Search results for: discrete location problems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8827

Search results for: discrete location problems

5377 Emergence of Information Centric Networking and Web Content Mining: A Future Efficient Internet Architecture

Authors: Sajjad Akbar, Rabia Bashir

Abstract:

With the growth of the number of users, the Internet usage has evolved. Due to its key design principle, there is an incredible expansion in its size. This tremendous growth of the Internet has brought new applications (mobile video and cloud computing) as well as new user’s requirements i.e. content distribution environment, mobility, ubiquity, security and trust etc. The users are more interested in contents rather than their communicating peer nodes. The current Internet architecture is a host-centric networking approach, which is not suitable for the specific type of applications. With the growing use of multiple interactive applications, the host centric approach is considered to be less efficient as it depends on the physical location, for this, Information Centric Networking (ICN) is considered as the potential future Internet architecture. It is an approach that introduces uniquely named data as a core Internet principle. It uses the receiver oriented approach rather than sender oriented. It introduces the naming base information system at the network layer. Although ICN is considered as future Internet architecture but there are lot of criticism on it which mainly concerns that how ICN will manage the most relevant content. For this Web Content Mining(WCM) approaches can help in appropriate data management of ICN. To address this issue, this paper contributes by (i) discussing multiple ICN approaches (ii) analyzing different Web Content Mining approaches (iii) creating a new Internet architecture by merging ICN and WCM to solve the data management issues of ICN. From ICN, Content-Centric Networking (CCN) is selected for the new architecture, whereas, Agent-based approach from Web Content Mining is selected to find most appropriate data.

Keywords: agent based web content mining, content centric networking, information centric networking

Procedia PDF Downloads 475
5376 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach

Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas

Abstract:

Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.

Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality

Procedia PDF Downloads 188
5375 Memory and Narratives Rereading before and after One Week

Authors: Abigail M. Csik, Gabriel A. Radvansky

Abstract:

As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals.

Keywords: memory, event cognition, distributed practice, consolidation

Procedia PDF Downloads 225
5374 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection

Procedia PDF Downloads 228
5373 Culturable Diversity of Halophilic Bacteria in Chott Tinsilt, Algeria

Authors: Nesrine Lenchi, Salima Kebbouche-Gana, Laddada Belaid, Mohamed Lamine Khelfaoui, Mohamed Lamine Gana

Abstract:

Saline lakes are extreme hypersaline environments that are considered five to ten times saltier than seawater (150 – 300 g L-1 salt concentration). Hypersaline regions differ from each other in terms of salt concentration, chemical composition and geographical location, which determine the nature of inhabitant microorganisms. In order to explore the diversity of moderate and extreme halophiles Bacteria in Chott Tinsilt (East of Algeria), an isolation program was performed. In the first time, water samples were collected from the saltern during pre-salt harvesting phase. Salinity, pH and temperature of the sampling site were determined in situ. Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions. Isolates were obtained by plating out the samples in complex and synthetic media. In this study, seven halophiles cultures of Bacteria were isolated. Isolates were studied for Gram’s reaction, cell morphology and pigmentation. Enzymatic assays (oxidase, catalase, nitrate reductase and urease), and optimization of growth conditions were done. The results indicated that the salinity optima varied from 50 to 250 g L-1, whereas the optimum of temperature range from 25°C to 35°C. Molecular identification of the isolates was performed by sequencing the 16S rRNA gene. The results showed that these cultured isolates included members belonging to the Halomonas, Staphylococcus, Salinivibrio, Idiomarina, Halobacillus Thalassobacillus and Planococcus genera and what may represent a new bacterial genus.

Keywords: bacteria, Chott, halophilic, 16S rRNA

Procedia PDF Downloads 281
5372 Deep Learning to Enhance Mathematics Education for Secondary Students in Sri Lanka

Authors: Selvavinayagan Babiharan

Abstract:

This research aims to develop a deep learning platform to enhance mathematics education for secondary students in Sri Lanka. The platform will be designed to incorporate interactive and user-friendly features to engage students in active learning and promote their mathematical skills. The proposed platform will be developed using TensorFlow and Keras, two widely used deep learning frameworks. The system will be trained on a large dataset of math problems, which will be collected from Sri Lankan school curricula. The results of this research will contribute to the improvement of mathematics education in Sri Lanka and provide a valuable tool for teachers to enhance the learning experience of their students.

