

Abstract:

Higher Education (HE) in the India has experienced a series of remarkable changes over the last fifteen years as successive governments have sought to make the sector more efficient and more accountable for investment of public funds. Rapid expansion in student numbers and pressures to widen Participation amongst non-traditional students are key challenges facing HE. Learning outcomes can act as a benchmark for assuring quality and efficiency in HE and they also enable universities to describe courses in an unambiguous way so as to demystify (and open up) education to a wider audience. This paper examines how learning outcomes are used in HE and evaluates the implications for curriculum design and student learning. There has been huge expansion in the field of higher education, both technical and non-technical, in India during the last two decades, and this trend is continuing. It is expected that another about 400 colleges and 300 universities will be created by the end of the 13th Plan Period. This has lead to many concerns about the quality of education and training of our students. Many studies have brought the issues ailing our curricula, delivery, monitoring and assessment. Govt. of India, (via MHRD, UGC, NBA,…) has initiated several steps to bring improvement in quality of higher education and training, such as National Skills Qualification Framework, making accreditation of institutions mandatory in order to receive Govt. grants, and so on. Moreover, Outcome-based Education and Training (OBET) has also been mandated and encouraged in the teaching/learning institutions. MHRD, UGC and NBAhas made accreditation of schools, colleges and universities mandatory w.e.f Jan 2014. Outcome-based Education and Training (OBET) approach is learner-centric, whereas the traditional approach has been teacher-centric. OBET is a process which involves the re-orientation/restructuring the curriculum, implementation, assessment/measurements of educational goals, and achievement of higher order learning, rather than merely clearing/passing the university examinations. OBET aims to bring about these desired changes within the students, by increasing knowledge, developing skills, influencing attitudes and creating social-connect mind-set. This approach has been adopted by several leading universities and institutions around the world in advanced countries. Objectives of this paper is to highlight the issues concerning quality in higher education and quality frameworks, to deliberate on the various education and training models, to explain the outcome-based education and assessment processes, to provide an understanding of the NAAC and outcome-based accreditation criteria and processes and to share best-practice outcomes-based accreditation system and process.

Keywords: learning outcomes, curriculum development, pedagogy, outcome based education

Procedia PDF Downloads 524
5765 Analyzing Tools and Techniques for Classification In Educational Data Mining: A Survey

Authors: D. I. George Amalarethinam, A. Emima

Abstract:

Educational Data Mining (EDM) is one of the newest topics to emerge in recent years, and it is concerned with developing methods for analyzing various types of data gathered from the educational circle. EDM methods and techniques with machine learning algorithms are used to extract meaningful and usable information from huge databases. For scientists and researchers, realistic applications of Machine Learning in the EDM sectors offer new frontiers and present new problems. One of the most important research areas in EDM is predicting student success. The prediction algorithms and techniques must be developed to forecast students' performance, which aids the tutor, institution to boost the level of student’s performance. This paper examines various classification techniques in prediction methods and data mining tools used in EDM.

Keywords: classification technique, data mining, EDM methods, prediction methods

Procedia PDF Downloads 117
5764 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 663
5763 Method to Create Signed Word - Application in Teaching and Learning Vietnamese Sign Language

Authors: Nguyen Thi Kim Thoa

Abstract:

Vietnam currently has about two million five hundred deaf/hard of hearing people. Although the issue of Vietnamese Sign Language (VSL) education has received attention from the State, there are still many issues that need to be resolved, such as policies, teacher training in both knowledge and teaching methods, education programs, and textbook compilation. Furthermore, the issue of research on VSL has not yet attracted the attention of linguists. Using the quantitative description method, the article will analyze, synthesize, and compare to find methods to create signed words in VSL, such as based on external shape characteristics, operational characteristics, operating methods, and basic meanings, from which we can see the special nature of signed words, the division of word types and the morphological meaning of creating new words through sign methods. From the results of this research, the aspect of ‘visual culture’ will be clarified in Vietnamese Deaf Culture. Through that, we also develop a number of vocabulary teaching methods (such as teaching vocabulary through a group of methods of forming signed words, teaching vocabulary using mind maps, and teaching vocabulary through culture...), with the aim of further improving the effectiveness of teaching and learning VSL in Vietnam. The research results also provide deaf people in Vietnam with a scientific and effective method of learning vocabulary, helping them quickly integrate into the community. The article will be a useful reference for linguists who want to research VSL.

