Search results for: learning and teaching environment
12667 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse
Procedia PDF Downloads 44212666 Assessment of the Response of Seismic Refraction Tomography and Resistivity Imaging to the Same Geologic Environment: A Case Study of Zaria Basement Complex in North Central Nigeria
Authors: Collins C. Chiemeke, I. B. Osazuwa, S. O. Ibe, G. N. Egwuonwu, C. D. Ani, E. C. Chii
Abstract:
The study area is Zaria, located in the basement complex of northern Nigeria. The rock type forming the major part of the Zaria batholith is granite. This research work was carried out to compare the responses of seismic refraction tomography and resistivity tomography in the same geologic environment and under the same conditions. Hence, the choice of the site that has a visible granitic outcrop that extends across a narrow stream channel and is flanked by unconsolidated overburden, a neutral profile that was covered by plain overburden and a site with thick lateritic cover became necessary. The results of the seismic and resistivity tomography models reveals that seismic velocity and resistivity does not always simultaneously increase with depth, but their responses in any geologic environment are determined by changes in the mechanical and chemical content of the rock types rather than depth.Keywords: environment, resistivity, response, seismic, velocity
Procedia PDF Downloads 34512665 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.Keywords: machine learning, healthcare, classification, explainability
Procedia PDF Downloads 5612664 Contribution for Rural Development Trough Training in Organic Farming
Authors: Raquel P. F. Guiné, Daniela V. T. A. Costa, Paula M. R. Correia, Moisés Castro, Luis T. Guerra, Cristina A. Costa
Abstract:
The aim of this work was to characterize a potential target group of people interested in participating into a training program in organic farming in the context of mobile-learning. The information sought addressed in particular, but not exclusively, possible contents, formats and forms of evaluation that will contribute to define the course objectives and curriculum, as well as to ensure that the course meets the needs of the learners and their preferences. The sample was selected among different European countries. The questionnaires were delivered electronically for answering online and in the end 135 consented valid questionnaires were obtained. The results allowed characterizing the target group and identifying their training needs and preferences towards m-learning formats, giving valuable tools to design the training offer.Keywords: mobile-learning, organic farming, rural development, survey
Procedia PDF Downloads 50212663 Educational Tours as a Learning Tool to the Third Years Tourism Students of De La Salle University, Dasmarinas
Authors: Jackqueline Uy, Hannah Miriam Verano, Crysler Luis Verbo, Irene Gueco
Abstract:
Educational tours are part of the curriculum of the College of Tourism and Hospitality Management, De La Salle University-Dasmarinas. They are highly significant to the students, especially Tourism students. The purpose of this study was to determine how effective educational tours were as a learning tool using the Experiential Learning Theory by David Kolb. This study determined the demographic profile of the third year tourism students in terms of gender, section, educational tours joined, and monthly family income and lastly, this study determined if there is a significant difference between the demographic profile of the respondents and their assessment of educational tours as a learning tool. The researchers used a historical research design with the third-year students of the bachelor of science in tourism management as the population size and used a random sampling method. The researchers made a survey questionnaire and utilized statistical tools such as weighted mean, frequency distribution, percentage, standard deviation, T-test, and ANOVA. The result of the study answered the profile of the respondents such as the gender, section, educational tour/s joined, and family monthly income. The findings of the study showed that the 3rd year tourism management students strongly agree that educational tours are a highly effective learning tool in terms of active experimentation, concrete experience, reflective observation, and abstract conceptualisation based on the data gathered from the respondents.Keywords: CTHM, educational tours, experiential learning theory, De La Salle University Dasmarinas, tourism
Procedia PDF Downloads 17312662 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 13412661 Optimizing Multimodal Teaching Strategies for Enhanced Engagement and Performance
Authors: Victor Milanes, Martha Hubertz
Abstract:
In the wake of COVID-19, all aspects of life have been estranged, and humanity has been forced to shift toward a more technologically integrated mode of operation. Essential work such as Healthcare, business, and public policy are a few notable industries that were initially dependent upon face-to-face modality but have completely reimagined their operation style. Unique to these fields, education was particularly strained because academics, teachers, and professors alike were obligated to shift their curriculums online over the course of a few weeks while also maintaining the expectation that they were educating their students to a similar level accomplished pre-pandemic. This was notable as research indicates two key concepts: Students prefer face-to-face modality, and due to the disruption in academic continuity/style, there was a negative impact on student's overall