Search results for: skeletal muscle mass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4254

Search results for: skeletal muscle mass

804 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains

Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*

Abstract:

Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.

Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy

Procedia PDF Downloads 147
803 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator

Authors: Victoria L. Chester, Usha Kuruganti

Abstract:

The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.

Keywords: EMG, forestry, human factors, wrist biomechanics

Procedia PDF Downloads 150
802 Prevalence of Risk Factors of the Female Athlete Triad Among Young Elite Athletes of the World

Authors: Muhammad Saleem

Abstract:

Background: Inattentive food choices and engagement in excessive physical activities by male athletes can potentially lead to adverse health consequences. Objective: The aim was to ascertain the occurrence of risk factors associated with the Male Athlete Triad among young elite athletes in Pakistan. Methodology: In 2018, a cross-sectional study based on questionnaires was conducted at the Pakistan Sports Board. The study aimed to explore the risk factors related to the Male Athlete Triad in young elite athletes who were part of national training camps in major metropolitan areas. The study included proficient male elite athletes aged 18 to 25 years, capable of understanding the English questionnaire. The athletes completed a survey encompassing aspects like demographic information, educational background, Body Mass Index (BMI), sports involvement, and hours of participation. Additionally, they filled out the Eating Attitude Test-26 (EAT-26) and questionnaires assessing risks of amenorrhea and low bone mineral density. The prevalence of risk factors for each of the three components was individually evaluated. The collected data underwent analysis using SPSS-20, with descriptive statistics being applied. Results: The study comprised a sample of 90 elite athletes (mean age: 23.57 ± 2.37 years, mean BMI: 21.97 ± 1.90) engaged in various sports. The EAT-26 results indicated that 50% of athletes were at risk of developing an eating disorder. Moreover, 83.3% exhibited disordered eating behaviors that necessitated referral. Risks for amenorrhea were observed in 15% of the participants, and regarding low bone mineral density, notable risks were absent except for the consumption of caffeinated beverages, which was noted in 51.7% of participants. Conclusion: The study identified a significant prevalence of disordered eating risk among male elite athletes in Pakistan. However, the risks associated with amenorrhea and low bone mineral density were not a major concern in this particular group.

Keywords: Pakistan, osteoporosis, female athlete triad, bone mineral density, athlete, amenorrhea, eating disorders

Procedia PDF Downloads 71
801 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries

Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand

Abstract:

Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.

Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.

Procedia PDF Downloads 79
800 Respiratory Bioaerosol Dynamics: Impact of Salinity on Evaporation

Authors: Akhil Teja Kambhampati, Mark A. Hoffman

Abstract:

In the realm of infectious disease research, airborne viral transmission stands as a paramount concern due to its pivotal role in propagating pathogens within densely populated regions. However, amidst this landscape, the phenomenon of hygroscopic growth within respiratory bioaerosols remains relatively underexplored. Unlike pure water aerosols, the unique composition of respiratory bioaerosols leads to varied evaporation rates and hygroscopic growth patterns, influenced by factors such as ambient humidity, temperature, and airflow. This study addresses this gap by focusing on the behaviors of single respiratory bioaerosol utilizing salinity to induce saliva-like hygroscopic behavior. By employing mass, momentum, and energy equations, the study unveils the intricate interplay between evaporation and hygroscopic growth over time. The numerical model enables temporal analysis of bioaerosol characteristics, including size, temperature, and trajectory. The analysis reveals that due to evaporation, there is a reduction in initial size, which shortens the lifetime and distance traveled. However, when hygroscopic growth begins to influence the bioaerosol size, the rate of size reduction slows significantly. The interplay between evaporation and hygroscopic growth results in bioaerosol size within the inhalation range of humans and prolongs the traveling distance. Findings procured from the analysis are crucial for understanding the spread of infectious diseases, especially in high-risk environments such as healthcare facilities and public transportation systems. By elucidating the nuanced behaviors of respiratory bioaerosols, this study seeks to inform the development of more effective preventative strategies against pathogens propagation in the air, thereby contributing to public health efforts on a global scale.

Keywords: airborne viral transmission, high-risk environments, hygroscopic growth, evaporation, numerical modeling, pathogen propagation, preventative strategies, public health, respiratory bioaerosols

Procedia PDF Downloads 44
799 Promising Anti-Displacement Practices for High Cost Cities

Authors: Leslie M. Mullins

Abstract:

In the face of dramatically shifting demographic trends and macroeconomic pressures on affordable housing in high-cost cities, municipalities and developers have been forced to develop new models of sustainable development that integrates elements of substantial rehabilitation and new construction while controlling for relocation and mass displacement. Community development partners in the San Francisco Bay Area of Northern California are starting to prioritize anti-displacement strategies when rehabilitating severely neglected public housing developments. This study explored the community-driven efforts to transform four dilapidated public housing sites (N=2,600 households) into thriving mixed-income housing communities. Eight interviews were conducted with frontline workers (property managers and service providers), who directly worked with residents throughout critical stages of the relocation and leasing process. Interviews were audio-recorded, transcribed, and analyzed by a systematic procedure for qualitative analysis to identify key themes on the topics of interest. Also, an extensive literature analysis was conducted to determine promising practices throughout the industry. This study highlighted that resident’s emotional attachment to their homes (regardless of the deteriorating conditions of their unit) could both a) impede the relocation process and substantially impact the budget and timeline, while b) simultaneously providing a basis for an enhanced sense of belonging and community cohesion. This phenomenon often includes the welcoming of new residents and cultures. Resident centered workshops, healing centered rituals, and extensive 'hands-on' guidance was highlighted as promising practices that resulted in residential retention rates that were two to three times the national average and positively impacted the overall project’s budget and timeline.

Keywords: anti-displacement strategies, community based practices, community cohesion, cultural preservation, healing-centered, public housing, relocation, trauma-informed

Procedia PDF Downloads 140
798 TLR4 Gene Polymorphism and Biochemical Markers as a Tool to Identify Risk of Osteoporosis in Women from Karachi

Authors: Rozeena Baig, R. Rehana Rehman, Rifat Ahmed

Abstract:

Background: Osteoporosis, characterized by low bone mineral density, poses a global health concern. Diagnosis increases the likelihood of developing osteoporosis, a multifactorial disorder marked by low bone mass, elevating the risk of fractures in the lumbar spine, femoral neck, hip, vertebras, and distal forearm, particularly in postmenopausal women due to bone loss influenced by various pathophysiological factors. Objectives: The aim is to investigate the association of serum cytokine, bone turnover marker, bone mineral density and TLR4 gene polymorphism in pre and post-menopausal women and to find if any of these can be the potential predictor of osteoporosis in postmenopausal women. Material and methods: The study participants consisted of Group A (n=91) healthy pre-menopausal women and Group B (n=102) healthy postmenopausal women having ≥ 5 years’ history of menopause. ELISA was performed for cytokine (TNFα) and bone turnover markers (carboxytelopeptides), respectively. Bone Mineral Density (BMD)was measured through a dual X-ray absorptiometry (DEXA) scan. Toll-like Receptors 4 (TLR4) gene polymorphisms (A896G; Asp299Gly) and (C1196T; Thr399Ile) were investigated by PCR and Sanger sequencing. Results: Statistical analysis reveals a positive correlation of age and BMI with T scores in the premenopausal group, whereas in post-menopausal group found a significant negative correlation between age and T-score at hip (r = - 0.352**), spine (r = - .306**), and femoral neck (r = - 0.344**) and a significant negative correlation of BMI with TNF-α (- 0.316**). No association and significant differences were observed for TLR4 genotype and allele frequencies among studied groups However, both SNPs exhibited significant association with each other. Conclusions: This study concludes that BMI, BMD and TNF-α are the potential predictors of osteoporosis in post-menopausal women. However, CTX and TLR4 gene polymorphism did not appear as potential predictors of bone loss in this study and apparently cannot help in predicting bone loss in post-menopausal women.

Keywords: osteoporosis, post-menopausal, pre-menopausal woemn, genetics mutaiont, TLR4 genepolymorphsum

Procedia PDF Downloads 45
797 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis

Authors: Vinti Davar

Abstract:

Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16.Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 year and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of non communicable diseases due to obesity and high fat percentage.

Keywords: anthropometry, bioelectrical impedance, body fat percentage, obesity

Procedia PDF Downloads 384
796 Modal Approach for Decoupling Damage Cost Dependencies in Building Stories

Authors: Haj Najafi Leila, Tehranizadeh Mohsen

Abstract:

Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called "modal cost superposition method" for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories' cost equations by the means of the introduced "substituted matrixes of mass and stiffness". Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation.

Keywords: dependency, story-cost, cost modes, engineering demand parameter

Procedia PDF Downloads 184
795 A Future Urban Street Design in Baltimore, Maryland Based on a Hierarchy of Functional Needs and the Context of Autonomous Vehicles, Green Infrastructure, and Evolving Street Typologies

Authors: Samuel Quick

Abstract:

The purpose of this paper is to examine future urban street design in the context of developing technologies, evolving street typologies, and projected transportation trends. The goal was to envision a future urban street in the year 2060 that addresses the advent and implementation of autonomous vehicles, the promotion of new street typologies, and the projection of current transportation trends. Using a hierarchy of functional needs for urban streets, the future street was designed and evaluated based on the functions the street provides to the surrounding community. The site chosen for the future street design is an eight-block section of West North Avenue in the city of Baltimore, Maryland. Three different conceptual designs were initially completed and evaluated leading to a master plan for West North Avenue as well as street designs for connecting streets that represent different existing street types. Final designs were compared with the existing street design and evaluated with the adapted ‘Hierarchy of Needs’ theory. The review of the literature and the results from this paper indicate that urban streets will have to become increasingly multi-functional to meet the competing needs of the environment and community. Future streets will have to accommodate multimodal transit which will include mass transit, walking, and biking. Furthermore, a comprehensive implementation of green infrastructure within the urban street will provide access to nature for urban communities and essential stormwater management. With these developments, the future of an urban street will move closer to a greenway typology. Findings from this study indicate that urban street design will have to be policy-driven to promote and implement autonomous bus-rapid-transit in order to conserve street space for other functions. With this conservation of space, urban streets can then provide more functions to the surrounding community, taking a holistic approach to urban street design.