Keywords: Vietnamese sign language (VSL), signed word, teaching, method

Procedia PDF Downloads 36
5762 An Ensemble Learning Method for Applying Particle Swarm Optimization Algorithms to Systems Engineering Problems

Authors: Ken Hampshire, Thomas Mazzuchi, Shahram Sarkani

Abstract:

As a subset of metaheuristics, nature-inspired optimization algorithms such as particle swarm optimization (PSO) have shown promise both in solving intractable problems and in their extensibility to novel problem formulations due to their general approach requiring few assumptions. Unfortunately, single instantiations of algorithms require detailed tuning of parameters and cannot be proven to be best suited to a particular illustrative problem on account of the “no free lunch” (NFL) theorem. Using these algorithms in real-world problems requires exquisite knowledge of the many techniques and is not conducive to reconciling the various approaches to given classes of problems. This research aims to present a unified view of PSO-based approaches from the perspective of relevant systems engineering problems, with the express purpose of then eliciting the best solution for any problem formulation in an ensemble learning bucket of models approach. The central hypothesis of the research is that extending the PSO algorithms found in the literature to real-world optimization problems requires a general ensemble-based method for all problem formulations but a specific implementation and solution for any instance. The main results are a problem-based literature survey and a general method to find more globally optimal solutions for any systems engineering optimization problem.

Keywords: particle swarm optimization, nature-inspired optimization, metaheuristics, systems engineering, ensemble learning

Procedia PDF Downloads 98
5761 Male Sex Workers’ Constructions of Selling Sex in South Africa

Authors: Tara Panday, Despina Learmonth

Abstract:

Sex work is often constructed as being an interaction between male clients and female sex workers. As a result, street-based male sex workers are continuously overlooked in the South African literature. This qualitative study explored male sex workers’ subjective experiences and constructions of their male clients’ identities and the client-sex worker relationship. This research was conducted from a social-constructionist perspective, which allowed for a deeper understanding of the reasons and context driving the choices and actions of male sex workers. Semi-structured face-to-face interviews were conducted with 10 South African men working as sex workers in Cape Town. Data was analysed through thematic analysis. The findings of the study construct the client-sex worker relationship in terms of a professional relationship, constrained choice, sexual identity and need, as well as companionship for pay, potentially highlighting underlying reasons for supply and demand. The data which emerged around the client-sex worker relationship and the clients’ identities also served to illuminate the power-dynamics in the client-sex worker relationship. This data increases insight into the exploitation and disempowerment experienced by male sex workers through verbal abuse, physical and sexual violence, and unfairly enforced laws and regulations. The findings of this study suggest that, in the context of South Africa, male sex workers' experiences of the client-sex worker relationship cannot be completely understood without considering the intersectionality of the triple stigmatisation of: the criminality of sex work, race, and the lack of economic power, which systematically maintains marginalization. Motivating for the Law Reform Commission to continue to review all emerging research may assist with guiding related policy and thereby, the provision of equal human rights and adequate health and social interventions for all sex workers in South Africa.

Keywords: human rights, prostitution, power relations, sex work

Procedia PDF Downloads 483
5760 The Effect of Satisfaction with the Internet on Online Shopping Attitude With TAM Approach Controlled By Gender

Authors: Velly Anatasia

Abstract:

