Search results for: fish products
1544 Starchy Wastewater as Raw Material for Biohydrogen Production by Dark Fermentation: A Review
Authors: Tami A. Ulhiza, Noor I. M. Puad, Azlin S. Azmi, Mohd. I. A. Malek
Abstract:
High amount of chemical oxygen demand (COD) in starchy waste can be harmful to the environment. In common practice, starch processing wastewater is discharged to the river without proper treatment. However, starchy waste still contains complex sugars and organic acids. By the right pretreatment method, the complex sugar can be hydrolyzed into more readily digestible sugars which can be utilized to be converted into more valuable products. At the same time, the global demand of energy is inevitable. The continuous usage of fossil fuel as the main source of energy can lead to energy scarcity. Hydrogen is a renewable form of energy which can be an alternative energy in the future. Moreover, hydrogen is clean and carries the highest energy compared to other fuels. Biohydrogen produced from waste has significant advantages over chemical methods. One of the major problems in biohydrogen production is the raw material cost. The carbohydrate-rich starchy wastes such as tapioca, maize, wheat, potato, and sago wastes is a promising candidate to be used as a substrate in producing biohydrogen. The utilization of those wastes for biohydrogen production can provide cheap energy generation with simultaneous waste treatment. Therefore this paper aims to review variety source of starchy wastes that has been widely used to synthesize biohydrogen. The scope includes the source of waste, the performance in yielding hydrogen, the pretreatment method and the type of culture that is suitable for starchy waste.Keywords: biohydrogen, dark fermentation, renewable energy, starchy waste
Procedia PDF Downloads 2231543 Health Burden of Disease Assessment for Minimizing Aflatoxin Exposure in Peanuts
Authors: Min-Pei Ling
Abstract:
Aflatoxin is a fungal secondary metabolite with high toxicity capable of contaminating various types of food crops. It has been identified as a Group 1 human carcinogen by the International Agency for Research on Cancer. Chronic aflatoxin exposure has caused a worldwide public food safety concern. Peanuts and peanut products are the major sources of aflatoxin exposure. Therefore, some reduction interventions have been developed to minimize contamination through the peanut production chain. The purpose of this study is to estimate the efficacy of interventions in reducing the health impact of hepatocellular carcinoma caused by aflatoxin contamination in peanuts. The estimated total disability-adjusted life-years (DALYs) was calculated using FDA-iRISK online software. Six aflatoxin reduction strategies were evaluated, including good agricultural practice (GAP), biocontrol, Purdue Improved Crop Storage packaging, basic processing, ozonolysis, and ultraviolet irradiation. The results indicated that basic processing could prevent huge public health loss of 4,079.7–21,833 total DALYs per year, which accounted for 39.6% of all decreased total DALYs. GAP and biocontrol were both effective strategies in the farm field, while the other three interventions were limited in reducing total DALYs. In conclusion, this study could help farmers, processing plants, and government policymakers to alleviate aflatoxin contamination issues in the peanut production chain.Keywords: aflatoxin, health burden, disability-adjusted life-years, peanuts
Procedia PDF Downloads 1331542 Feasibility Study of Constructed Wetlands for Wastewater Treatment and Reuse in Asmara, Eritrea
Authors: Hagos Gebrehiwet Bahta
Abstract:
Asmara, the capital city of Eritrea, is facing a sanitation challenge because the city discharges its wastewater to the environment without any kind of treatment. The aim of this research is to conduct a pre-feasibility study of using constructed wetlands in the peri-urban areas of Asmara for wastewater treatment and reuse. It was found that around 15,000 m³ of wastewater is used daily for agricultural activities, and products are sold in the city's markets, which are claimed to cause some health effects. In this study, three potential sites were investigated around Mai-Bela and an optimum location was selected on the basis of land availability, topography, and geotechnical information. Some types of local microphytes that can be used in constructed wetlands have been identified and documented for further studies. It was found that subsurface constructed wetlands can provide a sufficient pollutant removal with careful planning and design. Following the feasibility study, a preliminary design of screening, grit chamber and subsurface constructed wetland was prepared and cost estimation was done. In the cost estimation part, the filter media was found to be the most expensive part and consists of around 30% percent of the overall cost. The city wastewater drainage runs in two directions and the selected site is located in the southern sub-system, which only carries sewage (separate system). The wastewater analysis conducted particularly around this area (Sembel) indicates high heavy metal levels and organic concentrations, which reveals that there is a high level of industrial pollution in addition to the domestic sewage.Keywords: agriculture, constructed wetland, Mai-Bela, wastewater reuse
Procedia PDF Downloads 2121541 Analysis of the Impact of Foreign Direct Investment on the Integration of the Automotive Industry of Iran into Global Production Networks