Keywords: autonomous vehicle, greenway, green infrastructure, multi-modality, street typology

Procedia PDF Downloads 186
794 Experimental Investigation on the Role of Thermoacoustics on Soot Formation

Authors: Sambit Supriya Dash, Rahul Ravi R, Vikram Ramanan, Vinayak Malhotra

Abstract:

Combustion in itself is a complex phenomenon that involves the interaction and interplay of multiple phenomena, the combined effect of which gives rise to the common flame that we see and use in our daily life applications from cooking to propelling our vehicles to space. The most important thing that goes unnoticed about these flames is the effect of the various phenomena from its surrounding environment that affects its behavior and properties. These phenomena cause a variety of energy interactions that lead to various types of energy transformations which in turn affect the flame behavior. This paper focuses on experimentally investigating the effect of one such phenomenon, which is the acoustics or sound energy on diffusion flames. The subject in itself is extensively studied upon as thermo-acoustics globally, whereas the current work focuses on studying its effect on soot formation on diffusion flames. The said effect is studied in this research work by the use of a butane as fuel, fitted with a nozzle that houses 3 arrays consisting of 4 holes each that are placed equidistant to each other and the resulting flame impinged with sound from two independent and similar sound sources that are placed equidistant from the centre of the flame. The entire process is systematically video graphed using a 60 fps regular CCD and analysed for variation in flame heights and flickering frequencies where the fuel mass flow rate is maintained constant and the configuration of entrainment holes and frequency of sound are varied, whilst maintaining constant ambient atmospheric conditions. The current work establishes significant outcomes on the effect of acoustics on soot formation; it is noteworthy that soot formation is the main cause of pollution and a major cause of inefficiency of current propulsion systems. This work is one of its kinds, and its outcomes are widely applicable to commercial and domestic appliances that utilize combustion for energy generation or propulsion and help us understand them better, so that we can increase their efficiency and decrease pollution.

Keywords: thermoacoustics, entrainment, propulsion system, efficiency, pollution

Procedia PDF Downloads 163
793 Chemotrophic Signal Exchange between the Host Plant Helianthemum sessiliflorum and Terfezia boudieri

Authors: S. Ben-Shabat, T. Turgeman, O. Leubinski, N. Roth-Bejerano, V. Kagan-Zur, Y. Sitrit

Abstract:

The ectomycorrhizal (ECM) desert truffle Terfezia boudieri produces edible fruit bodies and forms symbiosis with its host plant Helianthemum sessiliflorum (Cistaceae) in the Negev desert of Israel. The symbiosis is vital for both partners' survival under desert conditions. Under desert habitat conditions, ECMs must form symbiosis before entering the dry season. To secure a successful encounter, in the course of evolution, both partners have responded by evolving special signals exchange that facilitates recognition. Members of the Cistaceae family serve as host plants for many important truffles. Conceivably, during evolution a common molecule present in Cistaceae plants was recruited to facilitate successful encounter with ectomycorrhizas. Arbuscular vesicular fungi (AM) are promiscuous in host preferences, in contrast, ECM fungi show specificity to host plants. Accordingly, we hypothesize that H. sessiliflorum secretes a chemotrophic-signaling, which is common to plants hosting ECM fungi belonging to the Pezizales. However, thus far no signaling molecules have been identified in ECM fungi. We developed a bioassay for chemotrophic activity. Fractionation of root exudates revealed a substance with chemotrophic activity and molecular mass of 534. Following the above concept, screening the transcriptome of Terfezia, grown under chemoattraction, discovered genes showing high homology to G proteins-coupled receptors of plant pathogens involved in positive chemotaxis and chemotaxis suppression. This study aimed to identify the active molecule using analytical methods (LC-MS, NMR etc.). This should contribute to our understanding of how ECM fungi communicate with their hosts in the rhizosphere. In line with the ability of Terfezia to form also endomycorrhizal symbiosis like AM fungi, analysis of the mechanisms may likewise be applicable to AM fungi. Developing methods to manipulate fungal growth by the chemoattractant can open new ways to improve inoculation of plants.

Keywords: chemotrophic signal, Helianthemum sessiliflorum, Terfezia boudieri, ECM

Procedia PDF Downloads 410
792 Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics

Authors: Sleman Yahya Rasul

Abstract:

Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding.