Keywords: information technology, education, machine learning, mathematics

Procedia PDF Downloads 83
5371 Analysis of Shallow Foundation Using Conventional and Finite Element Approach

Authors: Sultan Al Shafian, Mozaher Ul Kabir, Khondoker Istiak Ahmad, Masnun Abrar, Mahfuza Khanum, Hossain M. Shahin

Abstract:

For structural evaluation of shallow foundation, the modulus of subgrade reaction is one of the most widely used and accepted parameter for its ease of calculations. To determine this parameter, one of the most common field method is Plate Load test method. In this field test method, the subgrade modulus is considered for a specific location and according to its application, it is assumed that the displacement occurred in one place does not affect other adjacent locations. For this kind of assumptions, the modulus of subgrade reaction sometimes forced the engineers to overdesign the underground structure, which eventually results in increasing the cost of the construction and sometimes failure of the structure. In the present study, the settlement of a shallow foundation has been analyzed using both conventional and numerical analysis. Around 25 plate load tests were conducted on a sand fill site in Bangladesh to determine the Modulus of Subgrade reaction of ground which is later used to design a shallow foundation considering different depth. After the collection of the field data, the field condition was appropriately simulated in a finite element software. Finally results obtained from both the conventional and numerical approach has been compared. A significant difference has been observed in the case of settlement while comparing the results. A proper correlation has also been proposed at the end of this research work between the two methods of in order to provide the most efficient way to calculate the subgrade modulus of the ground for designing the shallow foundation.

Keywords: modulus of subgrade reaction, shallow foundation, finite element analysis, settlement, plate load test

Procedia PDF Downloads 182
5370 Temporal Case-Based Reasoning System for Automatic Parking Complex

Authors: Alexander P. Eremeev, Ivan E. Kurilenko, Pavel R. Varshavskiy

Abstract:

In this paper, the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR.

Keywords: analogous reasoning, case-based reasoning, intelligent decision support systems, temporal reasoning

Procedia PDF Downloads 529
5369 Trends in Solving Assembly Job Shop Scheduling Problem: A Review

Authors: Midhun Paul, T. Radha Ramanan

Abstract:

The objective of this work is to present a state-of-the-art literature review highlighting the challenges in the research of the scheduling of assembly job shop problem and providing an insight on how the future directions of the research would be. The number of work has been substantial that it requires a review to enable one to understand the origin of the research and how it is getting evolved. This review paper presents a comprehensive review of the literature dealing with various studies carried on assembly job shop scheduling. The review details the evolution of the AJS from the perspective of other scheduling problems and also presents a classification scheme. The work also identifies the potential directions for future research, which we believe to be worthwhile considering.

Keywords: assembly job shop, future directions, manufacturing, scheduling

Procedia PDF Downloads 413
5368 An Improved GA to Address Integrated Formulation of Project Scheduling and Material Ordering with Discount Options

Authors: Babak H. Tabrizi, Seyed Farid Ghaderi

Abstract:

Concurrent planning of the resource constraint project scheduling and material ordering problems have received significant attention within the last decades. Hence, the issue has been investigated here with the aim to minimize total project costs. Furthermore, the presented model considers different discount options in order to approach the real world conditions. The incorporated alternatives consist of all-unit and incremental discount strategies. On the other hand, a modified version of the genetic algorithm is applied in order to solve the model for larger sizes, in particular. Finally, the applicability and efficiency of the given model is tested by different numerical instances.

Keywords: genetic algorithm, material ordering, project management, project scheduling

Procedia PDF Downloads 302
5367 Integrating a Six Thinking Hats Approach Into the Prewriting Stage of Argumentative Writing In English as a Foreign Language: A Chinese Case Study of Generating Ideas in Action

Authors: Mei Lin, Chang Liu

Abstract:

Argumentative writing is the most prevalent genre in diverse writing tests. How to construct academic arguments is often regarded as a difficult task by most English as a foreign language (EFL) learners. A failure to generate enough ideas and organise them coherently and logically as well as a lack of competence in supporting their arguments with relevant evidence are frequent problems faced by EFL learners when approaching an English argumentative writing task. Overall, these problems are closely related to planning, and planning an argumentative writing at pre-writing stage plays a vital role in a good academic essay. However, how teachers can effectively guide students to generate ideas is rarely discussed in planning English argumentative writing, apart from brainstorming. Brainstorming has been a common practice used by teachers to help students generate ideas. However, some limitations of brainstorming suggest that it can help students generate many ideas, but ideas might not necessarily be coherent and logic, and could sometimes impede production. It calls for a need to explore effective instructional strategies at pre-writing stage of English argumentative writing. This paper will first examine how a Six Thinking Hats approach can be used to provide a dialogic space for EFL learners to experience and collaboratively generate ideas from multiple perspectives at pre-writing stage. Part of the findings of the impact of a twelve-week intervention (from March to July 2021) on students learning to generate ideas through engaging in group discussions of using Six Thinking Hats will then be reported. The research design is based on the sociocultural theory. The findings present evidence from a mixed-methods approach and fifty-nine participants from two first-year undergraduate natural classes in a Chinese university. Analysis of pre- and post- questionnaires suggests that participants had a positive attitude toward the Six Thinking Hats approach. It fosters their understanding of prewriting and argumentative writing, helps them to generate more ideas not only from multiple perspectives but also in a systematic way. A comparison of participants writing plans confirms an improvement in generating counterarguments and rebuttals to support their arguments. Above all, visual and transcripts data of group discussion collected from different weeks throughout the intervention enable teachers and researchers to ‘see’ the hidden process of learning to generate ideas in action.

Keywords: argumentative writing, innovative pedagogy, six thinking hats, dialogic space, prewriting, higher education

Procedia PDF Downloads 87
5366 Sustainable Design for Building Envelope in Hot Climates: A Case Study for the Role of the Dome as a Component of an Envelope in Heat Exchange

Authors: Akeel Noori Almulla Hwaish

Abstract:

Architectural design is influenced by the actual thermal behaviour of building components, and this in turn depends not only on their steady and periodic thermal characteristics, but also on exposure effects, orientation, surface colour, and climatic fluctuations at the given location. Design data and environmental parameters should be produced in an accurate way for specified locations, so that architects and engineers can confidently apply them in their design calculations that enable precise evaluation of the influence of various parameters relating to each component of the envelope, which indicates overall thermal performance of building. The present paper will be carried out with an objective of thermal behaviour assessment and characteristics of the opaque and transparent parts of one of the very unique components used as a symbolic distinguished element of building envelope, its thermal behaviour under the impact of solar temperatures, and its role in heat exchange related to a specific U-value of specified construction materials alternatives. The research method will consider the specified Hot-Dry weather and new mosque in Baghdad, Iraq as a case study. Also, data will be presented in light of the criteria of indoor thermal comfort in terms of design parameters and thermal assessment for a“model dome”. Design alternatives and considerations of energy conservation, will be discussed as well using comparative computer simulations. Findings will be incorporated to outline the conclusions clarifying the important role of the dome in heat exchange of the whole building envelope for approaching an indoor thermal comfort level and further research in the future.

Keywords: building envelope, sustainable design, dome impact, hot-climates, heat exchange

Procedia PDF Downloads 475
5365 Calculation of Solar Ultraviolet Irradiant Exposure of the Cornea through Sunglasses

Authors: Mauro Masili, Fernanda O. Duarte, Liliane Ventura

Abstract:

Ultraviolet (UV) radiation is electromagnetic waves from 100 – 400 nm wavelength. The World Health Organization and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend guidelines on the exposure of the eyes to UV radiation because it is correlated to ophthalmic diseases. Those exposure limits for an 8-h period are 1) UV radiant exposure should not exceed 30 J/m2 when irradiance is spectrally weighted using an actinic action spectrum; 2) unweighted radiant exposure in the UV-A spectral region 315 – 400 nm should not exceed 10 kJ/m2. Sunglasses play an important role in preventing eye injuries related to Sun exposure. We have calculated the direct and diffuse solar UV irradiance in a geometry that refers to an individual wearing a sunglass, in which the solar rays strike on a vertical surface. The diffuse rays are those scattered from the atmosphere and from the local environment. The calculations used the open-source SMARTS2 spectral model, in which we assumed a clear sky condition, aside from information about site location, date, time, ozone column, aerosols, and turbidity. In addition, we measured the spectral transmittance of a typical sunglasses lens and the global solar irradiance was weighted with the spectral transmittance profile of the lens. The radiant exposure incident on the eye’s surface was calculated in the UV and UV-A ranges following the ICNIRP’s recommendations for each day of the year. The tested lens failed the UV-A safe limit, while the UV limit failed to comply with this limit after the aging process. Hence, the ICNIRP safe limits should be considered in the standards to increase the protection against UV radiation on the eye.