Authors: Bahareh Mostofian
Abstract:
Foreign Direct Investment (FDI) has long been recognized as a crucial driver of economic growth and development in less-developed countries and their integration into Global Production Networks (GPNs). FDI not only brings capital from the core countries but also technology, innovation, and know-how knowledge that can upgrade the capabilities of host automotive industries. On the other hand, FDI can also have negative impacts on host countries if it leads to significant import dependency. In the case of the Iranian automotive sector, the industry greatly benefited from FDI, with Western carmakers dominating the market. Over time, various types of know-how knowledge, including joint ventures (JVs), trade licenses, and technical assistance, have been provided, helping Iran upgrade its automotive industry. While after the severe geopolitical obstacles imposed by both the EU and the U.S., the industry became over-reliant on the car and spare parts imports, and the lack of emphasis on knowledge transfer further affected the growth and development of the Iranian automotive sector. To address these challenges, current research has adopted a descriptive-analytical methodology to illustrate the gradual changes accrued with foreign suppliers through FDI. The research finding shows that after the two-phase imposed sanctions, the detrimental linkages created by overreliance on the car and spare parts imports without any industrial upgrading negatively affected the growth and development of the national and assembled products of the Iranian automotive sector.Keywords: less-developed country, FDI, GPNs, automotive industry, Iran
Procedia PDF Downloads 731540 Exploring Introducing a Plant-Based Diet into Patient Education in the Primary Care Setting, and the Positive Effects on Combatting Common Chronic Illnesses Such as Hypertension, Hyperlipidemia, and Diabetes Mellitus Type II
Authors: Arielle Ferdinand
Abstract:
A plant-based diet focuses on foods from plant sources, limiting or altogether omitting animal products. Some of the most common chronic illnesses seen in primary care are hypertension, hyperlipidemia, and diabetes type II. These common chronic illnesses can often be debilitating, costly, time-consuming, and, when left untreated, can lead to an early death. Treatment and maintenance of care are also labor intensive for the patient. They are often required to have at least four blood pressure checks yearly and a hemoglobin A1C checked quarterly. Though preventative interventions and prevention education should be included in patient visits in the primary care setting, education about dietary interventions, such as a plant-based diet, also yields positive outcomes for patients who already have hypertension, hyperlipidemia, and diabetes mellitus type 2. Evidence will show that incorporating a plant-based diet results in decreased blood pressure, as well as decreased levels of LDL-C, improved post-prandial glucose levels, and a reduction in HbA1C. It is cost-effective for the patient by generally lower grocery costs, and it can either reduce or prevent the need to pay for more office visits and pharmacotherapy. Incorporating this method of dietary changes is an easy intervention during a primary care office visit that would greatly benefit the patient in many ways.Keywords: plant-based, nutrition, diabetes, hyperlipidemia
Procedia PDF Downloads 901539 Analysis of the Role of Creative Tourism in Sustainable Tourism Development Case Study: Isfahan City
Authors: Saman Shafei
Abstract:
Tourism has improved for several reasons, with the main objective of producing economic benefits, including foreign exchange earnings, income generation, employment, rising government incomes, and contributing to the financing of tourism infrastructure, which also has public consumption. Although today the interests of the tourism industry are not overlooked by anyone, the expansion and development of tourism services and products can make it competitive, and in this competition, those who bring creativity and diversity are ahead of other competitors. Developing creative tourism as third-generation tourism can help to attract visitors, increasing demand and diversifying it, achieving new markets and boosting growth. Creative tourism is a journey aimed at achieving a brand –new experience and is along with collaborative learning of arts, cultural heritage, or specific features of a place, and provides useful communication with the inhabitants of the tourism destination who is creators of the living culture of that place. The present study aims to identify and introduce the capabilities of the city of Isfahan in IRAN for the development of creative tourism and the role of creative tourism on the destination and the local community of this city. The research method is descriptive-analytical and field method, interviewing tool and questionnaire have been applied to obtain research findings. The results indicate that the city of Isfahan has the potential to develop creative tourism in the field of traditional handicrafts and traditional foods, and developing this kind of tourism will lead to the development of sustainable tourism in this destination and will bring numerous benefits for the local community.Keywords: creative tourism, tourism, Isfahan city, sustainable tourism development
Procedia PDF Downloads 2241538 Optimization of Tangential Flow Filtration Process for Purifying DNA Vaccine
Authors: Piyakajornkul T., Noppiboon S., Hochareon L., Kitsubun P.