Keywords: boro-tellurite glasses, hfo2, radiation shielding, mechanical properties, elastic properties, optical properties

Procedia PDF Downloads 47
791 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey

Abstract:

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

Keywords: genus Geobacillus, NADPH/NADH-dependent reductase, selenium nanoparticles, biosynthesis

Procedia PDF Downloads 320
790 Isolation and Characterization of the First Known Inhibitor Cystine Knot Peptide in Sea Anemone: Inhibitory Activity on Acid-Sensing Ion Channels

Authors: Armando A. Rodríguez, Emilio Salceda, Anoland Garateix, André J. Zaharenko, Steve Peigneur, Omar López, Tirso Pons, Michael Richardson, Maylín Díaz, Yasnay Hernández, Ludger Ständker, Jan Tytgat, Enrique Soto

Abstract:

Acid-sensing ion channels are cation (Na+) channels activated by a pH drop. These proteins belong to the ENaC/degenerin superfamily of sodium channels. ASICs are involved in sensory perception, synaptic plasticity, learning, memory formation, cell migration and proliferation, nociception, and neurodegenerative disorders, among other processes; therefore those molecules that specifically target these channels are of growing pharmacological and biomedical interest. Sea anemones produce a large variety of ion channels peptide toxins; however, those acting on ligand-gated ion channels, such as Glu-gated, Ach-gated ion channels, and acid-sensing ion channels (ASICs), remain barely explored. The peptide PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by chromatographic techniques and pharmacologically characterized on acid-sensing ion channels of mammalian neurons using patch-clamp techniques. PhcrTx1 inhibited ASIC currents with an IC50 of 100 nM. Edman degradation yielded a sequence of 32 amino acids residues, with a molecular mass of 3477 Da by MALDI-TOF. No similarity to known sea anemone peptides was found in protein databases. The computational analysis of Cys-pattern and secondary structure arrangement suggested that this is a structurally ICK (Inhibitor Cystine Knot)-type peptide, a scaffold that had not been found in sea anemones but in other venomous organisms. These results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASICs. Also, this peptide constitutes a novel template for the development of drugs against pathologies related to ASICs function.

Keywords: animal toxin, inhibitor cystine knot, ion channel, sea anemone

Procedia PDF Downloads 311
789 The Youth Employment Peculiarities in Post-Soviet Georgia

Authors: M. Lobzhanidze, N. Damenia

Abstract:

The article analyzes the current structural changes in the economy of Georgia, liberalization and integration processes of the economy. In accordance with this analysis, the peculiarities and the problems of youth employment are revealed. In the paper, the Georgian labor market and its contradictions are studied. Based on the analysis of materials, the socio-economic losses caused by the long-term and mass unemployment of young people are revealed, the objective and subjective circumstances of getting higher education are studied. The youth employment and unemployment rates are analyzed. Based on the research, the factors that increase unemployment are identified. According to the analysis of the youth employment, it has appeared that the unemployment share in the number of economically active population has increased in the younger age group. It demonstrates the high requirements of the labour market in terms of the quality of the workforce. Also, it is highlighted that young people are exposed to a highly paid job. The following research methods are applied in the presented paper: statistical (selection, grouping, observation, trend, etc.) and qualitative research (in-depth interview), as well as analysis, induction and comparison methods. The article presents the data by the National Statistics Office of Georgia and the Ministry of Agriculture of Georgia, policy documents of the Parliament of Georgia, scientific papers by Georgian and foreign scientists, analytical reports, publications and EU research materials on similar issues. The work estimates the students and graduates employment problems existing in the state development strategy and priorities. The measures to overcome the challenges are defined. The article describes the mechanisms of state regulation of youth employment and the ways of improving this regulatory base. As for major findings, it should be highlighted that the main problems are: lack of experience and incompatibility of youth qualification with the requirements of the labor market. Accordingly, it is concluded that the unemployment rate of young people in Georgia is increasing.

Keywords: migration of youth, youth employment, migration management, youth employment and unemployment

Procedia PDF Downloads 151
788 Dietary Exposure of Heavy Metals through Cereals Commonly Consumed by Dhaka City Residents

Authors: A. Md. Bayejid Hosen, B. M Zakir Hossain Howlader, C. Yearul Kabir

Abstract:

Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals in cereals collected from different wholesale markets of Dhaka City. One hundred and sixty cereal samples were collected and analyzed for determination of heavy metals. Heavy metals were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A total of six heavy metals– lead, chromium, cadmium, mercury, arsenic and antimony were estimated. The average concentrations of heavy metals in cereals fall within the safe limit established by regulatory organizations except for Pb (152.4 μg/100g) and Hg (15.13 μg/100g) which exceeded the safe limits. BARI gom-26 was the highest source of Pb (304.1 μg/100g) whereas Haski-29 rice variety contained the highest amount of Hg (60.85 μg/100g). Though all the cereal varieties contained approximately same amount of Cr the naizer sail varieties contained huge amount of Cr (171.8 μg/100g). Among all the cereal samples miniket rice varieties contained the least amount of heavy metals. The concentration of Cr (63.24 μg/100g), Cd (5.54 μg/100g) and As (3.26 μg/100g) in all cereals were below the safe limits. The daily intake of heavy metals was determined using the total weight of cereals consumed each day multiplied by the concentrations of heavy metals in cereals. The daily intake was compared with provisional maximum tolerable daily intake set by different regulatory organizations. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and as (13.6 μg) through cereals were below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). As the main meal of average Bangladeshi people is boiled rice served with some sorts of vegetables, our findings indicate that the residents of Dhaka City are at risk from Pb and Cr contamination. Potential health risks from exposure to heavy metals in self-planted cereals need more attention.

Keywords: contamination, dietary exposure, heavy metals, human health, ICP-MS

Procedia PDF Downloads 453
787 Exploring the Potential of Reduced Graphene Oxide/Polyaniline (rGo/PANI) Nanocomposites for High-Performance Supercapacitor Application

Authors: Ahmad Umar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

This study introduces a facile synthesis method for synthesizing reduced graphene oxide (rGO) nanosheets with surface decoration of polyaniline (PANI). The resultant rGO@PANI nanocomposite (NC) exhibit substantial potential as advanced electrode materials for high-performance supercapacitors. The strategic integration of PANI onto the rGO surface serves dual purposes, effectively mitigating the agglomeration of rGO films and augmenting their utility in supercapacitor applications. The PANI coating manifests a highly porous and nanosized morphology, fostering increased surface area and optimized mass transport by reducing diffusion kinetics. The nanosized structure of PANI contributes to the maximization of active sites, thereby bolstering the efficacy of the nanocomposites for diverse applications. The inherent conductive nature of the rGO surface significantly expedites electron transport, thereby amplifying the overall electrochemical performance of the nanocomposites. To systematically evaluate the influence of PANI concentration on the electrode performance, varying concentrations of PANI were incorporated. Notably, an elevated PANI concentration was found to enhance the response owing to the unique morphology of PANI. Remarkably, the 5% rGO@PANI NC emerged as the most promising candidate, demonstrating exceptional response characteristics with a specific capacitance of 314.2 F/g at a current density of 1 A/g. Furthermore, this catalyst exhibits outstanding long-term stability, retaining approximately 92% of its capacitance even after enduring 4000 cycles. This research underscores the significance of the synergistic integration of rGO and PANI in the design of high-performance supercapacitors. The elucidation of the underlying mechanisms governing the improved electrochemical properties contributes to the fundamental understanding of nanocomposite behavior, thereby paving the way for the rational design of next-generation energy storage materials.

Keywords: reduced graphene oxide, polyaniline, nanocomposites, supercapacitors, energy storage

Procedia PDF Downloads 63
786 Effects of Supplementary Cementitious Materials on Early Age Thermal Properties of Cement Paste

Authors: Maryam Ghareh Chaei, Masuzyo Chilwesa, Ali Akbarnezhad, Arnaud Castel, Redmond Lloyd, Stephen Foster

Abstract:

Cement hydration is an exothermic chemical reaction generally leading to a rise in concrete’s temperature. This internal heating of concrete may, in turn, lead to a temperature difference between the hotter interior and the cooler exterior of concrete and thus differential thermal stresses in early ages which could be particularly significant in mass concrete. Such differential thermal stresses result in early age thermal cracking of concrete when exceeding the concrete’s tensile strength. The extent of temperature rise and thus early age differential thermal stresses is generally a function of hydration heat intensity, thermal properties of concrete and size of the concrete element. Both hydration heat intensity and thermal properties of concrete may vary considerably with variations in the type cementitious materials and other constituents. With this in mind, partial replacement of cement with supplementary cementitious materials including fly ash and ground granulated blast furnace slag has been investigated widely as an effective strategy to moderate the heat generation rate and thus reduce the risk of early age thermal cracking of concrete. However, there is currently a lack of adequate literature on effect of partial replacement of cement with fly ash and/or ground granulated blast furnace slag on the thermal properties of concrete. This paper presents the results of an experimental conducted to evaluate the effect of addition of varying percentages of fly ash (up to 60%) and ground granulated blast furnace slag (up to 50%) on the heat capacity and thermal conductivity of early age cement paste. The water to cementitious materials ratio is kept 0.45 for all the paste samples. The results of the experimental studies were used in a numerical analysis performed using Comsol Multiphysics to highlight the effects of variations in the thermal properties of concrete, due to variations in the type of aggregate and content of supplemenraty cementitious materials, on the risk of early age cracking of a concrete raft.