Keywords: ICNIRP safe limits, ISO-12312-1, sunglasses, ultraviolet radiation

Procedia PDF Downloads 93
5364 University Arabic/Foreign Language Teacher's Competences, Professionalism and the Challenges and Opportunities

Authors: Abeer Heider

Abstract:

The article considers the definitions of teacher’s competences and professionalism from different perspectives of Arab and foreign scientists. A special attention is paid to the definition, classification of the stages and components of University Arabic /foreign language teacher’s professionalism. The results of the survey are offered and recommendations are given. In this paper, only some of the problems of defining professional competence and professionalism of the university Arabic/ foreign language teacher have been mentioned. It needs much more analysis and discussion, because the quality of training today’s competitive and mobile students with a good knowledge of foreign languages depends directly on the teachers’ professional level.

Keywords: teacher’s professional competences, Arabic/ foreign language teacher’s professionalism, teacher evaluation, teacher quality

Procedia PDF Downloads 456
5363 Assessing the Impacts of Long-Range Forest Fire Emission Transport on Air Quality in Toronto, Ontario, Using MODIS Fire Data and HYSPLIT Trajectories

Authors: Bartosz Osiecki, Jane Liu

Abstract:

Pollutants emitted from forest fires such as PM₂.₅ and carbon monoxide (CO) have been found to impact the air quality of distant regions through long-range transport. PM₂.₅ is of particular concern due to its transport capacity and implications for human respiratory and cardiovascular health. As such, significant increases in PM₂.₅ concentrations have been exhibited in urban areas downwind of fire sources. This study seeks to expand on this literature by evaluating the impacts of long-range forest fire emission transport on air quality in Toronto, Ontario, as a means of evaluating the vulnerability of this major urban center to distant fire events. In order to draw correlations between the fire event and air pollution episode in Toronto, MODIS fire count data and HYPLSIT trajectories are used to assess the date, location, and severity of the fire and track the trajectory of emissions (respectively). Forward and back-trajectories are run, terminating at the West Toronto air monitoring station. PM₂.₅ and CO concentrations in Toronto during September 2017 are found to be significantly elevated, which is likely attributable to the fire activity. Other sites in Ontario including Toronto (East, North, Downtown), Mississauga, Brampton, and Hamilton (Downtown) exhibit similar peaks in PM₂.₅ concentrations. This work sheds light on the non-local, natural factors influencing air quality in urban areas. This is especially important in the context of climate change which is expected to exacerbate intense forest fire events in the future.

Keywords: air quality, forest fires, PM₂.₅, Toronto

Procedia PDF Downloads 130
5362 Employing Operations Research at Universities to Build Management Systems

Authors: Abdallah A. Hlayel

Abstract:

Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.

Keywords: best candidates' method, decision making, decision support system, operations research

Procedia PDF Downloads 445
5361 Instance Selection for MI-Support Vector Machines

Authors: Amy M. Kwon

Abstract:

Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.

Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning

Procedia PDF Downloads 34
5360 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 136
5359 Dividend Policy in Family Controlling Firms from a Governance Perspective: Empirical Evidence in Thailand

Authors: Tanapond S.