In the last few decades extensive research has been conducted into information technology (IT) adoption, testing a series of factors considered to be essential for improved diffusion. Some studies analyze IT characteristics such as usefulness, ease of use and/or security, others focus on the emotions and experiences of users and a third group attempts to determine the importance of socioeconomic user characteristics such as gender, educational level and income. The situation is similar regarding e-commerce, where the majority of studies have taken for granted the importance of including these variables when studying e-commerce adoption, as these were believed to explain or forecast who buys or who will buy on the internet. Nowadays, the internet has become a marketplace suitable for all ages and incomes and both genders and thus the prejudices linked to the advisability of selling certain products should be revised. The objective of this study is to test whether the socioeconomic characteristics of experienced e-shoppers such as gender rally moderate the effect of their perceptions of online shopping behavior. Current development of the online environment and the experience acquired by individuals from previous e-purchases can attenuate or even nullify the effect of these characteristics. The individuals analyzed are experienced e-shoppers i.e. individuals who often make purchases on the internet. The Technology Acceptance Model (TAM) was broadened to include previous use of the internet and perceived self-efficacy. The perceptions and behavior of e-shoppers are based on their own experiences. The information obtained will be tested using questionnaires which were distributed and self-administered to respondent accustomed using internet. The causal model is estimated using structural equation modeling techniques (SEM), followed by tests of the moderating effect of socioeconomic variables on perceptions and online shopping behavior. The expected findings of this study indicated that gender moderate neither the influence of previous use of the internet nor the perceptions of e-commerce. In short, they do not condition the behavior of the experienced e-shopper.

Keywords: Internet shopping, age groups, gender, income, electronic commerce

Procedia PDF Downloads 337
5759 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case

Authors: Besma Khalfoun

Abstract:

In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.

Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition

Procedia PDF Downloads 11
5758 Reality Shock Affecting the Motivation to Work of New Flight Attendants: An Exploratory Qualitative Study of Flight Attendants Who Left Their Jobs Early

Authors: Hiromi Takafuji

Abstract:

Flight attendant:FA is one of popular occupation, especially in Asian countries, and the decision to be hired is made after clearing a high multiplier. On the other hand, immediately after joining the company, they experience unique stress due to the fact that the organization requires them to perform security and customer service duties in a highly specialized and limited space and time. As a result, despite the high level of difficulty in joining the company, many new recruits retire early at a high rate. It is commonly said that 30% of new graduates leave the company within three years in Japan and speculated that Reality Shock:RS is one of the causes of this. RS is that newcomers experience refers to the stress caused by the difference between pre-employment expectations and post-employment reality. The purpose of this study was to elucidate the mechanism by which the expertise required of new FA and the expectation of expertise held by each of them cause reality shock, which affects motivation and the decision to leave. This study identified the professionalism required of new FA and the impact of that expectation for professionalism on RS through an exploratory study of the experiences and psychological processes of FA who left within three years. Semi-structured in-depth interviews were conducted with five FA who left a major Japanese airline at an early stage, and their experiences were categorized, integrated, and classified by qualitative content analysis. They were chosen under a number of controlled conditions. Then two major findings emerged: first, that pre-employment expectations defining RS were hierarchical, and second, that training amplified expectations of professionalism, which strongly influenced early turnover. From these, this study generated a model of RS generative process model of FA that expectations are hierarchical and influential. This could contribute to the prevention of mental health deterioration by reality shock among new FA.

Keywords: reality shock, flight attendant, early turnover, qualitative study

Procedia PDF Downloads 82
5757 Implementation of Learning Disability Annual Review Clinics to Ensure Good Patient Care, Safety, and Equality in Covid-19: A Two Pass Audit in General Practice

Authors: Liam Martin, Martha Watson

Abstract:

Patients with learning disabilities (LD) are at increased risk of physical and mental illness due to health inequality. To address this, NICE recommends that people from the age of 14 with a learning disability should have an annual LD health check. This consultation should include a holistic review of the patient’s physical, mental and social health needs with a view of creating an action plan to support the patient’s care. The expected standard set by the Quality and Outcomes Framework (QOF) is that each general practice should review at least 75% of their LD patients annually. During COVID-19, there have been barriers to primary care, including health anxiety, the shift to online general practice and the increase in GP workloads. A surgery in North London wanted to assess whether they were falling short of the expected standard for LD patient annual reviews in order to optimize care post Covid-19. A baseline audit was completed to assess how many LD patients were receiving their annual reviews over the period of 29th September 2020 to 29th September 2021. This information was accessed using EMIS Web Health Care System (EMIS). Patients included were aged 14 and over as per QOF standards. Doctors were not notified of this audit taking place. Following the results of this audit, the creation of learning disability clinics was recommended. These clinics were recommended to be on the ground floor and should be a dedicated time for LD reviews. A re-audit was performed via the same process 6 months later in March 2022. At the time of the baseline audit, there were 71 patients aged 14 and over that were on the LD register. 54% of these LD patients were found to have documentation of an annual LD review within the last 12 months. None of the LD patients between the ages of 14-18 years old had received their annual review. The results were discussed with the practice, and dedicated clinics were set up to review their LD patients. A second pass of the audit was completed 6 months later. This showed an improvement, with 84% of the LD patients registered at the surgery now having a documented annual review within the last 12 months. 78% of the patients between the ages of 14-18 years old had now been reviewed. The baseline audit revealed that the practice was not meeting the expected standard for LD patient’s annual health checks as outlined by QOF, with the most neglected patients being between the ages of 14-18. Identification and awareness of this vulnerable cohort is important to ensure measures can be put into place to support their physical, mental and social wellbeing. Other practices could consider an audit of their annual LD health checks to make sure they are practicing within QOF standards, and if there is a shortfall, they could consider implementing similar actions as used here; dedicated clinics for LD patient reviews.

Keywords: COVID-19, learning disability, learning disability health review, quality and outcomes framework

Procedia PDF Downloads 85
5756 EFL Learners’ Perceptions in Using Online Tools in Developing Writing Skills

Authors: Zhikal Qadir Salih, Hanife Bensen

Abstract:

As the advent of modern technology continues to make towering impacts on everything, its relevance permeates to all spheres, language learning, and writing skills in particular not an exception. This study aimed at finding out how EFL learners perceive online tools to improve their writing skills. The study was carried out at Tishk University. Copies of the questionnaire were distributed to the participants, in order to elicit their perceptions. The collected data were subjected to descriptive and inferential statistics. The outcome revealed that the participants have positive perceptions about online tools in using them to enhance their writing skills. The study however found out that both gender and the class level of the participants do not make any significant difference in their perceptions about the use of online tools, as far as writing skill is concerned. Based on these outcomes, relevant recommendations were made.

Keywords: online tools, writing skills, EFL learners, language learning

Procedia PDF Downloads 102
5755 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques

Authors: Kishor T. Zingre, Seshadhri Srinivasan

Abstract:

Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.

Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates

Procedia PDF Downloads 114
5754 An Automated R-Peak Detection Method Using Common Vector Approach

Authors: Ali Kirkbas

Abstract:

R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.

Keywords: ECG, R-peak classification, common vector approach, machine learning

Procedia PDF Downloads 64
5753 Machine Learning and Internet of Thing for Smart-Hydrology of the Mantaro River Basin

Authors: Julio Jesus Salazar, Julio Jesus De Lama

Abstract:

the fundamental objective of hydrological studies applied to the engineering field is to determine the statistically consistent volumes or water flows that, in each case, allow us to size or design a series of elements or structures to effectively manage and develop a river basin. To determine these values, there are several ways of working within the framework of traditional hydrology: (1) Study each of the factors that influence the hydrological cycle, (2) Study the historical behavior of the hydrology of the area, (3) Study the historical behavior of hydrologically similar zones, and (4) Other studies (rain simulators or experimental basins). Of course, this range of studies in a certain basin is very varied and complex and presents the difficulty of collecting the data in real time. In this complex space, the study of variables can only be overcome by collecting and transmitting data to decision centers through the Internet of things and artificial intelligence. Thus, this research work implemented the learning project of the sub-basin of the Shullcas river in the Andean basin of the Mantaro river in Peru. The sensor firmware to collect and communicate hydrological parameter data was programmed and tested in similar basins of the European Union. The Machine Learning applications was programmed to choose the algorithms that direct the best solution to the determination of the rainfall-runoff relationship captured in the different polygons of the sub-basin. Tests were carried out in the mountains of Europe, and in the sub-basins of the Shullcas river (Huancayo) and the Yauli river (Jauja) with heights close to 5000 m.a.s.l., giving the following conclusions: to guarantee a correct communication, the distance between devices should not pass the 15 km. It is advisable to minimize the energy consumption of the devices and avoid collisions between packages, the distances oscillate between 5 and 10 km, in this way the transmission power can be reduced and a higher bitrate can be used. In case the communication elements of the devices of the network (internet of things) installed in the basin do not have good visibility between them, the distance should be reduced to the range of 1-3 km. The energy efficiency of the Atmel microcontrollers present in Arduino is not adequate to meet the requirements of system autonomy. To increase the autonomy of the system, it is recommended to use low consumption systems, such as the Ashton Raggatt McDougall or ARM Cortex L (Ultra Low Power) microcontrollers or even the Cortex M; and high-performance direct current (DC) to direct current (DC) converters. The Machine Learning System has initiated the learning of the Shullcas system to generate the best hydrology of the sub-basin. This will improve as machine learning and the data entered in the big data coincide every second. This will provide services to each of the applications of the complex system to return the best data of determined flows.