Keywords: thermal diffusivity, early age thermal cracking, concrete, supplementary cementitious materials

Procedia PDF Downloads 255
785 Mapping the Pain Trajectory of Breast Cancer Survivors: Results from a Retrospective Chart Review

Authors: Wilfred Elliam

Abstract:

Background: Pain is a prevalent and debilitating symptom among breast cancer patients, impacting their quality of life and overall well-being. The experience of pain in this population is multifaceted, influenced by a combination of disease-related factors, treatment side effects, and individual characteristics. Despite advancements in cancer treatment and pain management, many breast cancer patients continue to suffer from chronic pain, which can persist long after the completion of treatment. Understanding the progression of pain in breast cancer patients over time and identifying its correlates is crucial for effective pain management and supportive care strategies. The purpose of this research is to understand the patterns and progression of pain experienced by breast cancer survivors over time. Methods: Data were collected from breast cancer patients at Hartford Hospital at four time points: baseline, 3, 6 and 12 weeks. Key variables measured include pain, body mass index (BMI), fatigue, musculoskeletal pain, sleep disturbance, and demographic variables (age, employment status, cancer stage, and ethnicity). Binomial generalized linear mixed models were used to examine changes in pain and symptoms over time. Results: A total of 100 breast cancer patients aged  18 years old were included in the analysis. We found that the effect of time on pain (p = 0.024), musculoskeletal pain (p= <0.001), fatigue (p= <0.001), and sleep disturbance (p-value = 0.013) were statistically significant with pain progression in breast cancer patients. Patients using aromatase inhibitors have worse fatigue (<0.05) and musculoskeletal pain (<0.001) compared to patients with Tamoxifen. Patients who are obese (<0.001) and overweight (<0.001) are more likely to report pain compared to patients with normal weight. Conclusion: This study revealed the complex interplay between various factors such as time, pain, sleep disturbance in breast cancer patient. Specifically, pain, musculoskeletal pain, sleep disturbance, fatigue exhibited significant changes across the measured time points, indicating a dynamic pain progression in these patients. The findings provide a foundation for future research and targeted interventions aimed at improving pain in breast cancer patient outcomes.

Keywords: breast cancer, chronic pain, pain management, quality of life

Procedia PDF Downloads 36
784 Clinical Use of Opioid Analgesics in China: An Adequacy of Consumption Measure

Authors: Mengjia Zhi, Xingmei Wei, Xiang Gao, Shiyang Liu, Zhiran Huang, Li Yang, Jing Sun

Abstract:

Background: To understand the consumption trend of opioid analgesics and the consumption adequacy of opioid analgesic treatment for moderate to severe pain in China, as well as the pain control level of China with international perspective. Importance: To author’s best knowledge, this is the first study in China to measure the adequacy of opioid analgesic treatment for moderate to severe pain considering disease pattern and with the standardized pain treatment guideline. Methods: A retrospective analysis was carried out to show the consumption frequency (daily defined doses, DDDs) of opioid analgesics and its trend in China from 2006 to 2016. Adequacy of consumption measure (ACM) was used to measure the number of needed morphine equivalents and the overall adequacy of opioid analgesic treatment of moderate to severe pain in China, and compared with international data. Results: The consumption frequency of opioid analgesics (DDDs) in China increased from 13,200,000 DDDs in 2006 to 44,200,000 DDDs in 2016, and showed an increasing trend. The growth rate was faster at first, especially in 2013, then slowed down, decreased slightly in 2015. The ACM of China increased from 0.0032 in 2006 to 0.0074 in 2016, with an overall trend of growth. The ACM level of China has been always a very poor level during 2006-2016. Conclusion: The consumption of opioid analgesics for the treatment of moderate to severe pain in China has always been inadequate. There is a huge gap between China and the international level. There are many reasons behind this problem, which lie in different aspects, including medical staff, patients and the public, health systems and social & cultural aspects. It is necessary to strengthen the training and education of medical staff and the patients, to use mass media to disseminate scientific knowledge of pain management, to encourage communications between doctors and patients, to improve regulatory system for the controlled medicines and the overall health systems, and to balance the regulatory goal for avoidance of abuse, and the social goal of meeting the increasing needs of the people for better life.

Keywords: opioid analgesics, adequate consumption measure, pain control, China

Procedia PDF Downloads 214
783 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.

Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy (FTIR), micro-Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)

Procedia PDF Downloads 327
782 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals

Authors: Yunus Onur Yildiz, Mesut Kirca

Abstract:

In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.

Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation

Procedia PDF Downloads 280
781 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations

Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta

Abstract:

The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).