Abstract:

Typically, most of the controlling firms are relate to family firms which are widespread and important for economic growth particularly in Asian Pacific region. The unique characteristics of the controlling families tend to play an important role in determining the corporate policies such as dividend policy. Given the complexity of the family business phenomenon, the empirical evidence has been unclear on how the families behind business groups influence dividend policy in Asian markets with the prevalent existence of cross-shareholdings and pyramidal structure. Dividend policy as one of an important determinant of firm value could also be implemented in order to examine the effect of the controlling families behind business groups on strategic decisions-making in terms of a governance perspective and agency problems. The purpose of this paper is to investigate the impact of ownership structure and concentration which are influential internal corporate governance mechanisms in family firms on dividend decision-making. Using panel data and constructing a unique dataset of family ownership and control through hand-collecting information from the nonfinancial companies listed in Stock Exchange of Thailand (SET) between 2000 and 2015, the study finds that family firms with large stakes distribute higher dividends than family firms with small stakes. Family ownership can mitigate the agency problems and the expropriation of minority investors in family firms. To provide insight into the distinguish between ownership rights and control rights, this study examines specific firm characteristics including the degrees of concentration of controlling shareholders by classifying family ownership in different categories. The results show that controlling families with large deviation between voting rights and cash flow rights have more power and affect lower dividend payment. These situations become worse when second blockholders are families. To the best knowledge of the researcher, this study is the first to examine the association between family firms’ characteristics and dividend policy from the corporate governance perspectives in Thailand with weak investor protection environment and high ownership concentration. This research also underscores the importance of family control especially in a context in which family business groups and pyramidal structure are prevalent. As a result, academics and policy makers can develop markets and corporate policies to eliminate agency problem.

Keywords: agency theory, dividend policy, family control, Thailand

Procedia PDF Downloads 290
5358 System Devices to Reduce Particulate Matter Concentrations in Railway Metro Systems

Authors: Armando Cartenì

Abstract:

Within the design of sustainable transportation engineering, the problem of reducing particulate matter (PM) concentrations in railways metro system was not much discussed. It is well known that PM levels in railways metro system are mainly produced by mechanical friction at the rail-wheel-brake interactions and by the PM re-suspension caused by the turbulence generated by the train passage, which causes dangerous problems for passenger health. Starting from these considerations, the aim of this research was twofold: i) to investigate the particulate matter concentrations in a ‘traditional’ railways metro system; ii) to investigate the particulate matter concentrations of a ‘high quality’ metro system equipped with design devices useful for reducing PM concentrations: platform screen doors, rubber-tyred and an advanced ventilation system. Two measurement surveys were performed: one in the ‘traditional’ metro system of Naples (Italy) and onother in the ‘high quality’ rubber-tyred metro system of Turin (Italy). Experimental results regarding the ‘traditional’ metro system of Naples, show that the average PM10 concentrations measured in the underground station platforms are very high and range between 172 and 262 µg/m3 whilst the average PM2,5 concentrations range between 45 and 60 µg/m3, with dangerous problems for passenger health. By contrast the measurements results regarding the ‘high quality’ metro system of Turin show that: i) the average PM10 (PM2.5) concentrations measured in the underground station platform is 22.7 µg/m3 (16.0 µg/m3) with a standard deviation of 9.6 µg/m3 (7.6 µg/m3); ii) the indoor concentrations (both for PM10 and for PM2.5) are statistically lower from those measured in outdoors (with a ratio equal to 0.9-0.8), meaning that the indoor air quality is greater than those in urban ambient; iii) that PM concentrations in underground stations are correlated to the trains passage; iv) the inside trains concentrations (both for PM10 and for PM2.5) are statistically lower from those measured at station platform (with a ratio equal to 0.7-0.8), meaning that inside trains the use of air conditioning system could promote a greater circulation that clean the air. The comparison among the two case studies allow to conclude that the metro system designed with PM reduction devices allow to reduce PM concentration up to 11 times against a ‘traditional’ one. From these results, it is possible to conclude that PM concentrations measured in a ‘high quality’ metro system are significantly lower than the ones measured in a ‘traditional’ railway metro systems. This result allows possessing the bases for the design of useful devices for retrofitting metro systems all around the world.