Abstract:
Nowadays, DNA vaccines become an interesting subject in the third vaccine generation. The platform of DNA vaccines production has been developed and its downstream process becomes challenging due to the quality of the products in terms of purity and percentage of supercoiled DNA. To overcome these challenges, tangential flow filtration (TFF), which is involved in the purification process, could be used since it provides effective separation of impurity prior to performing further purification steps. However, operating conditions of TFF is varied based on several factors such as sizes of target particle and impurities, a concentration of solution as well as a concentration polarization on the membrane surface. In this study, pVAX1/lacZ was used as a model of TFF optimization in order to prevent a concentration polarization that can lead to the membrane fouling and also minimize a diafiltration volume while maintaining the maximum permeate flux resulting in proper operating times and buffer volume. By using trans membrane pressure (TMP) excursion method, feed flow rates and TMP were varied. The results showed a correlation of permeate flux with TMP where the maximum volume concentration factor reached 2.5 times of the initial volume when feed flow rate and TMP were 7 liters/m²/min and 1 bar, respectively. It was optimal operating conditions before TFF system undergone pressure independent regime. In addition, the diafiltration volume was 14 times of the concentrated volume prior to performing a further anion chromatography process.Keywords: concentration polarization, DNA vaccines, optimization, permeate flux, pressure dependent, tangential flow filtration (TFF), trans membrane pressure (TMP)
Procedia PDF Downloads 1561537 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions
Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres
Abstract:
Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature
Procedia PDF Downloads 751536 Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories
Authors: Erika T. Fajardo-Ariza, Luis A. Castillo-Sanabria, Andrea Nieto-Veloza, Carlos M. Zuluaga-Domínguez
Abstract:
The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts.Keywords: drying technology, postharvest loss reduction, solar dryers, sustainable agriculture
Procedia PDF Downloads 271535 Genomic and Proteomic Variation in Glycine Max Genotypes towards Salinity
Authors: Faheema Khan
Abstract:
In order to investigate the influence of genetic background on salt tolerance in Soybean (Glycine max) ten soybean genotypes released/notified in India were selected. (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712). The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and RAPD analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes however the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na+ and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted for by plant physiological measures. The genetic polymorphisms between soybean genotypes differing in response to salt stress were characterized using 25 RAPD primers. These primers generated a total of 1640 amplification products, among which 1615 were found to be polymorphic. A very high degree of polymorphism (98.30%) was observed. UPGMA cluster analysis of genetic similarity indices grouped all the genotypes into two major clusters. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings. Our results show that RAPD technique is a sensitive, precise and efficient tool for genomic analysis in soybean genotypes.Keywords: glycine max, NaCl, RAPD, proteomics
Procedia PDF Downloads 5831534 Development of Stability Indicating Method and Characterization of Degradation Impurity of Nirmaltrelvir in Its Self-Emulsifying Drug Delivery System
Authors: Ravi Patel, Ravisinh Solanki, Dignesh Khunt
Abstract:
A stability-indicating reverse phase high performance liquid chromatography (RP-HPLC) method was developed and validated for estimating Nirmatrelvir in its self-emulsifying drug delivery system (SEDDS). The separation of Nirmatrelvir and its degradation products was accomplished by employing an Agilent Zorbax Eclipse plus C18 (250 mm x 4.6 mm, 5 µm) column, through which the mobile phase 5 mM phosphate buffer (pH 4.0) as mobile phase A and Acetonitrile as mobile phase B in a ratio of (40:60 % v/v) was pumped at a flow rate of 1.0 mL/min, through the HPLC system. Chromatographic separation and elution were monitored by a photo-diode array detector at 210 nm. Stress studies have been employed to evaluate this method's ability to indicate stability. Nirmatrelvir was exposed to several stress conditions, such as acid, alkali, oxidative, photolytic, and thermal degradations. Significant degradation was observed during acid and alkali hydrolysis, and the resulting degradation product was successfully separated from the Nirmatrelvir peak, preventing any interference. Furthermore, the primary degradant produced under alkali degradation conditions was identified using UPLC-ESI-TQ-MS/MS. The method was validated in accordance with the International Council on Harmonization (ICH) and found to be selective, precise, accurate, linear, and robust. The apparent permeability of Nirmatrelvir SEDDS was 4.20 ± 0.21×10-6 cm/sec, and the average proportion of free drug recovered was 0.5%. The method developed in this study was feasible and accurate for routine quality control evaluation of Nirmatrelvir SEDDS.Keywords: Nirmatrelvir, SEDDS, degradation study, HPLC, LC-MS/MS
Procedia PDF Downloads 151533 Catalytic Pyrolysis of Barley Straw for the Production of Fuels and Chemicals
Authors: Funda Ates
Abstract:
Primary energy sources, such as petroleum, coal and natural gas are principle responsible of world’s energy consumption. However, the rapid worldwide increase in the depletion of these energy sources is remarkable. In addition to this, they have damaging environmentally effect. Renewable energy sources are capable of providing a considerable fraction of World energy demand in this century. Biomass is one of the most abundant and utilized sources of renewable energy in the world. It can be converted into commercial fuels, suitable to substitute for fossil fuels. A high number of biomass types can be converted through thermochemical processes into solid, liquid or gaseous fuels. Pyrolysis is the thermal decomposition of biomass in the absence of air or oxygen. In this study, barley straw has been investigated as an alternative feedstock to obtain fuels and chemicals via pyrolysis in fixed-bed reactor. The influence of pyrolysis temperature in the range 450–750 °C as well as the catalyst effects on the products was investigated and the obtained results were compared. The results indicated that a maximum oil yield of 20.4% was obtained at a moderate temperature of 550 °C. Oil yield decreased by using catalyst. Pyrolysis oils were examined by using instrumental analysis and GC/MS. Analyses revealed that the pyrolysis oils were chemically very heterogeneous at all temperatures. It was determined that the most abundant compounds composing the bio-oil were phenolics. Catalyst decreased the reaction temperature. Most of the components obtained using a catalyst at moderate temperatures was close to those obtained at high temperatures without using a catalyst. Moreover, the use of a catalyst also decreased the amount of oxygenated compounds produced.Keywords: Barley straw, pyrolysis, catalyst, phenolics
Procedia PDF Downloads 2241532 Short-Term Effects of Environmentally Relevant Concentrations of Organic UV Filters on Signal Crayfish Pacifastacus Leniusculus
Authors: Viktoriia Malinovska, Iryna Kuklina, Katerina Grabicova, Milos Buric, Pavel Kozak
Abstract:
Personal care products, including organic UV filters, are considered emerging contaminants and their toxic effects have been a concern for the last decades. Sunscreen compounds continually enter the surface waters via sewage water treatment due to incomplete removal and during human recreational and laundry activities. Despite the environmental occurrence of organic UV filters in the freshwater environment, little is known about their impacts on aquatic biota. In this study, environmentally relevant concentrations of 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP-4, 2.5 µg/L) and 2-Phenylbenzimidazole-5-sulfonic acid (PBSA, 3 µg/L) were used to evaluate the cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus during a short time period. The effects of these compounds were evident in experimental animals. Specimens exposed to both tested compounds exhibited significantly bigger changes in distance moved and time movement than controls. Significant differences in changes in mean heart rate were detected in both PBSA and BP-4 experimental groups compared to control groups. Such behavioral and physiological alterations demonstrate the ecological effects of selected sunscreen compounds during a short time period. Since the evidence of the impacts of sunscreen compounds is scarce, the knowledge of how organic UV filters influence aquatic organisms is of key importance for future research.Keywords: aquatic pollutants, behavior, freshwaters, heart rate, invertebrate
Procedia PDF Downloads 1041531 Experimental Investigation of Recycling Cementitious Materials in Low Strength Range for Sustainability and Affordability
Authors: Mulubrhan Berihu
Abstract:
Due to the design versatility, availability, and cost efficiency, concrete continues to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes, and the use of these industrial waste products has technical, economic, and environmental benefits besides the reduction of CO2 emission from cement production. This paper aims to document the effect on the strength property of concrete due to the use of low cement by maximizing supplementary cementitious materials like fly ash. The amount of cement content was below 250 kg/m3, and in all the mixes, the quantity of powder (cement + fly ash) is almost kept at about 500 kg. According to this, seven different cement content (250 kg/m3, 195 kg/m3, 150 kg/m3, 125 kg/m3, 100 kg/m3, 85 kg/m3, 70 kg/m3) with different amount of replacement of SCMs was conducted. The mix proportion was prepared by keeping the water content constant and varying the cement content, SCMs, and water-to-binder ratio. Based on the different mix proportions of fly ash, a range of mix designs was formulated. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa, and the experimental results indicate that strength is a function of w/b. The experiment result shows a big difference in gaining of compressive strength from 7 days to 28 days and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases, the strength decreases significantly. At the same time, higher permeability was seen in the specimens which were tested for three hours than one hour.Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs
Procedia PDF Downloads 411530 Compositional Dependence of Hydroxylated Indium-Oxide on the Reaction Rate of CO2/H2 Reduction
Authors: Joel Y. Y. Loh, Geoffrey A. Ozin, Charles A. Mims, Nazir P. Kherani
Abstract:
A major goal in the emerging field of solar fuels is to realize an ‘artificial leaf’ – a material that converts light energy in the form of solar photons into chemical energy – using CO2 as a feedstock to generate useful chemical species. Enabling this technology will allow the greenhouse gas, CO2, emitted from energy and manufacturing production exhaust streams to be converted into valuable solar fuels or chemical products. Indium Oxide (In2O3) with surface hydroxyl (OH) groups have been shown to reduce CO2 in the presence of H2 to CO with a reaction rate of 15 μmol gcat−1 h−1. The likely mechanism is via a Frustrated Lewis Pair sites heterolytically splitting H2 to be absorbed and form protonic and hydric sites that can dissociate CO2. In this study, we investigate the dependence of oxygen composition of In2O3 on the CO2 reduction rate. In2O3-x films on quartz fiber paper were DC sputtered with an Indium target and varying O2/Ar plasma mixture. OH surface groups were then introduced by immersing the In2O3-x samples in KOH. We show that hydroxylated In2O3-x reduces more CO2 than non-hydroxylated groups and that a hydroxylated and higher O2/Ar ratio sputtered In2O3-x has a higher reaction rate of 45 μmol gcat-1 h-1. We show by electrical resistivity-temperature curves that H2 is adsorbed onto the surface of In2O3 whereas CO2 itself does not affect the indium oxide surface. We also present activation and ionization energy levels of the hydroxylated In2O3-x under vacuum, CO2 and H2 atmosphere conditions.Keywords: solar fuels, photocatalysis, indium oxide nanoparticles, carbon dioxide