Keywords: hydrology, internet of things, machine learning, river basin

Procedia PDF Downloads 160
5752 Practice, Observation, and Gender Effects on Students’ Entrepreneurial Skills Development When Teaching through Entrepreneurship Is Adopted: Case of University of Tunis El Manar

Authors: Hajer Chaker Ben Hadj Kacem, Thouraya Slama, Néjiba El Yetim Zribi

Abstract:

This paper analyzes the effects of gender, affiliation, prior work experience, social work, and vicarious learning through family role models on entrepreneurial skills development by students when they have learned through the entrepreneurship method in Tunisia. Authors suggest that these variables enhance the development of students’ entrepreneurial skills when combined with teaching through entrepreneurship. The article assesses the impact of these combinations by comparing their effects on the development of thirteen students’ entrepreneurial competencies, namely entrepreneurial mindset, core self-evaluation, entrepreneurial attitude, entrepreneurial knowledge, creativity, financial literacy, managing ambiguity, marshaling of resources, planning, teaching methods, entrepreneurial teachers, innovative employee, and Entrepreneurial intention. Authors use a two-sample independent t-test to make the comparison, and the results indicate that, when combined with teaching through the entrepreneurship method, students with prior work experience developed better six entrepreneurial skills; students with social work developed better three entrepreneurial skills, men developed better four entrepreneurial skills than women. However, all students developed their entrepreneurial skills through this practical method regardless of their affiliation and their vicarious learning through family role models.

Keywords: affiliation, entrepreneurial skills, gender, role models, social work, teaching through entrepreneurship, vicarious learning, work experience

Procedia PDF Downloads 110
5751 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 250
5750 Cigarette Smoke Detection Based on YOLOV3

Authors: Wei Li, Tuo Yang

Abstract:

In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.

Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction

Procedia PDF Downloads 87
5749 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico

Authors: Ismene Ithai Bras-Ruiz

Abstract:

Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.

Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise

Procedia PDF Downloads 128
5748 Facilitated Massive Open Online Course (MOOC) Based Teacher Professional Development in Kazakhstan: Connectivism-Oriented Practices

Authors: A. Kalizhanova, T. Shelestova

Abstract:

Teacher professional development (TPD) in Kazakhstan has followed a fairly standard format for centuries, with teachers learning new information from a lecturer and being tested using multiple-choice questions. In the online world, self-access courses have become increasingly popular. Due to their extensive multimedia content, peer-reviewed assignments, adaptable class times, and instruction from top university faculty from across the world, massive open online courses (MOOCs) have found a home in Kazakhstan's system for lifelong learning. Recent studies indicate the limited use of connectivism-based tools such as discussion forums by Kazakhstani pre-service and in-service English teachers, whose professional interests are limited to obtaining certificates rather than enhancing their teaching abilities and exchanging knowledge with colleagues. This paper highlights the significance of connectivism-based tools and instruments, such as MOOCs, for the continuous professional development of pre- and in-service English teachers, facilitators' roles, and their strategies for enhancing trainees' conceptual knowledge within the MOOCs' curriculum and online learning skills. Reviewing the most pertinent papers on Connectivism Theory, facilitators' function in TPD, and connectivism-based tools, such as MOOCs, a code extraction method was utilized. Three experts, former active participants in a series of projects initiated across Kazakhstan to improve the efficacy of MOOCs, evaluated the excerpts and selected the most appropriate ones to propose the matrix of teacher professional competencies that can be acquired through MOOCs. In this paper, we'll look at some of the strategies employed by course instructors to boost their students' English skills and knowledge of course material, both inside and outside of the MOOC platform. Participants' interactive learning contributed to their language and subject conceptual knowledge and prepared them for peer-reviewed assignments in the MOOCs, and this approach of small group interaction was given to highlight the outcomes of participants' interactive learning. Both formal and informal continuing education institutions can use the findings of this study to support teachers in gaining experience with MOOCs and creating their own online courses.