education and performance. With these two principles in mind, this study aims to inquire what online strategies could be best employed by teachers to educate their students, as well as what strategies could be adopted in a multimodal setting if deemed necessary by the instructor or outside convoluting factors (Such as the case of COVID-19, or a personal matter that demands the teacher's attention away from the classroom). Strategies and methods will be cross-analyzed via a ranking system derived from various recognized teaching assessments, in which engagement, retention, flexibility, interest, and performance are specifically accounted for. We expect to see an emphasis on positive social pressure as a dominant factor in the improved propensity for education, as well as a preference for visual aids across platforms, as research indicates most individuals are visual learners.Keywords: technological integration, multimodal teaching, education, student engagement
Procedia PDF Downloads 6112660 Serious Game for Learning: A Model for Efficient Game Development
Authors: Zahara Abdulhussan Al-Awadai
Abstract:
In recent years, serious games have started to gain an increasing interest as a tool to support learning across different educational and training fields. It began to serve as a powerful educational tool for improving learning outcomes. In this research, we discuss the potential of virtual experiences and games research outside of the games industry and explore the multifaceted impact of serious games and related technologies on various aspects of our lives. We highlight the usage of serious games as a tool to improve education and other applications with a purpose beyond the entertainment industry. One of the main contributions of this research is proposing a model that facilitates the design and development of serious games in a flexible and easy-to-use way. This is achieved by exploring different requirements to develop a model that describes a serious game structure with a focus on both aspects of serious games (educational and entertainment aspects).Keywords: game development, requirements, serious games, serious game model
Procedia PDF Downloads 5812659 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: drive test, LTE, machine learning, uplink throughput prediction
Procedia PDF Downloads 15712658 Praxis-Oriented Pedagogies for Pre-Service Teachers: Teaching About and For Social Justice Through Equity Literature Circles
Authors: Joanne Robertson, Awneet Sivia
Abstract:
Preparing aspiring teachers to become advocates for social justice reflects a fundamental commitment for teacher education programs in Canada to create systemic educational change. The goal is ultimately to address inequities in K-12 education for students from multiple identity groups that have historically been marginalized and oppressed in schools. Social justice is described as an often undertheorized and vague concept in the literature, which increases the risk that teaching for social justice remains a lofty goal. Another concern is that the social justice agenda in teacher education in North America ignores pedagogies related to subject-matter knowledge and discipline-based teaching methods. The question surrounding how teacher education programs can address these issues forms the basis for the research undertaken in this study. The paper focuses on a qualitative research project that examines how an Equity Literature Circles (ELC) framework within a language arts methods course in a Bachelor of Education program may help pre-service teachers better understand the inherent relationship between literacy instructional practices and teaching about and for social justice. Grounded in the Freireian (2018) principle of praxis, this study specifically seeks to understand the impact of Equity Literature Circles on pre-service teachers’ understanding of current social justice issues (reflection), their development of professional competencies in literacy instruction (practice), and their identity as advocates of social justice (action) who address issues related to student diversity, equity, and human rights within the English Language Arts program. In this paper presentation, participants will be provided with an overview of the Equity Literature Circle framework, a summary of key findings and recommendations from the qualitative study, an annotated bibliography of suggested Young Adult novels, and opportunities for questions and dialogue.Keywords: literacy, language, equity, social justice, diversity, human rights
Procedia PDF Downloads 6912657 Psychological Distress during the COVID-19 Pandemic in Nursing Students: A Mixed-Methods Study
Authors: Mayantoinette F. Watson
Abstract:
During such an unprecedented time of the largest public health crisis, the COVID-19 pandemic, nursing students are of the utmost concern regarding their psychological and physical well-being. Questions are emerging and circulating about what will happen to the nursing students and the long-term effects of the pandemic, especially now that hospitals are being overwhelmed with a significant need for nursing staff. Expectations, demands, change, and the fear of the unknown during this unprecedented time can only contribute to the many stressors that accompany nursing students through laborious clinical and didactic courses in nursing programs. The risk of psychological distress is at a maximum, and its effects can negatively impact not only nursing students but also nursing education and academia. The high exposures to interpersonal, economic, and academic demands contribute to the major health concerns, which include a potential risk