Procedia PDF Downloads 2391529 A Study and Design Scarf Collection Applied Vietnamese Traditional Patterns by Using Printing Method on Fabric
Authors: Mai Anh Pham Ho
Abstract:
Scarf products today is a symbol of fashion to decorate, to make our life more beautiful and bring new features to our living space. It also shows the cultural identity by using the traditional patterns that make easily to introduce the image of Vietnam to other nations all over the world. Therefore, the purpose of this research is to classify Vietnamese traditional patterns according to the era and dynasties. Vietnamese traditional patterns through the dynasties of Vietnamese history are done and classified by five groups of patterns including the geometric patterns, the natural patterns, the animal patterns, the floral patterns, and the character patterns in the Prehistoric times, the Bronze and Iron age, the Chinese domination, the Ngo-Dinh-TienLe-Ly-Tran-Ho dynasty, and the LeSo-Mac-LeTrinh-TaySon-Nguyen dynasty. Besides, there are some special kinds of Vietnamese traditional patterns like buffalo, lotus, bronze-drum, Phuc Loc Tho character, and so on. Extensive research was conducted for modernizing scarf collection applied Vietnamese traditional patterns which the fashion trend is used on creating works. The concept, target, image map, lifestyle map, motif, colours, arrangement and completion of patterns on scarf were set up. The scarf collection is designed and developed by the Adobe Illustrator program with three colour ways for each scarf. Upon completion of the research, digital printing technology is chosen for using on scarf collection which Vietnamese traditional patterns were researched deeply and widely with the purpose of establishment the basic background for Vietnamese culture in order to identify Vietnamese national personality as well as establish and preserve the cultural heritage.Keywords: scarf collection, Vietnamese traditional patterns, printing methods, fabric design
Procedia PDF Downloads 3401528 The Position of Cooperatives and Social Economy in Solving the Problems of Today's Society
Authors: Mohammad Abbasi
Abstract:
Cooperatives around the world, relying on the policy of mutual self-help, are a natural tool for Social and economic development, and securing the interests of local communities and social systems has changed. The social economy consists of institutions, cooperatives, bilateral organizations, and unions and associations and their activities have social and economic aspects. Due to the nature of cooperative companies, it can be claimed that all cooperatives have social and economic goals; Because every company A cooperative is formed with the aim of meeting the common needs of society members. These needs sometimes It is aimed at housing or health services, and sometimes cooperative members want to go through it Products and services, employment, and continuous income (for example, in most rural areas of Iran, needs are of this type) to have access. This article also examines the broad methods of participation of Iran's cooperatives in the economy It deals with social issues and provides innovative solutions to solve social issues and problems, and the potential for innovation and growth in using the cooperative model in order to meet economic needs and It proves the sociality of Canadians. In this article, cooperatives whose activities are mostly "social" are mentioned And the activity of many of them in cooperation with government programs in the fields of health, housing, etc. It is a kindergarten and they have proven that they have a cost-effective model in providing services. The conclusion of this discussion shows that the cooperative model for economic activity, with A hundred years of history in Iran has been able to show its value as a tool of innovation in the fields to to prove social, technological, and economic. Cooperatives with about 10 million members in Iran have shown that they are well-known and trusted by the people.Keywords: types of cooperatives, social economy, Iran, non-governmental organizations, justice, consumption pattern
Procedia PDF Downloads 201527 Recycled Use of Solid Wastes in Building Material: A Review
Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib
Abstract:
Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.Keywords: recycling, solid wastes, construction, building materials
Procedia PDF Downloads 3831526 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes
Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli
Abstract:
The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.Keywords: biocomposite, char, olive pomace, pyrolysis
Procedia PDF Downloads 2501525 Towards Printed Green Time-Temperature Indicator
Authors: Mariia Zhuldybina, Ahmed Moulay, Mirko Torres, Mike Rozel, Ngoc-Duc Trinh, Chloé Bois
Abstract:
To reduce the global waste of perishable goods, a solution for monitoring and traceability of their environmental conditions is needed. Temperature is the most controllable environmental parameter determining the kinetics of physical, chemical, and microbial spoilage in food products. To store the time-temperature information, time-temperature indicator (TTI) is a promising solution. Printed electronics (PE) has shown a great potential to produce customized electronic devices using flexible substrates and inks with different functionalities. We propose to fabricate a hybrid printed TTI using environmentally friendly materials. The real-time TTI profile can be stored and transmitted to the smartphone via Near Field Communication (NFC). To ensure environmental performance, Canadian Green Electronics NSERC Network is developing green materials for the ink formulation with different functionalities. In terms of substrate, paper-based electronics has gained the great interest for utilization in a wide area of electronic systems because of their low costs in setup and methodology, as well as their eco-friendly fabrication technologies. The main objective is to deliver a prototype of TTI using small-scale printed techniques under typical printing conditions. All sub-components of the smart labels, including a memristor, a battery, an antenna compatible with NFC protocol, and a circuit compatible with integration performed by an offsite supplier will be fully printed with flexography or flat-bed screen printing.Keywords: NFC, printed electronics, time-temperature indicator, hybrid electronics
