Search results for: quest based learning
28828 Tackling the Digital Divide: Enhancing Video Consultation Access for Digital Illiterate Patients in the Hospital
Authors: Wieke Ellen Bouwes
Abstract:
This study aims to unravel which factors enhance accessibility of video consultations (VCs) for patients with low digital literacy. Thirteen in-depth interviews with patients, hospital employees, eHealth experts, and digital support organizations were held. Patients with low digital literacy received in-home support during real-time video consultations and are observed during the set-up of these consultations. Key findings highlight the importance of patient acceptance, emphasizing video consultations benefits and avoiding standardized courses. The lack of a uniform video consultation system across healthcare providers poses a barrier. Familiarity with support organizations – to support patients in usage of digital tools - among healthcare practitioners enhances accessibility. Moreover, considerations regarding the Dutch General Data Protection Regulation (GDPR) law influence support patients receive. Also, provider readiness to use video consultations influences patient access. Further, alignment between learning styles and support methods seems to determine abilities to learn how to use video consultations. Future research could delve into tailored learning styles and technological solutions for remote access to further explore effectiveness of learning methods.Keywords: video consultations, digital literacy skills, effectiveness of support, intra- and inter-organizational relationships, patient acceptance of video consultations
Procedia PDF Downloads 7428827 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 38628826 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 4128825 Values in Higher Education: A Case Study of Higher Education Students
Authors: Bahadır Erişti
Abstract:
Values are the behavioral procedures of society based communication and interaction process that includes social and cultural backgrounds. The policy of learning and teaching in higher education is oriented towards constructing knowledge and skills, based on theorist framework of cognitive and psychomotor aspects. This approach makes people not to develop generosity, empathy, affection, solidarity, justice, equality and so on. But the sensorial gains of education system provide the integrity of society interaction. This situation carries out the necessity of values education’s in higher education. The current study aims to consider values education from the viewpoint of students in higher education. Within the framework of the current study, an open ended survey based scenario of higher education students was conducted with the students’ social, cognitive, affective and moral developments. In line with this purpose, the following situations of the higher education system were addressed based on the higher education students’ viewpoint: The views of higher education students’ regarding values that are tried to be gained at the higher education system; The higher education students’ suggestions regarding values education at the higher education system; The views of the higher education students’ regarding values that are imposed at the higher education system. In this study, descriptive qualitative research method was used. The study group of the research is composed of 20 higher education postgraduate students at Curriculum and Instruction Department of Educational Sciences at Anadolu University. An open-ended survey was applied for the purpose of collecting qualitative data. As a result of the study, value preferences, value judgments and value systems of the higher education students were constructed on prioritizes based on social, cultural and economic backgrounds and statues. Multi-dimensional process of value education in higher education need to be constructed on higher education-community-cultural background cooperation. Thus, the act of judgement upon values between higher education students based on the survey seems to be inherent in the system of education itself. The present study highlights the students’ value priorities and importance of values in higher education. If the purpose of the higher education system gains on values, it is possible to enable society to promote humanity.Keywords: higher education, value, values education, values in higher education
Procedia PDF Downloads 34028824 Development of Social Competence in the Preparation and Continuing Training of Adult Educators
Authors: Genute Gedviliene, Vidmantas Tutlys
Abstract:
The aim of this paper is to reveal the deployment and development of the social competence in the higher education programmes of adult education and in the continuing training and competence development of the andragogues. There will be compared how the issues of cooperation and communication in the learning and teaching processes are treated in the study programmes and in the courses of continuing training of andragogues. Theoretical and empirical research methods were combined for research analysis. For the analysis the following methods were applied: 1) Literature and document analysis helped to highlight the communication and cooperation as fundamental phenomena of the social competence, it’s important for the adult education in the context of digitalization and globalization. There were also analyzed the research studies on the development of social competence in the field of andragogy, as well as on the place and weight of the social competence in the overall competence profile of the andragogue. 2) The empirical study is based on questionnaire survey method. The population of survey consists of 240 students of bachelor and master degree studies of andragogy in Lithuania and of 320 representatives of the different bodies and institutions involved in the continuing training and professional development of the adult educators in Lithuania. The themes of survey questionnaire were defined on the basis of findings of the literature review and included the following: 1) opinions of the respondents on the role and place of a social competence in the work of andragogue; 2) opinions of the respondents on the role and place of the development of social competence in the curricula of higher education studies and continuing training courses; 3) judgements on the implications of the higher education studies and courses of continuing training for the development of social competence and it’s deployment in the work of andragogue. Data analysis disclosed a wide range of ways and modalities of the deployment and development of social competence in the preparation and continuing training of the adult educators. Social competence is important for the students and adult education providers not only as the auxiliary capability for the communication and transfer of information, but also as the outcome of collective learning leading to the development of new capabilities applied by the learners in the learning process, their professional field of adult education and their social life. Equally so, social competence is necessary for the effective adult education activities not only as an auxiliary capacity applied in the teaching process, but also as a potential for improvement, development and sustainability of the didactic competence and know-how in this field. The students of the higher education programmes in the field of adult education treat social competence as important generic capacity important for the work of adult educator, whereas adult education providers discern the concrete issues of application of social competence in the different processes of adult education, starting from curriculum design and ending with assessment of learning outcomes.Keywords: adult education, andragogues, social competence, curriculum
Procedia PDF Downloads 14328823 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques
Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas
Abstract:
This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.Keywords: hit song science, product life cycle, machine learning, radio
Procedia PDF Downloads 15628822 Impact of Ethnoscience-Based Teaching Approach: Thinking Relevance, Effectiveness and Learner Retention in Physics Concepts of Optics
Authors: Rose C.Anamezie, Mishack T. Gumbo
Abstract:
Physics learners’ poor retention, which culminates in poor achievement due to teaching approaches that are unrelated to learners’ in non-Western cultures, warranted the study. The tenet of this study was to determine the effectiveness of the ethnoscience-based teaching (EBT) approach on learners’ retention in the Physics concept of Optics in the Awka Education zone of Anambra State- Nigeria. Two research questions and three null hypotheses tested at a 0.05 level of significance guided the study. The design adopted for the study was Quasi-experimental. Specifically, a non-equivalent control group design was adopted. The population for the study was 4,825 SS2 Physics learners in the zone. 160 SS2 learners were sampled using purposive and random sampling. The experimental group was taught rectilinear propagation of light (RPL) using the EBT approach, while the control group was taught the same topic using the lecture method. The instrument for data collection was the 50 Physics Retention Test (PRT) which was validated by three experts and tested for reliability using Kuder-Richardson’s formula-20, which yielded coefficients of 0.81. The data were analysed using mean, standard deviation and analysis of co-variance (p< .05). The results showed higher retention for the use of the EBT approach than the lecture method, while there was no significant gender-based factor in the learners’ retention in Physics. It was recommended that the EBT approach, which bridged the gender gap in Physics retention, be adopted in secondary school teaching and learning since it could transform science teaching, enhance learners’ construction of new science concepts based on their existing knowledge and bridge the gap between Western science and learners’ worldviews.Keywords: Ethnoscience-based teaching, optics, rectilinear propagation of light, retention
Procedia PDF Downloads 8328821 Music Training as an Innovative Approach to the Treatment of Language Disabilities
Authors: Jonathan Bolduc
Abstract:
Studies have demonstrated the effectiveness of music training approaches to help children with language disabilities. Because music is closely associated with a number of cognitive functions, including language, it has been hypothesized that musical skills transfer to other domains. Research suggests that music training strengthens basic auditory processing skills in dyslexic children and may ameliorate phonological deficits. Furthermore, music instruction has the particular advantage of being non-literacy-based, thus removing the frustrations that can be associated with reading and writing activities among children with specific learning disabilities. In this study, we assessed the effect of implementing an intensive music program on the development of language skills (phonological and reading) in 4- to 9-year-old children. Seventeen children (N=17) participated in the study. The experiment took place over 6 weeks in a controlled environment. Eighteen lessons of 40 minutes were offered during this period by two music specialists. The Dalcroze, Orff, and Kodaly approaches were used. A series of qualitative measures were implemented to document the contribution of music training to this population. Currently, the data is being analyzed. The first results show that learning music seems to significantly improve verbal memory. We already know that language disabilities are considered one of the main causes of school dropout as well as later professional and social failure. We aim to corroborate that an integrated music education program can provide children with language disabilities with the same opportunities to develop and succeed in school as their classmates. Scientifically, the results will contribute to advance the knowledge by identifying the more effective music education strategies to improve the overall development of children worldwide.Keywords: music education, music, art education, language diasabilities
Procedia PDF Downloads 23228820 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 9428819 Didacticization of Code Switching as a Tool for Bilingual Education in Mali
Authors: Kadidiatou Toure
Abstract:
Mali has started experimentation of teaching the national languages at school through the convergent pedagogy in 1987. Then, it is in 1994 that it will become widespread with eleven of the thirteen former national languages used at primary school. The aim was to improve the Malian educational system because the use of French as the only medium of instruction was considered a contributing factor to the significant number of student dropouts and the high rate of repetition. The Convergent pedagogy highlights the knowledge acquired by children at home, their vision of the world and especially the knowledge they have of their mother tongue. That pedagogy requires the use of a specific medium only during classroom practices and teachers have been trained in this sense. The specific medium depends on the learning content, which sometimes is French, other times, it is the national language. Research has shown that bilingual learners do not only use the required medium in their learning activities, but they code switch. It is part of their learning processes. Currently, many scholars agree on the importance of CS in bilingual classes, and teachers have been told about the necessity of integrating it into their classroom practices. One of the challenges of the Malian bilingual education curriculum is the question of ‘effective languages management’. Theoretically, depending on the classrooms, an average have been established for each of the involved language. Following that, teachers make use of CS differently, sometimes, it favors the learners, other times, it contributes to the development of some linguistic weaknesses. The present research tries to fill that gap through a tentative model of didactization of CS, which simply means the practical management of the languages involved in the bilingual classrooms. It is to know how to use CS for effective learning. Moreover, the didactization of CS tends to sensitize the teachers about the functional role of CS so that they may overcome their own weaknesses. The overall goal of this research is to make code switching a real tool for bilingual education. The specific objectives are: to identify the types of CS used during classroom activities to present the functional role of CS for the teachers as well as the pupils. to develop a tentative model of code-switching, which will help the teachers in transitional classes of bilingual schools to recognize the appropriate moment for making use of code switching in their classrooms. The methodology adopted is a qualitative one. The study is based on recorded videos of teachers of 3rd year of primary school during their classroom activities and interviews with the teachers in order to confirm the functional role of CS in bilingual classes. The theoretical framework adopted is the typology of CS proposed by Poplack (1980) to identify the types of CS used. The study reveals that teachers need to be trained on the types of CS and the different functions they assume and on the consequences of inappropriate use of language alternation.Keywords: bilingual curriculum, code switching, didactization, national languages
Procedia PDF Downloads 7128818 Second Language Development with an Intercultural Approach: A Pilot Program Applied to Higher Education Students from a Escuela Normal in Atequiza, Mexico
Authors: Frida C. Jaime Franco, C. Paulina Navarro Núñez, R. Jacob Sánchez Nájera