for psychological distress. Achievement of educational success among nursing students is directly affected by the high exposure to anxiety and depression from experiences within the program. Working relationships and achieving academic success is imperative to positive student outcomes within the nursing program. The purpose of this study is to identify and establish influences and associations within multilevel factors, including the effects of the COVID-19 pandemic on psychological distress in nursing students. Neuman’s Systems Model Theory was used to determine nursing students’ responses to internal and external stressors. The research in this study utilized a mixed-methods, convergent study design. The study population included undergraduate nursing students from Southeastern U.S. The research surveyed a convenience sample of undergraduate nursing students. The quantitative survey was completed by 202 participants, and 11 participants participated in the qualitative follow-up interview surveys. Participants completed the Kessler Psychological Distress Scale (K6), the Perceived Stress Scale (PSS4), and the Dundee Readiness Educational Environment Scale (DREEM12) to measure psychological distress, perceived stress, and perceived educational environment. Participants also answered open-ended questions regarding their experience during the COVID-19 pandemic. Statistical tests, including bivariate analyses, multiple linear regression analyses, and binary logistics regression analyses were performed in effort to identify and highlight the effects of independent variables on the dependent variable, psychological distress. Coding and qualitative content analysis were performed to identify overarching themes within participants’ interviews. Quantitative data were sufficient in identifying correlations between psychological distress and multilevel factors of coping, marital status, COVID-19 stress, perceived stress, educational environment, and social support in nursing students. Qualitative data were sufficient in identifying common themes of students’ perceptions during COVID-19 and included online learning, workload, finances, experience, breaks, time, unknown, support, encouragement, unchanged, communication, and transmission. The findings are significant, specifically regarding contributing factors to nursing students’ psychological distress, which will help to improve learning in the academic environment.Keywords: nursing education, nursing students, pandemic, psychological distress
Procedia PDF Downloads 8612656 Comparing the Willingness to Communicate in a Foreign Language of Bilinguals and Monolinguals
Authors: S. Tarighat, F. Shateri
Abstract:
This study explored the relationship between L2 Willingness to Communicate (WTC) of bilinguals and monolinguals in a foreign language using a snowball sampling method to collect questionnaire data from 200 bilinguals and monolinguals studying a foreign language (FL). The results indicated a higher willingness to communicate in a foreign language (WTC-FL) performed by bilinguals compared to that of the monolinguals with a weak significance. Yet a stronger significance was found in the relationship between the age of onset of bilingualism and WTC-FL. The researcher proposed that L2 WTC is indirectly influenced by knowledge of other languages, which can boost L2 confidence and reduce L2 anxiety and consequently lead to higher L2 WTC when learning a different L2. The study also found the age of onset of bilingualism to be a predictor of L2 WTC when learning a FL. The results emphasize the importance of bilingualism and early bilingualism in particular.Keywords: bilingualism, foreign language learning, l2 acquisition, willingness to communicate
Procedia PDF Downloads 30212655 Introducing a Video-Based E-Learning Module to Improve Disaster Preparedness at a Tertiary Hospital in Oman
Authors: Ahmed Al Khamisi
Abstract:
The Disaster Preparedness Standard (DPS) is one of the elements that is evaluated by the Accreditation Canada International (ACI). ACI emphasizes to train and educate all staff, including service providers and senior leaders, on emergency and disaster preparedness upon the orientation and annually thereafter. Lack of awareness and deficit of knowledge among the healthcare providers about DPS have been noticed in a tertiary hospital where ACI standards were implemented. Therefore, this paper aims to introduce a video-based e-learning (VB-EL) module that explains the hospital’s disaster plan in a simple language which will be easily accessible to all healthcare providers through the hospital’s website. The healthcare disaster preparedness coordinator in the targeted hospital will be responsible to ensure that VB-EL is ready by 25 April 2019. This module will be developed based on the Kirkpatrick evaluation method. In fact, VB-EL combines different data forms such as images, motion, sounds, text in a complementary fashion which will suit diverse learning styles and individual learning pace of healthcare providers. Moreover, the module can be adjusted easily than other tools to control the information that healthcare providers receive. It will enable healthcare providers to stop, rewind, fast-forward, and replay content as many times as needed. Some anticipated limitations in the development of this module include challenges of preparing VB-EL content and resistance from healthcare providers.Keywords: Accreditation Canada International, Disaster Preparedness Standard, Kirkpatrick evaluation method, video-based e-learning
Procedia PDF Downloads 14712654 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface
Procedia PDF Downloads 35312653 The Outcome of the Discontinuation of Cheques on Bank Reconciliation
Authors: Estelle Abrahams, Tania Pretorius
Abstract:
A joint media statement by the South African Reserve Bank, the Banking Association of South Africa, the Financial Sector Conduct Authority, and the Payments Association of South Africa was recently published, stating that the receipt or acceptance of cheques will terminate effectively on 31 December 2020. All stakeholders are urged to cease accepting or issuing cheques as a payment method. The purpose of the study is to examine the effect that the discontinuation of the usage of cheques has on bank reconciliations for the subject: economic and management sciences. A literature study was performed to gain insight into the bank reconciliation process to be able to draw conclusions on the outcome of the discontinuation of cheques on the bank reconciliation. The study found that the teaching of the bank reconciliation process will change to introduce new replacement source documents for digital payments, and this impacts the teaching of reconciling differences.Keywords: bank reconciliation, internal control, accounting education, source documents
Procedia PDF Downloads 10812652 Evaluation of the Impact of Functional Communication Training on Behaviors of Concern for Students at a Non-Maintained Special School
Authors: Kate Duggan
Abstract:
Introduction: Functional Communication Training (FCT) is an approach which aims to reduce behaviours of concern by teaching more effective ways to communicate. It requires identification of the function of the behaviour of concern, through gathering information from key stakeholders and completing observations of the individual’s behaviour including antecedents to, and consequences of the behaviour. Appropriate communicative alternatives are then identified and taught to the individual using systematic instruction techniques. Behaviours of concern demonstrated by individuals with autism spectrum conditions (ASC) frequently have a communication function. When contributing to positive behavior support plans, speech and language therapists and other professionals working with individuals with ASC need to identify alternative communicative behaviours which are equally reinforcing as the existing behaviours of concern. Successful implementation of FCT is dependent on an effective ‘response match’. The new way of communicating must be equally as effective as the behaviour previously used and require the same amount or less effort from the individual. It must also be understood by the communication partners the individual encounters and be appropriate to their communicative contexts. Method: Four case studies within a non-maintained special school environment were described and analysed. A response match framework was used to identify the effectiveness of functional communication training delivered by the student’s speech and language therapist, teacher and learning support assistants. The success of systematic instruction techniques used to develop new communicative behaviours was evaluated using the CODES framework. Findings: Functional communication training can be used as part of a positive behaviour support approach for students within this setting. All case studies reviewed demonstrated ‘response success’, in that the desired response was gained from the new communicative behaviour. Barriers to the successful embedding of new communicative behaviours were encountered. In some instances, the new communicative behaviour could not be consistently understood across all communication partners which reduced ‘response recognisability’. There was also evidence of increased physical or cognitive difficulty in employing the new communicative behaviour which reduced the ‘response effectivity’. Successful use of ‘thinning schedules of reinforcement’, taught students to tolerate a delay to reinforcement once the new communication behaviour was learned.Keywords: augmentative and alternative communication, autism spectrum conditions, behaviours of concern, functional communication training
Procedia PDF Downloads 11712651 Teachers as Agents of Change in Diverse Classrooms: An Overview of the Literature
Authors: Anna Sanczyk
Abstract:
Diverse students may experience different forms of discrimination. Some of the oppression students experience in schools are racism, sexism, classism, or homophobia that may affect their achievement, and teachers need to make sure they create inclusive, equitable classroom environments. The broader literature on social change in education shows that teachers who challenge oppression and want to promote equitable and transformative education face institutional, social, and political constraints. This paper discusses research on teachers’ work to create socially just and culturally inclusive classrooms and schools. The practical contribution of this literature review is that it provides a comprehensive compilation of the studies presenting teachers’ roles and efforts in affecting social change. The examination of the research on social change in education points to the urgency of teachers addressing the needs of marginalized students and resisting systemic oppression in schools. The implications of this literature review relate to the concerns that schools should provide greater advocacy for marginalized students in diverse learning contexts, and teacher education programs should prepare teachers to be active advocates for diverse students. The literature review has the potential to inform educators to enhance educational equity and improve the learning environment. This literature review illustrates teachers as agents of change in diverse classrooms and contributes to understanding various ways of taking action towards fostering more equitable and transformative education in today’s schools.Keywords: agents of change, diversity, opression, social change