Procedia PDF Downloads 1631524 Physicochemical and Sensorial Evaluation of Astringency Reduction in Cashew Apple (Annacardium occidentale L.) Powder Processing in Cookie Elaboration
Authors: Elida Gastelum-Martinez, Neith A. Pacheco-Lopez, Juan L. Morales-Landa
Abstract:
Cashew agroindustry obtained from cashew apple crop (Anacardium occidentale L.) generates large amounts of unused waste in Campeche, Mexico. Despite having a high content of nutritional compounds such as ascorbic acid, carotenoids, fiber, carbohydrates, and minerals, it is not consumed due to its astringent sensation. The aim of this work was to develop a processing method for cashew apple waste in order to obtain a powder with reduced astringency able to be used as an additive in the food industry. The processing method consisted first in reducing astringency by inducing tannins from cashew apple peel to react and form precipitating complexes with a colloid rich in proline and histidine. Then cashew apples were processed to obtain a dry powder. Astringency reduction was determined by total phenolic content and evaluated by sensorial analysis in cashew-apple-powder based cookies. Total phenolic content in processed powders showed up to 72% lower concentration compared to control samples. The sensorial evaluation indicated that cookies baked using cashew apple powder with reduced astringency were 96.8% preferred. Sensorial characteristics like texture, color and taste were also well-accepted attributes. In conclusion, the method applied for astringency reduction is a viable tool to produce cashew apple powder with desirable sensorial properties to be used in the development of food products.Keywords: astringency reduction, cashew apple waste, food industry, sensorial evaluation
Procedia PDF Downloads 3491523 Optimizing Agricultural Packaging in Fiji: Strategic Barrier Analysis Using Interpretive Structural Modeling and Cross-Impact Matrix Multiplication Applied to Classification
Authors: R. Ananthanarayanan, S. B. Nakula, D. R. Seenivasagam, J. Naua, B. Sharma
Abstract:
Product packaging is a critical component of production, trade, and marketing, playing numerous vital roles that often go unnoticed by consumers. Packaging is essential for maintaining the shelf life, quality assurance, and safety of both manufactured and agricultural products. For example, harvested produce or processed foods can quickly lose quality and freshness, making secure packaging crucial for preservation and safety throughout the food supply chain. In Fiji, agricultural packaging has primarily been managed by local companies for international trade, with gradual advancements in these practices. To further enhance the industry’s performance, this study examines the challenges and constraints hindering the optimization of agricultural packaging practices in Fiji. The study utilizes Multi-Criteria Decision Making (MCDM) tools, specifically Interpretive Structural Modeling (ISM) and Cross-Impact Matrix Multiplication Applied to Classification (MICMAC). ISM analyzes the hierarchical structure of barriers, categorizing them from the least to the most influential, while MICMAC classifies barriers based on their driving and dependence power. This approach helps identify the interrelationships between barriers, providing valuable insights for policymakers and decision-makers to propose innovative solutions for sustainable development in the agricultural packaging sector, ultimately shaping the future of packaging practices in Fiji.Keywords: agricultural packaging, barriers, ISM, MICMAC
Procedia PDF Downloads 261522 Chemical and Biological Examination of De-Oiled Indian Propolis
Authors: Harshada Vaidya-Kannur, Dattatraya Naik
Abstract:
Propolis, one of the beehive products also referred as bee-glue is sticky dark coloured complex mixture of compounds. The volatile oil can be isolated from the propolis by hydrodistillation. The mark that is left behind after the removal of volatile oil is referred as the de-oiled propolis. Antioxidant as well as anti-inflammatory properties of total ethanolic extract of de-oiled propolis (TEEDP) was investigated. Another lot of deoiled propolis was successively exacted with hexane, ethyl acetate and ethanol. Activities of these fractions were also determined. Antioxidant activity was determined by studying ABTS, DPPH and NO radical scavenging. Determination of anti-inflammatory activity was carried out by topical TPA induced mouse ear oedema model. It is noteworthy that ethyl acetate fraction of deoiled propolis (EAFDP) exhibited 49.45 % TEAC activity at the concentration 0.2 mg/ml which is equivalent to the activity of trolox at the concentration 0.2 mg/ml. Its DPPH scavenging activity (72.56%) was closely comparable to that of trolox (75%). However its NO scavenging activity was comparatively low. From IC50 values it could be concluded that the efficiency of scavenging ABTS radicals by the de-oiled propolis was more pronounced as compared to scavenging of other radicals. Studies by TPA induced mouse ear inflammation model indicated that the de-oiled propolis of Indian origin had significant topical anti-inflammatory activity. The EAFDP was found to be the most active fraction for this activity also. The purification of EAFP yielded six pure crystalline compounds. These compounds were identified by their physical data and spectral data.Keywords: anti-inflammatory activity, anti-oxidant activity, column chromatography, de-oiled propolis