Keywords: connectivism-based tools, teacher professional development, massive open online courses, facilitators, Kazakhstani context

Procedia PDF Downloads 80
5747 Developing and Enacting a Model for Institutional Implementation of the Humanizing Pedagogy: Case Study of Nelson Mandela University

Authors: Mukhtar Raban

Abstract:

As part of Nelson Mandela University’s journey of repositioning its learning and teaching agenda, the university adopted and foregrounded a humanizing pedagogy-aligning with institutional goals of critically transforming the academic project. The university established the Humanizing Pedagogy Praxis and Research Niche (HPPRN) as a centralized hub for coordinating institutional work exploring and advancing humanizing pedagogies and tasked the unit with developing and enacting a model for humanizing pedagogy exploration. This investigation endeavored to report on the development and enactment of a model that sought to institutionalize a humanizing pedagogy at a South African university. Having followed a qualitative approach, the investigation presents the case study of Nelson Mandela University’s HPPRN and the model it subsequently established and enacted for the advancement towards a more common institutional understanding, interpretation and application of the humanizing pedagogy. The study adopted an interpretive lens for analysis, complementing the qualitative approach of the investigation. The primary challenge that confronted the HPPRN was the development of a ‘living model’ that had to complement existing institutional initiatives while accommodating a renewed spirit of critical reflection, innovation and research of continued and new humanizing pedagogical exploration and applications. The study found that the explicit consideration of tenets of humanizing and critical pedagogies in underpinning and framing the HPPRN Model contributed to the sense of ‘lived’ humanizing pedagogy experiences during enactment. The multi-leveled inclusion of critical reflection in the development and enactment stages was found to further the processes of praxis employed at the university, which is integral to the advancement of humanizing and critical pedagogies. The development and implementation of a model that seeks to institutionalize the humanizing pedagogy at a university rely not only on sound theoretical conceptualization but also on the ‘richness of becoming more human’ explicitly expressed and encountered in praxes and application.

Keywords: humanizing pedagogy, critical pedagogy, institutional implementation, praxis

Procedia PDF Downloads 167
5746 Facilitating Social Connections with Neurodivergent Adolescents: An Exploratory Study of Youth Experiences in a Social Group Based on Dungeons and Dragons

Authors: Jonathon Smith, Alba Agostino

Abstract:

Autism, also referred to as autism spectrum disorder (ASD), is commonly associated with difficulties in social and communication skills. Other characteristics common to autistic individuals include repetitive behaviours, difficulties adhering to routine, as well as paying attention. Recent findings indicate that autism is the fastest-growing neurodevelopmental disorder in North America, yet programming aimed at improving the quality of autistic individual’s real-world social interactions is limited. Although there are social skills programs for autistic youth, participation appears to improve social knowledge, but that knowledge does not improve social competence or transfer to the participant’s daily social interactions. Peers are less likely to interact with autistic people based thin slice judgements, meaning that even when an autistic youth has successfully completed a social skills program, they most likely will still be rejected by peers and not have a social group to participate in. Recently, many researchers are exploring therapeutic interventions using Dungeon and Dragons (D&D) for conditions such as social anxiety, loneliness, and identity exploration. D&D is a table-top role-playing game (TTRPG) based on social play experience where the players must communicate, plan, negotiate, and compromise with other players to achieve a shared goal. The game encourages players to assume the role of their character and act out their play within the rules of the game with the guidance of the games dungeon master. The popularity Dungeons and Dragons has increased at a rapid rate, and many suggest that there social-emotional benefits of joining and participating in these types of gaming experiences, however this is an under researched topic and studies examining the benefits of such games is lacking in the field. The main purpose of this exploratory study is to examine the autistic youth’s experiences of participating in a D&D club. Participants of this study were four high functioning autistic youth between the ages of 14-18 (average age – 16) enrolled in a D&D Club that was specifically designed for neurodiverse youth. The youth participation with the club ranged from 4 months to 8 months. All participants completed a 30–40-minute semi-structured interview where they were able to express their perceptions as participants of the D&D club. Preliminary findings suggest that the game provided a place for the youth to engage in authentic social interactions. Additionally, preliminary results suggest that the youth report being in a positive space with other neurodivergent youth created an atmosphere where they felt confident and could connect with others. The findings from this study will aid clinicians, researchers, and educators in developing programming aimed at improving social interactions and connections for autistic youth.