Keywords: absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle

Procedia PDF Downloads 114
780 Characterization of Antibiotic Resistance in Cultivable Enterobacteriaceae Isolates from Different Ecological Niches in the Eastern Cape, South Africa

Authors: Martins A. Adefisoye, Mpaka Lindelwa, Fadare Folake, Anthony I. Okoh

Abstract:

Evolution and rapid dissemination of antibiotic resistance from one ecosystem to another has been responsible for wide-scale epidemic and endemic spreads of multi-drug resistance pathogens. This study assessed the prevalence of Enterobacteriaceae in different environmental samples, including river water, hospital effluents, abattoir wastewater, animal rectal swabs and faecal droppings, soil, and vegetables, using standard microbiological procedure. The identity of the isolates were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrophotometry (MALDI-TOF) while the isolates were profiled for resistance against a panel of 16 antibiotics using disc diffusion (DD) test, and the occurrence of resistance genes (ARG) was determined by polymerase chain reactions (PCR). Enterobacteriaceae counts in the samples range as follows: river water 4.0 × 101 – 2.0 × 104 cfu/100 ml, hospital effluents 1.5 × 103 – 3.0 × 107 cfu/100 ml, municipal wastewater 2.3 × 103 – 9.2 × 104 cfu/100 ml, faecal droppings 3.0 × 105 – 9.5 × 106 cfu/g, animal rectal swabs 3.0 × 102 – 2.9 × 107 cfu/ml, soil 0 – 1.2 × 105 cfu/g and vegetables 0 – 2.2 × 107 cfu/g. Of the 700 randomly selected presumptive isolates subjected to MALDI-TOF analysis, 129 (18.4%), 68 (9.7%), 67 (9.5%), 41 (5.9%) were E. coli, Klebsiella spp., Enterobacter spp., and Citrobacter spp. respectively while the remaining isolates belong to other genera not targeted in the study. The DD test shows resistance ranging between 91.6% (175/191) for cefuroxime and (15.2%, 29/191) for imipenem The predominant multiple antibiotic resistance phenotypes (MARP), (GM-AUG-AP-CTX-CXM-CIP-NOR-NI-C-NA-TS-T-DXT) occurred in 9 Klebsiella isolates. The multiple antibiotic resistance indices (MARI) the isolates (range 0.17–1.0) generally showed >95% had MARI above the 0.2 thresholds, suggesting that most of the isolates originate from high-risk environments with high antibiotic use and high selective pressure for the emergence of resistance. The associated ARG in the isolates include: bla TEM 61.9 (65), bla SHV 1.9 (2), bla OXA 8.6 (9), CTX-M-2 8.6 (9), CTX-M-9 6.7 (7), sul 2 26.7 (28), tet A 16.2 (17), tet M 17.1 (18), aadA 59.1 (62), strA 34.3 (36), aac(3)A 19.1 (20), (aa2)A 7.6 (8), and aph(3)-1A 10.5 (11). The results underscore the need for preventative measures to curb the proliferation of antibiotic-resistant bacteria including Enterobacteriaceae to protect public health.

Keywords: enterobacteriaceae, antibiotic-resistance, MALDI-TOF, resistance genes, MARP, MARI, public health

Procedia PDF Downloads 155
779 Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania

Authors: Y. A. Prada, Fanny Guzman, Rafael Cabanzo, John J. Castillo, Enrique Mejia-Ospino

Abstract:

In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania.

Keywords: biosensing, fluorescence, Leishmania, peptide-gold nanoclusters, proteophosphoglycans

Procedia PDF Downloads 173
778 Self-Esteem and Emotional Intelligence’s Association to Nutritional Status in Adolescent Schoolchildren in Chile

Authors: Peter Mc Coll, Alberto Caro, Chiara Gandolfo, Montserrat Labbe, Francisca Schnaidt, Michela Palazzi

Abstract:

Self-esteem and emotional intelligence are variables that are related to people's nutritional status. Self-esteem may be at low levels in people living with obesity, while emotional intelligence can play an important role in the way people living with obesity cope. The objective of the study was to measure the association between self-esteem and emotional intelligence to nutritional status in adolescent population. Methodology: A cross-sectional study was carried out with 179 adolescent schoolchildren between 13 and 19 years old from a public school. The objective was to evaluate nutritional status; weight and height were measured by calculating the body mass index and Z score. Self-esteem was evaluated using the Coopersmith Self-esteem Inventory adapted by Brinkmann and Segure. Emotional intelligence was measured using the Emotional Quotient Inventory: short, by Bar On, adapted questionnaire, translated into Spanish by López Zafra. For statistical analysis: Pearson's Chi-square test, Pearson's correlation, and odd ratio calculation were used, with a p value at a significance level < 5%. Results: The study group was composed of 71% female and 29% male. The nutritional status was distributed as eutrophic 41.9%, overweight 20.1%, and obesity 21.1%. In relation to self-esteem, 44.1% presented low and very low levels, without differences by gender. Emotional intelligence was distributed: low 3.4%, medium 81%, and high 13.4% -no differences according to gender. The association between nutritional status (overweight and obesity) with low and very low self-esteem, an odds ratio of 2.5 (95% CI 1.12 – 5.59) was obtained with a p-value = 0.02. The correlation analysis between the intrapersonal sub-dimension emotional intelligence scores and the Z score of nutritional status presented a negative correlation of r = - 0.209 with a p-value < 0.005. The correlation between emotional intelligence subdimension stress management with Z score presented a positive correlation of r = 0.0161 with a p-value < 0.05. In conclusion, the group of adolescents studied had a high prevalence of overweight and obesity, a high prevalence of low self-esteem, and a high prevalence of average emotional intelligence. Overweight and obese adolescents were 2.5 times more likely to have low self-esteem. As overweight and obesity increase, self-esteem decreases, and the ability to manage stress increases.