Procedia PDF Downloads 2861521 Prototype for Measuring Blue Light Protection in Sunglasses
Authors: A. D. Loureiro, L. Ventura
Abstract:
Exposure to high-energy blue light has been strongly linked to the development of some eye diseases, such as age-related macular degeneration. Over the past few years, people have become more and more concerned about eye damage from blue light and how it can be prevented. We developed a prototype that allows users to self-check the blue light protection of their sunglasses and determines if the protection is adequate. Weighting functions approximating those defined in ISO 12312-1 were used to measure the luminous transmittance and blue light transmittance of sunglasses. The blue light transmittance value must be less than 1.2 times the luminous transmittance to be considered adequate. The prototype consists of a Golden Dragon Ultra White LED from OSRAM and a TCS3472 photodetector from AMS TAOS. Together, they provide four transmittance values weighted with different functions. These four transmittance values were then linearly combined to produce transmittance values with weighting functions close to those defined in ISO 12312-1 for luminous transmittance and for blue light transmittance. To evaluate our prototype, we used a VARIAN Cary 5000 spectrophotometer, a gold standard in the field, to measure the luminous transmittance and the blue light transmittance of 60 sunglasses lenses. (and Bland-Altman analysis was performed) Bland-Altman analysis was performed and showed non-significant bias and narrow 95% limits of agreement within predefined tolerances for both luminous transmittance and blue light transmittance. The results show that the prototype is a viable means of providing blue light protection information to the general public and a quick and easy way for industry and retailers to test their products. In addition, our prototype plays an important role in educating the public about a feature to look for in sunglasses before purchasing.Keywords: blue light, sunglasses, eye protective devices, transmittance measurement, standards, ISO 12312-1
Procedia PDF Downloads 1631520 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.Keywords: fruit thinning, horticultural field, portable devices, sensor technologies
Procedia PDF Downloads 1391519 Agroforestry Systems: A Sustainable Strategy of the Agricultural Systems of Cumaral (Meta), Colombia
Authors: Amanda Silva Parra, Dayra Yisel García Ramirez
Abstract:
In developing countries, agricultural "modernization" has led to a loss of biodiversity and inefficiency of agricultural systems, manifested in increases in Greenhouse Gas Emissions (GHG) and the C footprint, generating the susceptibility of systems agriculture to environmental problems, loss of biodiversity, depletion of natural resources, soil degradation and loss of nutrients, and a decrease in the supply of products that affect food security for peoples and nations. Each year agriculture emits 10 to 12% (5.1 to 6.1 Gt CO2eq per year) of the total estimated GHG emissions (51 Gt CO2 eq per year). The FAO recommends that countries that have not yet done so consider declaring sustainable agriculture as an essential or strategic activity of public interest within the framework of green economies to better face global climate change. The objective of this research was to estimate the balance of GHG in agricultural systems of Cumaral, Meta (Colombia), to contribute to the recovery and sustainable operation of agricultural systems that guarantee food security and face changes generated by the climate in a more intelligent way. To determine the GHG balances, the IPCC methodologies were applied with a Tier 1 and 2 level of use. It was estimated that all the silvopastoral systems evaluated play an important role in this reconversion compared to conventional systems such as improved pastures. and degraded pastures due to their ability to capture C both in soil and in biomass, generating positive GHG balances, guaranteeing greater sustainability of soil and air resources.Keywords: climate change, carbon capture, environmental sustainability, GHG mitigation, silvopastoral systems
Procedia PDF Downloads 1171518 Post Covid-19 Landscape of Global Pharmaceutical Industry
Authors: Abu Zafor Sadek
Abstract:
Pharmaceuticals were one of the least impacted business sectors during the corona pandemic as they are the center point of Covid-19 fight. Emergency use authorization, unproven indication of some commonly used drugs, self-medication, research and production capacity of an individual country, capacity of producing vaccine by many countries, Active Pharmaceutical Ingredients (APIs) related uncertainty, information gap among manufacturer, practitioners and user, export restriction, duration of lock-down, lack of harmony in transportation, disruption in the regulatory approval process, sudden increased demand of hospital items and protective equipment, panic buying, difficulties in in-person product promotion, e-prescription, geo-politics and associated issues added a new dimension to this industry. Although the industry maintains a reasonable growth throughout Covid-19 days; however, it has been characterized by both long- and short-term effects. Short-term effects have already been visible to so many countries, especially those who are import-dependent and have limited research capacity. On the other hand, it will take a few more time to see the long-term effects. Nevertheless, supply chain disruption, changes in strategic planning, new communication model, squeezing of job opportunity, rapid digitalization are the major short-term effects, whereas long-term effects include a shift towards self-sufficiency, growth pattern changes of certain products, special attention towards clinical studies, automation in operations, the increased arena of ethical issues etc. Therefore, this qualitative and exploratory study identifies the post-covid-19 landscape of the global pharmaceutical industry.Keywords: covid-19, pharmaceutical, businees, landscape
Procedia PDF Downloads 911517 Improving Indoor Air Quality by Increasing Bio-Based Negative Air Ion Release
Authors: Shuye Jiang, Ali Ma, Srinivasan Ramachandran