Abstract:
The importance of developing multi-language abilities in our global society is noteworthy. However, the necessity, interest, and consciousness of the significance that the development of another language represents, apart from the mother tongue, is not always the same in all contexts as it is in multicultural communities, especially in rural higher education institutions immersed in small communities. Leading opportunities for digital interaction among learners from Mexico and abroad partners represents scaffolding towards, not only language skills development but also intercultural communicative competences (ICC). This study leads us to consider what should be the best approach to work while applying a program of ICC integrated into the practice of EFL. While analyzing the roots of the language, it is possible to obtain the main objective of learning another language, to communicate with a functional purpose, as well as attaching social practices to the learning process, giving a result of functionality and significance to the target language. Hence, the collateral impact that collaborative learning leads to, aims to contribute to a better global understanding as well as a means of self and other cultural awareness through intercultural communication. While communicating through the target language by online collaboration among students in platforms of long-distance communication, language is used as a tool of interaction to broaden students’ perspectives reaching a substantial improvement with the help of their differences. This process should consider the application of the target language in the inquiry of sociocultural information, expecting the learners to integrate communicative skills to handle cultural differentiation at the same time they apply the knowledge of their target language in a real scenario of communication, despite being through virtual resources.Keywords: collaborative learning, communicative approach, culture, interaction, interculturalism, target language, virtual partnership
Procedia PDF Downloads 13028817 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 17228816 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition
Authors: A. Degale Desta, Tamirat Kebamo
Abstract:
Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition
Procedia PDF Downloads 1228815 Effects of an Educative Model in Socially Responsible Behavior and Other Psychological Variables
Authors: Gracia V. Navarro, Maria V. Gonzalez, Carlos G. Reed
Abstract:
The eudaimonic perspective in philosophy and psychology suggests that a good life is closely related to developing oneself in order to contribute to the well-being and happiness of other people and of the world as a whole. Educational psychology can help to achieve this through the design and validation of educative models. Since 2004, the University of Concepcion and other Chilean universities apply an educative model to train socially responsible professionals, people that in the exercise of their profession contribute to generate equity for the development and assess the impacts of their decisions, opting for those that serve the common good. The main aim is to identify if a relationship exists between achieved learning, attitudes toward social responsibility, self-attribution of socially responsible behavior, value type, professional behavior observed and, participation in a specific model to train socially responsible (SR) professionals. The Achieved Learning and Attitudes Toward Social Responsibility Questionnaire, interview with employers and Values Questionnaire and Self-attribution of SR Behavior Questionnaire is applied to 394 students and graduates, divided into experimental and control groups (trained and not trained under the educative model), in order to identify the professional behavior of the graduates. The results show that students and graduates perceive cognitive, affective and behavioral learning, with significant differences in attitudes toward social responsibility and self-attribution of SR behavior, between experimental and control. There are also differences in employers' perceptions about the professional practice of those who were trained under the model and those who were not. It is concluded that the educative model has an impact on the learning of social responsibility and educates for a full life. It is also concluded that it is necessary to identify mediating variables of the model effect.Keywords: educative model, good life, professional social responsibility, values
Procedia PDF Downloads 26428814 STEM Curriculum Development Using Robotics with K-12 Students in Brazil
Authors: Flavio Campos
Abstract:
This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly.Keywords: STEM curriculum, educational robotics, constructionist approach, education and technology
Procedia PDF Downloads 34228813 Teaching and Learning Physics via GPS and WikiS
Authors: Hashini E. Mohottala
Abstract:
We report the combine use of Wikispaces (WikiS) and Group Problem Solving (GPS) sessions conducted in the introductory level physics classes. As a part of this new teaching tool, some essay type problems were posted on the WikiS in weekly basis and students were encouraged to participate in problem solving without providing numerical final answers but the steps. Wikispace is used as a platform for students to meet online and create discussions. Each week students were further evaluated on problem solving skills opening up more opportunity for peer interaction through GPS. Each group was given a different problem to solve and the answers were graded. Students developed a set of skills in decision-making, problem solving, communication, negotiation, critical and independent thinking and teamwork through the combination of WikiS and GPS.Keywords: group problem solving (GPS), wikispace (WikiS), physics education, learning
Procedia PDF Downloads 41828812 Motivation and Multiglossia: Exploring the Diversity of Interests, Attitudes, and Engagement of Arabic Learners
Authors: Anna-Maria Ramezanzadeh
Abstract:
Demand for Arabic language is growing worldwide, driven by increased interest in the multifarious purposes the language serves, both for the population of heritage learners and those studying Arabic as a foreign language. The diglossic, or indeed multiglossic nature of the language as used in Arabic speaking communities however, is seldom represented in the content of classroom courses. This disjoint between the nature of provision and students’ expectations can severely impact their engagement with course material, and their motivation to either commence or continue learning the language. The nature of motivation and its relationship to multiglossia is sparsely explored in current literature on Arabic. The theoretical framework here proposed aims to address this gap by presenting a model and instruments for the measurement of Arabic learners’ motivation in relation to the multiple strands of the language. It adopts and develops the Second Language Motivation Self-System model (L2MSS), originally proposed by Zoltan Dörnyei, which measures motivation as the desire to reduce the discrepancy between leaners’ current and future self-concepts in terms of the second language (L2). The tripartite structure incorporates measures of the Current L2 Self, Future L2 Self (consisting of an Ideal L2 Self, and an Ought-To Self), and the L2 Learning Experience. The strength of the self-concepts is measured across three different domains of Arabic: Classical, Modern Standard and Colloquial. The focus on learners’ self-concepts allows for an exploration of the effect of multiple factors on motivation towards Arabic, including religion. The relationship between Islam and Arabic is often given as a prominent reason behind some students’ desire to learn the language. Exactly how and why this factor features in learners’ L2 self-concepts has not yet been explored. Specifically designed surveys and interview protocols are proposed to facilitate the exploration of these constructs. The L2 Learning Experience component of the model is operationalized as learners’ task-based engagement. Engagement is conceptualised as multi-dimensional and malleable. In this model, situation-specific measures of cognitive, behavioural, and affective components of engagement are collected via specially designed repeated post-task self-report surveys on Personal Digital Assistant over multiple Arabic lessons. Tasks are categorised according to language learning skill. Given the domain-specific uses of the different varieties of Arabic, the relationship between learners’ engagement with different types of tasks and their overall motivational profiles will be examined to determine the extent of the interaction between the two constructs. A framework for this data analysis is proposed and hypotheses discussed. The unique combination of situation-specific measures of engagement and a person-oriented approach to measuring motivation allows for a macro- and micro-analysis of the interaction between learners and the Arabic learning process. By combining cross-sectional and longitudinal elements with a mixed-methods design, the model proposed offers the potential for capturing a comprehensive and detailed picture of the motivation and engagement of Arabic learners. The application of this framework offers a number of numerous potential pedagogical and research implications which will also be discussed.Keywords: Arabic, diglossia, engagement, motivation, multiglossia, sociolinguistics
Procedia PDF Downloads 16628811 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management
Authors: A. Giannakopoulos, S. B. Buckley
Abstract:
Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.Keywords: critical thinking, knowledge management, mathematics, problem solving
Procedia PDF Downloads 59628810 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads
Authors: Riaan Kleyn
Abstract:
Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.Keywords: computer vision, wine grapes, machine learning, machine harvested grapes
Procedia PDF Downloads 9628809 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half
Authors: Said Fares, Mary Fares
Abstract:
It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.Keywords: failure rate, interactive learning, student engagement, CS1
Procedia PDF Downloads 30828808 Using Support Vector Machines for Measuring Democracy
Authors: Tommy Krieger, Klaus Gruendler
Abstract:
We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies.Keywords: democracy, democracy index, machine learning, support vector machines