Keywords: self-esteem, emotional intelligence, obesity, adolescent, nutritional status

Procedia PDF Downloads 63
777 Thyroid Stimulating Hormone in Relation with Cardiometabolic and Metabolic Syndrome Risks among Obese Children

Authors: Mustafa Metin Donma

Abstract:

Thyroid dysfunction is a great health problem frequently observed in obesity. Thyroid stimulating hormone (TSH) governs the complicated network confined to glucose and fat metabolism. The close relations between obesity and the performance of TSH point out future potential health problems related to cardiometabolic risk (CMR) associated with cardiovascular diseases (CVDs) and metabolic syndrome (MetS). These matter particularly in childhood obesity. The aim of this study was to confirm the associations in pediatric age group between TSH and CMR, which may lead to CVDs and MetS in adulthood, using the recently introduced cardiac and MetS indices. Three groups, being obese (OB), morbid obese (MO) and metabolic syndrome (MetS), comprise forty-seven, ninety-two and thirty-six children, respectively. Informed consent forms were taken from parents or participants. The study protocol was approved by Ethics Committee of the institution. Groups were constituted according to WHO body mass index percentiles tables prepared based on age and gender. These percentiles for OB and MO groups were defined as between ‘95 and 99’ and ‘above 99’, respectively. The third group had MetS components. Anthropometric measurements and routine laboratory tests were performed. Advanced Donma Cardiac Index (ADCI) and Diagnostic Obesity Notation Model Assessment Metabolic Syndrome Index (DMetSI) were calculated.  Statistical analysis was performed. The same concentrations in three groups were obtained for each thyroid hormone, triiodothyronin, and thyroxin. Thyroid stimulating hormone level was higher in MO than OB and in MetS than MO group. In MetS group, increased values were obtained for ADCI and DMetSI compared to values calculated for MO group (p<0.001). In the same group, there were positive correlations between TSH and ADCI as well as DMetSI. Any such correlation was not observed in OB or MO group. The associations found between TSH and two indices, ADCI and DMetSI, in MetS group but not in OB or MO group, suggested that the consideration of TSH, as well as these two indices during the evaluation of children from MetS point of view, may point out the potential cardiometabolic risk and contribute much to the correct diagnosis of the syndrome.

Keywords: cardiometabolic, metabolic syndrome, obese children, thyroid stimulating hormone

Procedia PDF Downloads 8
776 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary

Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet

Abstract:

The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.

Keywords: dry conservation, optimization, sizing, water station

Procedia PDF Downloads 265
775 Interstellar Mission to Wolf 359: Possibilities for the Future

Authors: Rajasekar Anand Thiyagarajan

Abstract:

One of the driving forces of mankind is the “le r`eve d'etoiles" or the “dream of stars", which has been the dynamo of our civilization. Since the beginning of the dawn of the civilization, mankind has looked upon the heavens with wonder and he has tried to understand the meaning of those twinkling lights. As human history has progressed, the understanding of those twinkling lights has progressed, as we now know a lot of information about stars. However, the dream of stars or the dream of reaching those stars always remains within the expectations of mankind. In fact, the needs of the civilization constantly drive for better knowledge and the capability of reaching those stars is one such way that knowledge and exultation can be achieved. This paper takes a futuristic case study of an interstellar mission to Wolf 359, which is approximately 8.3 light years away from us. In terms of galactic distances, 8.3 light years is not much, but as far as present space technology capabilities are concerned, it is next to impossible for us to reach those distances. Several studies have been conducted on various missions to Alpha Centauri and other nearby stars such as Barnard's star and Wolf 359. However, taking a more distant star such as Wolf 359 will help test the mankind's drive for interstellar exploration, as exotic means of travel are needed. This paper will take a futuristic case study of the event and various possibilities of space travel will be discussed in detail. Comprehensive tables and graphs will be given, which will depict the amount of time that will pass at each mode of travel and more importantly some idea on the cost in terms of energy as well as money will be discussed within today's context. In addition, prerequisites to an interstellar mission to Wolf 359 will be given in detail as well as a sample mission which will take place to that particular destination. Even though the possibility of such a mission is probably nonexistent for the 21st century, it is essential to do these exercises so that mankind's understanding of the universe will be increased. In addition, this paper hopes to establish some general guidelines for such an interstellar mission.

Keywords: wolf 359, interstellar mission, alpha centauri, core diameter, core length, reflector thickness enrichment, gas temperature, reflector temperature, power density, mass of the space craft, acceleration of the space craft, time expansion

Procedia PDF Downloads 433