Abstract:
Indoor air quality could be improved through traditional air purifiers. However, they may not be environmental products. Here, a bio-based method was employed to improve indoor air quality by increasing negative air ion (NAI) release from ornamental plants. A total of 60 plant species has been screened by evaluating their ability to release NAIs, from which four candidates were selected to further study. All of them are from the Dracaena or fabids clade. These four candidates were then subjected to survey their ability to reduce the concentration of particulate matter with diameter of 2.5 or 10 microns (PM2.5 and PM10) in the growth chamber. High concentrations of PM2.5 and PM10 were artificially generated by burning a stick of incense for 2 minutes in the closed growth chamber (80cm length × 80cm width × 80cm height), in which the PM2.5 and PM10 concentration were generally around 500 µg/m3 and 1500 µg/m3, respectively. Both PM2.5 and PM10 were naturally reduced to 410 and 670, respectively after two hours in case that no plants were placed inside the chamber. Interestingly, these two sizes of particulars were reduced to 170 µg/m3 and 210 µg/m3, respectively after two hours when plants were placed to the chamber. It took 4 hours for the plants to reduce particular concentration to acceptable level at less than 55 µg/m3 for both PM2.5 and PM10, respectively. However, the PM2.5 and PM10 concentration were still above 200 µg/m3 and 300 µg/m3, respectively after 4 hours in the growth chamber without any plants. These results suggest the contribution of plants to the particulate deposition. However, all of these data are preliminary and the results may be updated by further studies. In addition, the roles of plants in absorbing indoor formaldehyde have also been explored and their absorbing ability is being improved by optimizing their growth conditions and treating with various exogenous agents. Thus, our preliminary studies provide an alternative strategy to improve indoor air quality.Keywords: bio-based method, indoor air, negative air ion, particulate matter
Procedia PDF Downloads 1651516 Commercialization of Research Outputs in Kenyan Universities
Authors: John Ayisi, Gideon M. Kivengea, George A. Ombakho
Abstract:
In this emerging era of knowledge economy, universities, as major centres of learning and research, are becoming increasingly important as sources of ideas, knowledge, skills, innovation and technological advances. These ideas can be turned into new products, processes and systems needed to drive their respective national economies, and thus placing universities at the centre of the national innovation systems. Thus, commercialization of research outputs from universities to industry has become an area of strong policy interest in African countries. To assess the level of commercialization of research outputs in Kenyan universities, a standardized questionnaire covering seven sub-sections, namely: University Commercialization Environment, Management of Commercialization Activities, Commercialization Office, Intellectual Property Rights (IPRs), Early Stage Financing and Venture Capital; Industrial Linkages; and Technology Parks and Incubators was administered among a few selected public and private universities. Results show that all the universities have a strategic plan; though not all have innovation and commercialization as part of it. Half the nineteen surveyed universities indicated they have created designated offices for fostering commercialization. Majority have guidelines on IPRs which advocate IP to be co-owned by researcher/university. University-industry linkages are weak. Most universities are taking precursory steps to incentivise and encourage entrepreneurial activities among their academic staff and students, even though the level of resources devoted to them is low. It is recommended that building capacity in entrepreneurship among staff and students and committing more resources to R&D activities hold potential to increased commercialization of university research outputs.Keywords: commercialization, knowledge, R&D, university
Procedia PDF Downloads 4391515 Challenges for Adopting Circular Economy Toward Business Innovation and Supply Chain
Authors: Kapil Khanna, Swee Kuik, Joowon Ban
Abstract:
The current linear economic system is unsustainable due to its dependence on the uncontrolled exploitation of diminishing natural resources. The integration of business innovation and supply chain management has brought about the redesign of business processes through the implementation of a closed-loop approach. The circular economy (CE) offers a sustainable solution to improve business opportunities in the near future by following the principles of rejuvenation and reuse inspired by nature. Those business owners start to rethink and consider using waste as raw material to make new products for consumers. The implementation of CE helps organisations to incorporate new strategic plans for decreasing the use of virgin materials and nature resources. Supply chain partners that are geographically dispersed rely heavily on innovative approaches to support supply chain management. Presently, numerous studies have attempted to establish the concept of supply chain management (SCM) by integrating CE principles, which are commonly denoted as circular SCM. While many scholars have recognised the challenges of transitioning to CE, there is still a lack of consensus on business best practices that can facilitate companies in embracing CE across the supply chain. Hence, this paper strives to scrutinize the SCM practices utilised for CE, identify the obstacles, and recommend best practices that can enhance a company's ability to incorporate CE principles toward business innovation and supply chain performance. Further, the paper proposes future research in the field of using specific technologies such as artificial intelligence, Internet of Things, and blockchain as business innovation tools for supply chain management and CE adoption.Keywords: business innovation, challenges, circular supply chain, supply chain management, technology
Procedia PDF Downloads 95