Keywords: air quality, pollutant emission, quality in public transport, underground railway, external cost reduction, transportation planning

Procedia PDF Downloads 210
5357 Optimizing Emergency Rescue Center Layouts: A Backpropagation Neural Networks-Genetic Algorithms Method

Authors: Xiyang Li, Qi Yu, Lun Zhang

Abstract:

In the face of natural disasters and other emergency situations, determining the optimal location of rescue centers is crucial for improving rescue efficiency and minimizing impact on affected populations. This paper proposes a method that integrates genetic algorithms (GA) and backpropagation neural networks (BPNN) to address the site selection optimization problem for emergency rescue centers. We utilize BPNN to accurately estimate the cost of delivering supplies from rescue centers to each temporary camp. Moreover, a genetic algorithm with a special partially matched crossover (PMX) strategy is employed to ensure that the number of temporary camps assigned to each rescue center adheres to predetermined limits. Using the population distribution data during the 2022 epidemic in Jiading District, Shanghai, as an experimental case, this paper verifies the effectiveness of the proposed method. The experimental results demonstrate that the BPNN-GA method proposed in this study outperforms existing algorithms in terms of computational efficiency and optimization performance. Especially considering the requirements for computational resources and response time in emergency situations, the proposed method shows its ability to achieve rapid convergence and optimal performance in the early and mid-stages. Future research could explore incorporating more real-world conditions and variables into the model to further improve its accuracy and applicability.

Keywords: emergency rescue centers, genetic algorithms, back-propagation neural networks, site selection optimization

Procedia PDF Downloads 86
5356 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films

Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh

Abstract:

According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.

Keywords: memristor, quantum dot, resistive switching, thin film

Procedia PDF Downloads 122
5355 Trajectory Optimization for Autonomous Deep Space Missions

Authors: Anne Schattel, Mitja Echim, Christof Büskens

Abstract:

Trajectory planning for deep space missions has become a recent topic of great interest. Flying to space objects like asteroids provides two main challenges. One is to find rare earth elements, the other to gain scientific knowledge of the origin of the world. Due to the enormous spatial distances such explorer missions have to be performed unmanned and autonomously. The mathematical field of optimization and optimal control can be used to realize autonomous missions while protecting recourses and making them safer. The resulting algorithms may be applied to other, earth-bound applications like e.g. deep sea navigation and autonomous driving as well. The project KaNaRiA ('Kognitionsbasierte, autonome Navigation am Beispiel des Ressourcenabbaus im All') investigates the possibilities of cognitive autonomous navigation on the example of an asteroid mining mission, including the cruise phase and approach as well as the asteroid rendezvous, landing and surface exploration. To verify and test all methods an interactive, real-time capable simulation using virtual reality is developed under KaNaRiA. This paper focuses on the specific challenge of the guidance during the cruise phase of the spacecraft, i.e. trajectory optimization and optimal control, including first solutions and results. In principle there exist two ways to solve optimal control problems (OCPs), the so called indirect and direct methods. The indirect methods are being studied since several decades and their usage needs advanced skills regarding optimal control theory. The main idea of direct approaches, also known as transcription techniques, is to transform the infinite-dimensional OCP into a finite-dimensional non-linear optimization problem (NLP) via discretization of states and controls. These direct methods are applied in this paper. The resulting high dimensional NLP with constraints can be solved efficiently by special NLP methods, e.g. sequential quadratic programming (SQP) or interior point methods (IP). The movement of the spacecraft due to gravitational influences of the sun and other planets, as well as the thrust commands, is described through ordinary differential equations (ODEs). The competitive mission aims like short flight times and low energy consumption are considered by using a multi-criteria objective function. The resulting non-linear high-dimensional optimization problems are solved by using the software package WORHP ('We Optimize Really Huge Problems'), a software routine combining SQP at an outer level and IP to solve underlying quadratic subproblems. An application-adapted model of impulsive thrusting, as well as a model of an electrically powered spacecraft propulsion system, is introduced. Different priorities and possibilities of a space mission regarding energy cost and flight time duration are investigated by choosing different weighting factors for the multi-criteria objective function. Varying mission trajectories are analyzed and compared, both aiming at different destination asteroids and using different propulsion systems. For the transcription, the robust method of full discretization is used. The results strengthen the need for trajectory optimization as a foundation for autonomous decision making during deep space missions. Simultaneously they show the enormous increase in possibilities for flight maneuvers by being able to consider different and opposite mission objectives.

Keywords: deep space navigation, guidance, multi-objective, non-linear optimization, optimal control, trajectory planning.