Procedia PDF Downloads 14012650 The Effectiveness of Using Dramatic Conventions as the Teaching Strategy on Self-Efficacy for Children With Autism Spectrum Disorder
Authors: Tso Sheng-Yang, Wang Tien-Ni
Abstract:
Introduction and Purpose: Previous researchers have documented children with ASD (Autism Spectrum Disorders) prefer to escaping internal privates and external privates when they face tough conditions they can’t control or they don’t like.Especially, when children with ASD need to learn challenging tasks, such us Chinese language, their inappropriate behaviors will occur apparently. Recently, researchers apply positive behavior support strategies for children with ASD to enhance their self-efficacy and therefore to reduce their adverse behaviors. Thus, the purpose of this research was to design a series of lecture based on art therapy and to evaluate its effectiveness on the child’s self-efficacy. Method: This research was the single-case design study that recruited a high school boy with ASD. Whole research can be separated into three conditions. First, baseline condition, before the class started and ended, the researcher collected participant’s competencies of self-efficacy every session. In intervention condition, the research used dramatic conventions to teach the child in Chinese language twice a week.When the data was stable across three documents, the period entered to the maintenance condition. In maintenance condition, the researcher only collected the score of self-efficacynot to do other interventions five times a month to represent the effectiveness of maintenance.The time and frequency of data collection among three conditions are identical. Concerning art therapy, the common approach, e.g., music, drama, or painting is to use art medium as independent variable. Due to visual cues of art medium, the ASD can be easily to gain joint attention with teachers. Besides, the ASD have difficulties in understanding abstract objectives Thus, using the drama convention is helpful for the ASD to construct the environment and understand the context of Classical Chinese. By real operation, it can improve the ASD to understand the context and construct prior knowledge. Result: Bassd on the 10-points Likert scale and research, we product following results. (a) In baseline condition, the average score of self-efficacyis 1.12 points, rangedfrom 1 to 2 points, and the level change is 0 point. (b)In intervention condition, the average score of self-efficacy is 7.66 points rangedfrom 7 to 9 points, and the level change is 1 point. (c)In maintenance condition, the average score of self-efficacy is 6.66 points rangedfrom 6 to 7 points, and the level change is 1 point. Concerning immediacy of change, between baseline and intervention conditions, the difference is 5 points. No overlaps were found between these two conditions. Conclusion: According to the result, we find that it is effective that using dramatic conventions a s teaching strategies to teach children with ASD. The result presents the score of self-efficacyimmediately enhances when the dramatic conventions commences. Thus, we suggest the teacher can use this approach and adjust, based on the student’s trait, to teach the ASD on difficult task.Keywords: dramatic conventions, autism spectrum disorder, slef-efficacy, teaching strategy
Procedia PDF Downloads 8312649 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint
Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu
Abstract:
With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning
Procedia PDF Downloads 7812648 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 14012647 Computer Science, Mass Communications, and Social Entrepreneurship: An Interdisciplinary Approach to Teaching Interactive Storytelling for the Greater Good
Authors: Susan Cardillo
Abstract:
This research will consider ways to bridge the gap between Computer Science and Media Communications and while doing so create Social Entrepreneurship for student success. New Media, as it has been referred to, is considered content available on-demand through Internet, a digital device, usually containing some kind of interactivity and creative participation. It is the interplay between technology, images, media and communications. The next generation of the newspaper, radio, television, and film students need to have a working knowledge of the technologies that are available for the creation of their work and taught to use this knowledge to create a voice. The work is interdisciplinary; in communications, we understand the necessity of reporting and disseminating information. In documentary film we understand the instructional and historic aspects of media and technology and in the non-profit sector, we see the need for expanding outlets for good. So, the true necessity is to utilize ‘new media’ technologies to advance social causes while reporting information, teaching and creating art. Goals: The goal of this research is to give communications students a better understanding of the technology that is both, currently at their disposal, and on the horizon, so that they can use it in their media, communications and art endeavors to be a voice for their generation. There is no longer a need to be a computer scientist to have a working knowledge of communication technologies and how they will benefit our work. There are many free and easy to use applications available for the creation of interactive communications. Methodology: This is Qualitative-Case Study that puts these ideas into action. There is a survey at the end of the experiment that is qualitative in nature and allows for the participants to share ideas and feelings about the technology and approach.Keywords: interactive storytelling, web documentary, mass communications, teaching