Procedia PDF Downloads 37928807 Education of Purchasing Professionals in Austria: Competence Based View
Authors: Volker Koch
Abstract:
This paper deals with the education of purchasing professionals in Austria. In this education, equivalent and measurable criteria are collected in order to create a comparison. The comparison shows the problem. To make the aforementioned comparison possible, methodologies such as KODE-Competence Atlas or presentations in a matrix form are used. The result shows the content taught and whether there are any similarities or interesting differences in the current Austrian purchasers’ formations. Purchasing professionals learning competencies are also illustrated in the study result.Keywords: competencies, education, purchasing professional, technological-oriented
Procedia PDF Downloads 29728806 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing
Authors: Rida Kanwal, Wang Yuhui, Song Weiguo
Abstract:
Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior
Procedia PDF Downloads 2028805 Curriculum Transformation: Multidisciplinary Perspectives on ‘Decolonisation’ and ‘Africanisation’ of the Curriculum in South Africa’s Higher Education
Authors: Andre Bechuke
Abstract:
The years of 2015-2017 witnessed a huge campaign, and in some instances, violent protests in South Africa by students and some groups of academics advocating the decolonisation of the curriculum of universities. These protests have forced through high expectations for universities to teach a curriculum relevant to the country, and the continent as well as enabled South Africa to participate in the globalised world. To realise this purpose, most universities are currently undertaking steps to transform and decolonise their curriculum. However, the transformation process is challenged and delayed by lack of a collective understanding of the concepts ‘decolonisation’ and ‘africanisation’ that should guide its application. Even more challenging is lack of a contextual understanding of these concepts across different university disciplines. Against this background, and underpinned in a qualitative research paradigm, the perspectives of these concepts as applied by different university disciplines were examined in order to understand and establish their implementation in the curriculum transformation agenda. Data were collected by reviewing the teaching and learning plans of 8 faculties of an institution of higher learning in South Africa and analysed through content and textual analysis. The findings revealed varied understanding and use of these concepts in the transformation of the curriculum across faculties. Decolonisation, according to the faculties of Law and Humanities, is perceived as the eradication of the Eurocentric positioning in curriculum content and the constitutive rules and norms that control thinking. This is not done by ignoring other knowledge traditions but does call for an affirmation and validation of African views of the world and systems of thought, mixing it with current knowledge. For the Faculty of Natural and Agricultural Sciences, decolonisation is seen as making the content of the curriculum relevant to students, fulfilling the needs of industry and equipping students for job opportunities. This means the use of teaching strategies and methods that are inclusive of students from diverse cultures, and to structure the learning experience in ways that are not alien to the cultures of the students. For the Health Sciences, decolonisation of the curriculum refers to the need for a shift in Western thinking towards being more sensitive to all cultural beliefs and thoughts. Collectively, decolonisation of education thus entails that a nation must become independent with regard to the acquisition of knowledge, skills, values, beliefs, and habits. Based on the findings, for universities to successfully transform their curriculum and integrate the concepts of decolonisation and Africanisation, there is a need to contextually determine the meaning of the concepts generally and narrow them down to what they should mean to specific disciplines. Universities should refrain from considering an umbrella approach to these concepts. Decolonisation should be seen as a means and not an end. A decolonised curriculum should equally be developed based on the finest knowledge skills, values, beliefs and habits around the world and not limited to one country or continent.Keywords: Africanisation, curriculum, transformation, decolonisation, multidisciplinary perspectives, South Africa’s higher education
Procedia PDF Downloads 16228804 Differential Impact of Parenting on Mental Health Functioning of Pakistani Adolescents: A Cultural Perspective
Authors: Zahid Mahmood
Abstract:
Mental health problems in adolescents are said to be increasing tremendously, and a large proportion of adolescents are suffering from serious mental health problems that result in short and long term socio-emotional negative consequences. Contemporary clinical and school psychology is now focused on prevention rather than intervene in the mental health concerns of adolescents. Therefore, a wealth of literature is devoted to identify the risk and protective factors so that adolescents may be prevented and identified earlier. This quest has led to identify many risk factors including the early parent-child relationship. Parenting has a long last impact on the growth and development of an individual. If the parent-child relationship is secure and warm, the child tends to have a positive psychological outcome. On the other hand, if parenting is rejecting and distant, it may lead to more mental health problems. Keeping in view the cross-cultural influence of parenting, the current study was aimed to explore the relationship between parental rearing practices and mental health problems on a group of Pakistani adolescents. A sample of 805 participants (49% boys and 51% girls) were selected through a stratified sample with the age range of 13-18 years. All the participants were given protocol of EMBU-C and School Children Problem Scale (SCPS). Results indicate that age, the gender of the participant and parental rejection were found to be a significant positive predictor of mental health problems in adolescents. It can be concluded that parenting may be a universal phenomenon comprising rejection and acceptance yet the differential impact on mental health varies from culture to culture.Keywords: parenting, mental health, adolescents, cross cultural
Procedia PDF Downloads 12128803 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 13628802 In the Face of Brokenness: Finding Meaning and Purpose in a Shattered World
Authors: Le Khanh Huyen
Abstract:
This dissertation focuses on the psychological study of children, particularly those who lack parental affection or face family pressures. It will analyze the severe consequences of insufficient parental love and familial pressure on children's psychology, including emotional and behavioral disorders, learning difficulties in academics and daily life, loss of faith, and low self-esteem. Additionally, this dissertation will propose solutions to support children in challenging circumstances, contributing to the protection of children's mental health.Keywords: child psychology, lack of parental love, family pressure, emotional and behavioral disorders, learning difficulties, loss of faith, self-esteem, mental health
Procedia PDF Downloads 3628801 Exploring Perspectives and Complexities of E-tutoring: Insights from Students Opting out of Online Tutor Service
Authors: Prince Chukwuneme Enwereji, Annelien Van Rooyen
Abstract:
In recent years, technology integration in education has transformed the learning landscape, particularly in online institutions. One technological advancement that has gained popularity is e-tutoring, which offers personalised academic support to students through online platforms. While e-tutoring has become well-known and has been adopted to promote collaborative learning, there are still students who do not use these services for various reasons. However, little attention has been given to understanding the perspectives of students who have not utilized these services. The research objectives include identifying the perceived benefits that non-e-tutoring students believe e-tutoring could offer, such as enhanced academic support, personalized learning experiences, and improved performance. Additionally, the study explored the potential drawbacks or concerns that non-e-tutoring students associate with e-tutoring, such as concerns about efficacy, a lack of face-to-face interaction, and platform accessibility. The study adopted a quantitative research approach with a descriptive design to gather and analyze data on non-e-tutoring students' perspectives. Online questionnaires were employed as the primary data collection method, allowing for the efficient collection of data from many participants. The collected data was analyzed using the Statistical Package for the Social Sciences (SPSS). Ethical concepts such as informed consent, anonymity of responses and protection of respondents against harm were maintained. Findings indicate that non-e-tutoring students perceive a sense of control over their own pace of learning, suggesting a preference for self-directed learning and the ability to tailor their educational experience to their individual needs and learning styles. They also exhibit high levels of motivation, believe in their ability to effectively participate in their studies and organize their academic work, and feel comfortable studying on their own without the help of e-tutors. However, non-e-tutoring students feel that e-tutors do not sufficiently address their academic needs and lack engagement. They also perceive a lack of clarity in the roles of e-tutors, leading to uncertainty about their responsibilities. In terms of communication, students feel overwhelmed by the volume of announcements and find repetitive information frustrating. Additionally, some students face challenges with their internet connection and associated cost, which can hinder their participation in online activities. Furthermore, non-e-tutoring students express a desire for interactions with their peers and a sense of belonging to a group or team. They value opportunities for collaboration, teamwork in their learning experience, the importance of fostering social interactions and creating a sense of community in online learning environments. This study recommended that students seek alternate support systems by reaching out to professors or academic advisors for guidance and clarification. Developing self-directed learning skills is essential, empowering students to take charge of their own learning through setting objectives, creating own study plans, and utilising resources. For HEIs, it was recommended that they should ensure that a variety of support services are available to cater to the needs of all students, including non-e-tutoring students. HEIs should also ensure easy access to online resources, promote a supportive community, and regularly evaluate and adapt their support techniques to meet students' changing requirements.Keywords: online-tutor;, student support;, online education, educational practices, distance education