Procedia PDF Downloads 412
5354 Hydrodynamic and Morphological Simulation of Karnafuli River Using CCHE2D Model

Authors: Shah Md. Imran Kabir, Md. Mostafa Ali

Abstract:

Karnafuli is one of the most important rivers of Bangladesh which is playing a vital role in our national economy. The major sea port of Bangladesh is the Chittagong port located on the right bank of Karnafuli River Bangladesh. Karnafuli river port is considered as the lifeline of the economic activities of the country. Therefore, it is always necessary to keep the river active and live in terms of its navigability. Due to man-made intervention, the river flow becomes interrupted and thereby may cause the change in the river morphology. The specific objective of this study is the application of 2D model to assess different hydrodynamic and morphological characteristics of the river due to normal flow condition and sea level rise condition. The model has been set with the recent bathymetry data collected from CPA hydrography division. For model setup, the river reach is selected between Kalurghat and Khal no-18. Time series discharge and water level data are used as boundary condition at upstream and downstream. Calibration and validation have been carried out with the recent water level data at Khal no-10 and Sadarghat. The total reach length of the river has been divided into four parts to determine different hydrodynamic and morphological assessments like variation of velocity, sediment erosion and deposition and bed level changes also have been studied. This model has been used for the assessment of river response due sediment transport and sea level rise. Model result shows slight increase in velocity. It also changes the rate of erosion and deposition at some location of the selected reach. It is hoped that the result of the model simulation will be helpful to suggest the effect of possible future development work to be implemented on this river.

Keywords: CCHE 2D, hydrodynamic, morphology, sea level rise

Procedia PDF Downloads 381
5353 Application of Production Planning to Improve Operation in Local Factory

Authors: Bashayer Al-Enezi, Budoor Al-Sabti, Eman Al-Durai, Fatmah Kalban, Meshael Ahmed

Abstract:

Production planning and control principles are concerned with planning, controlling and balancing all aspects of manufacturing including raw materials, finished goods, production schedules, and equipment requirements. Hence, an effective production planning and control system is very critical to the success of any factory. This project will focus on the application of production planning and control principles on “The National Canned Food Production and Trading Company (NCFP)” factory to find problems or areas for improvement.

Keywords: production planning, operations improvement, inventory management, National Canned Food Production and Trading Company (NCFP)

Procedia PDF Downloads 506
5352 Spirometric Reference Values in 236,606 Healthy, Non-Smoking Chinese Aged 4–90 Years

Authors: Jiashu Shen

Abstract:

Objectives: Spirometry is a basic reference for health evaluation which is widely used in clinical. Previous reference of spirometry is not applicable because of drastic changes of social and natural circumstance in China. A new reference values for the spirometry of the Chinese population is extremely needed. Method: Spirometric reference value was established using the statistical modeling method Generalized Additive Models for Location, Scale and Shape for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and maximal mid-expiratory flow (MMEF). Results: Data from 236,606 healthy non-smokers aged 4–90 years was collected from the MJ Health Check database. Spirometry equations for FEV1, FVC, MMEF, and FEV1/FVC were established, including the predicted values and lower limits of normal (LLNs) by sex. The predictive equations that were developed for the spirometric results elaborated the relationship between spirometry and age, and they eliminated the effects of height as a variable. Most previous predictive equations for Chinese spirometry were significantly overestimated (to be exact, with mean differences of 22.21% in FEV1 and 31.39% in FVC for males, along with differences of 26.93% in FEV1 and 35.76% in FVC for females) or underestimated (with mean differences of -5.81% in MMEF and -14.56% in FEV1/FVC for males, along with a difference of -14.54% in FEV1/FVC for females) the results of lung function measurements as found in this study. Through cross-validation, our equations were established as having good fit, and the means of the measured value and the estimated value were compared, with good results. Conclusions: Our study updates the spirometric reference equations for Chinese people of all ages and provides comprehensive values for both physical examination and clinical diagnosis.