Keywords: autism, social connection, dungeons and dragons, neurodivergent affirming space

Procedia PDF Downloads 27
5745 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 141
5744 Existential Concerns and Related Manifestations of Higher Learning Institution Students in Ethiopia: A Case Study of Aksum University

Authors: Ezgiamn Abraha Hagos

Abstract:

The primary objective of this study was to assess the existential concerns and related manifestations of higher learning students by investigating their perception of meaningful life and evaluating their purpose in life. In addition, this study was aimed at assessing the manifestations of existential pain among the students. Data was procured using Purpose in Life test (PIL), Well-being Manifestation Measure Scale (WBMMS), and focus group discussion. The total numbers of participants was 478, of which 299 were males and the remaining 179 females. They were selected using a simple random sampling technique. Data was analyzed using two ways. SPSS-version 20 was used to analyze the quantitative part, and narrative modes were utilized to analyze the qualitative data. The research finding revealed that students are involved in risk taking behaviors like alcohol ingestion, drug use, Khat (chat) chewing, and unsafe sex. In line with this it is found out that life in campus was perceived as temporary and as a result the sense of hedonism was prevalent at any cost. Of course, the most important thing for the majority of the students was to know about the purpose of life. Regarding WBMMS, there was no statistically significant difference among males and females and with the exception of the sub-scale of happiness; in all the sub-scales the mean is low. At last, assisting adolescents to develop holistically in terms of body, mind, and spirit is recommended.

Keywords: existential concerns, higher learning institutions, Ethiopia, Aksum University

Procedia PDF Downloads 427
5743 Connecting Teachers in a Web-Based Professional Development Community in Crisis Time: A Knowledge Building Approach

Authors: Wei Zhao

Abstract:

The pandemic crisis disrupted normal classroom practices so that the constraints of the traditional practice became apparent. This turns out to be new opportunities for technology-based learning and teaching. However, how the technology supports the preschool teachers go through this sudden crisis and how preschool teachers conceived of the use of technology, appropriate and design technological artifacts as a mediator of knowledge construction in order to suit young children’s literacy level are rarely explored. This study addresses these issues by looking at the influence of a web-supported teacher community on changes/shifts in preschool teachers’ epistemological beliefs and practices. This teachers’ professional development community was formulated before the pandemic time and developed virtually throughout the home-based learning caused by Covid-19. It served as a virtual and asynchronous community for those teachers to collaboratively plan for and conduct online lessons using the knowledge-building approach for the purpose of sustaining children’s learning curiosity and opening up new learning opportunities during the lock-down period. The knowledge-building approach helps to increase teachers’ collective responsibility to collaboratively work on shared educational goals in the teacher community and awareness of noticing new ideas or innovations in their classroom. Based on the data collected across five months during and after the lock-down period and the activity theory, results show a dynamic interplay between the evolution of the community culture, the growth of teacher community and teachers’ identity transformation and professional development. Technology is useful in this regard not only because it transforms the geographical distance and new gathering guidelines after the outbreak of pandemic into new ways of communal communication and collaboration. More importantly, while teachers selected, monitored and adapted the technology, it acts as a catalyst for changes in teachers’ old teaching practices and epistemological dispositions.

Keywords: activity theory, changes in epistemology and practice, knowledge building, web-based teachers’ professional development community

Procedia PDF Downloads 182