Procedia PDF Downloads 8228800 Effect of Noise Reducing Headphones on the Short-Term Memory Recall of College Students
Authors: Gregory W. Smith, Paul J. Riccomini
Abstract:
The goal of this empirical inquiry is to explore the effect of noise reducing headphones on the short-term memory recall of college students. Immediately following the presentation (via PowerPoint) of 12 unrelated and randomly selected one- and two-syllable words, students were asked to recall as many words as possible. Using a linear model with conditions marked with binary indicators, we examined the frequency and accuracy of words that were recalled. The findings indicate that for some students, a reduction of noise has a significant positive impact on their ability to recall information. As classrooms become more aurally distracting due to the implementation of cooperative learning activities, these findings highlight the need for a quiet learning environment for some learners.Keywords: auditory distraction, education, instruction, noise, working memory
Procedia PDF Downloads 33428799 Teaching Turn-Taking Rules and Pragmatic Principles to Empower EFL Students and Enhance Their Learning in Speaking Modules
Authors: O. F. Elkommos
Abstract:
Teaching and learning EFL speaking modules is one of the most challenging productive modules for both instructors and learners. In a student-centered interactive communicative language teaching approach, learners and instructors should be aware of the fact that the target language must be taught as/for communication. The student must be empowered by tools that will work on more than one level of their communicative competence. Communicative learning will need a teaching and learning methodology that will address the goal. Teaching turn-taking rules, pragmatic principles and speech acts will enhance students' sociolinguistic competence, strategic competence together with discourse competence. Sociolinguistic competence entails the mastering of speech act conventions and illocutionary acts of refusing, agreeing/disagreeing; emotive acts like, thanking, apologizing, inviting, offering; directives like, ordering, requesting, advising, and hinting, among others. Strategic competence includes enlightening students’ consciousness of the various particular turn-taking systemic rules of organizing techniques of opening and closing conversation, adjacency pairs, interrupting, back-channeling, asking for/giving opinion, agreeing/disagreeing, using natural fillers for pauses, gaps, speaker select, self-select, and silence among others. Students will have the tools to manage a conversation. Students are engaged in opportunities of experiencing the natural language not as a mere extra student talking time but rather an empowerment of knowing and using the strategies. They will have the component items they need to use as well as the opportunity to communicate in the target language using topics of their interest and choice. This enhances students' communicative abilities. Available websites and textbooks now use one or more of these tools of turn-taking or pragmatics. These will be students' support in self-study in their independent learning study hours. This will be their reinforcement practice on e-Learning interactive activities. The students' target is to be able to communicate the intended meaning to an addressee that is in turn able to infer that intended meaning. The combination of these tools will be assertive and encouraging to the student to beat the struggle with what to say, how to say it, and when to say it. Teaching the rules, principles and techniques is an act of awareness raising method engaging students in activities that will lead to their pragmatic discourse competence. The aim of the paper is to show how the suggested pragmatic model will empower students with tools and systems that would support their learning. Supporting students with turn taking rules, speech act theory, applying both to texts and practical analysis and using it in speaking classes empowers students’ pragmatic discourse competence and assists them to understand language and its context. They become more spontaneous and ready to learn the discourse pragmatic dimension of the speaking techniques and suitable content. Students showed a better performance and a good motivation to learn. The model is therefore suggested for speaking modules in EFL classes.Keywords: communicative competence, EFL, empowering learners, enhance learning, speech acts, teaching speaking, turn taking, learner centred, pragmatics
Procedia PDF Downloads 176