Keywords: Chinese, GAMLSS model, reference values, spirometry

Procedia PDF Downloads 136
5351 Knowledge Level of Mothers in Wet Nursery and Breast Milk Banking

Authors: Seyda Can, Meryem Unulu

Abstract:

Objective: Breast milk is the most fundamental nutritional element for the healthy growth and development of newborns as they supply all the necessary components. Various obstacles such as diseases of mother and child, allergies of the baby, and insufficient breastmilk affect breast-feeding adversely. The wet nursery or breast milk banking is the most important source in providing the nutrients closest to the ideal for the newborn. Despite increasing opinions about its benefits, breast milk banking practice is controversial because of reasons such as ethical problems, traditional beliefs and attitudes, security concerns of families and lack of knowledge. It is thought that the results of this study will create the data for studies to raise the awareness of the society regarding wet nursery, and milk banks. Method: The study was planned and performed in descriptive type. The population of the study consists of mothers that gave birth between October-November 2017 in a public hospital in Turkey, and the sample consisted of 205 mothers chosen by improbable sampling method from the population and accepted to participate in the study. While gathering data, a survey consisting of 33 questions designed to determine the socio-demographic characteristics and their views on wet nursery and breast milk banking. Written ethical committee and institution permit was taken. Before the interview, participants were informed about the purpose and content of the study and oral permit was taken. Result: When the distribution of 205 mothers according to their individual characteristics, it was detected that their age average was 28,16±5,23 and 63,4 of mothers (n=130) had normal delivery. It was determined that clear majority of mothers, 75,6% (n=155) had no breast-feeding problems and 75,1% (n=154) fed the baby only with breast milk. It was detected that 18,5% (n=38) would accept a stranger to be a wet nurse and 60% (n=123) would donate milk if there is a breast milk bank. It was detected 33,2 % (n=68) of participant mothers want to make use of breast milk bank if there is a situation that prevents breast feeding, 38,5 % (n=79) of mothers think breast milk bank would be problematic religiously. Statistical difference was detected between the educational status of women and the rate of wanting breast milk bank practice. As the educational status of mothers increased, their rate of wanting breast milk bank practice increased. Conclusion: It is essential that every baby is breastfed by its mother primarily. However, when this is not possible, in order to implement wet nursery and breast milk banking as an extension of national breast-feeding policy, regulations need to be made and worries should be eased. Also, organizing training programs are also really important to raise awareness of the society and mothers.

Keywords: breast feeding, breast milk, milk banks, wet nursery

Procedia PDF Downloads 167
5350 Human Resource Development and Social Entrepreneurship: A Pan-African Perspective

Authors: Leon C. Prieto, Simone T. A. Phipps

Abstract:

There is a need to promote social entrepreneurship in order to solve some of the complex problems facing various countries in Africa (poverty, unemployment, crime, HIV, etc.). For example, one possible consequence of the HIV/AIDS crisis in Zimbabwe and elsewhere is a deterioration in the educational opportunities for orphans and other vulnerable children. Given that high returns are associated with education, the loss of education for a large segment of the population would likely worsen the already dire economic consequences of the HIV/AIDS crisis. Using a systems approach, this paper argues that social entrepreneurship can be used as a vehicle to promote national human resource development, which will assist in the alleviation of societal ills on the national level as well as throughout Africa.

Keywords: human resource development, pan-african, social entrepreneurship, social enterprise

Procedia PDF Downloads 384
5349 Patent License of Transfer Technology: Challenges and Opportunities in Indonesia

Authors: Agung Sujatmiko

Abstract:

One of the purposes of patent licensing was to transfer technology from developed countries to developing countries. For this reason, the role of the patent license agreement was very important and had a function as a tool to achieve technological development. This goal was very good, but in fact, many problems and obstacles arose in its implementation, so the technology transfer that had been implemented had not given good results. For this reason, it was necessary to find a solution so that technology could switch properly. The problem approach used the statutory and conceptual approaches. The analysis used was deductive by analyzing general laws and regulations and then concluding. Several regulations related to technology transfer were the main source to find answers to why technology transfer was difficult to achieve and what caused it. Once the cause was known, a solution would be sought.

Keywords: license, patent, technology, tie in clause

Procedia PDF Downloads 96
5348 Optimal Decisions for Personalized Products with Demand Information Updating and Limited Capacity

Authors: Meimei Zheng

Abstract:

Product personalization could not only bring new profits to companies but also provide the direction of long-term development for companies. However, the characteristics of personalized product cause some new problems. This paper investigates how companies make decisions on the supply of personalized products when facing different customer attitudes to personalized product and service, constraints due to limited capacity and updates of personalized demand information. This study will provide optimal decisions for companies to develop personalized markets, resulting in promoting business transformation and improving business competitiveness.

Keywords: demand forecast updating, limited capacity, personalized products, optimization

Procedia PDF Downloads 262