Procedia PDF Downloads 28012646 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast
Authors: David Ofosu-Hamilton, John K. E. Edumadze
Abstract:
Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.Keywords: assessment, blended, cloud, paperless
Procedia PDF Downloads 24812645 Cloud Resources Utilization and Science Teacher’s Effectiveness in Secondary Schools in Cross River State, Nigeria
Authors: Michael Udey Udam
Abstract:
Background: This study investigated the impact of cloud resources, a component of cloud computing, on science teachers’ effectiveness in secondary schools in Cross River State. Three (3) research questions and three (3) alternative hypotheses guided the study. Method: The descriptive survey design was adopted for the study. The population of the study comprised 1209 science teachers in public secondary schools of Cross River state. Sample: A sample of 487 teachers was drawn from the population using a stratified random sampling technique. The researcher-made structured questionnaire with 18 was used for data collection for the study. Research question one was answered using the Pearson Product Moment Correlation, while research question two and the hypotheses were answered using the Analysis of Variance (ANOVA) statistics in the Statistical Package for Social Sciences (SPSS) at a 0.05 level of significance. Results: The results of the study revealed that there is a positive correlation between the utilization of cloud resources in teaching and teaching effectiveness among science teachers in secondary schools in Cross River state; there is a negative correlation between gender and utilization of cloud resources among science teachers in secondary schools in Cross River state; and that there is a significant correlation between teaching experience and the utilization of cloud resources among science teachers in secondary schools in Cross River state. Conclusion: The study justifies the effectiveness of the Cross River state government policy of introducing cloud computing into the education sector. The study recommends that the policy should be sustained.Keywords: cloud resources, science teachers, effectiveness, secondary school
Procedia PDF Downloads 7512644 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches
Authors: Gaokai Liu
Abstract:
Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.Keywords: deep learning, defect detection, image segmentation, nanomaterials
Procedia PDF Downloads 14912643 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study of Fars’ Livestock and Poultry Manufacturing Companies
Authors: Mohsen Yaghmoor, Sima Radmanesh
Abstract:
Rapid environmental changes have been threaten the life of many organizations .Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity & inability of human resource have been identified and reviewed at glance. Afterward there were two questions they are “what are the factors effecting productivity and enabling of human resource” . And ”what are the priority order based on effective management of human resource in Fars Poultry Complex". A specified questionnaire has been designed in order to priorities and effectiveness of the identified factors. Six factors specify to consist of: Individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then specify a questionnaire for priority and effect measurement of specified factor that reach after collect information and using statistical tests of keronchbakh alpha coefficient r=0.792 that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test categorize their effect. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. At last it has been indicated to approaches to increase making power full and productivity of manpower.Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation
Procedia PDF Downloads 25212642 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 8912641 Learning Gains and Constraints Resulting from Haptic Sensory Feedback among Preschoolers' Engagement during Science Experimentation
Authors: Marios Papaevripidou, Yvoni Pavlou, Zacharias Zacharia
Abstract:
Embodied cognition and additional (touch) sensory channel theories indicate that physical manipulation is crucial to learning since it provides, among others, touch sensory input, which is needed for constructing knowledge. Given these theories, the use of Physical Manipulatives (PM) becomes a prerequisite for learning. On the other hand, empirical research on Virtual Manipulatives (VM) (e.g., simulations) learning has provided evidence showing that the use of PM, and thus haptic sensory input, is not always a prerequisite for learning. In order to investigate which means of experimentation, PM or VM, are required for enhancing student science learning at the kindergarten level, an empirical study was conducted that sought to investigate the impact of haptic feedback on the conceptual understanding of pre-school students (n=44, age mean=5,7) in three science domains: beam balance (D1), sinking/floating (D2) and springs (D3). The participants were equally divided in two groups according to the type of manipulatives used (PM: presence of haptic feedback, VM: absence of haptic feedback) during a semi-structured interview for each of the domains. All interviews followed the Predict-Observe-Explain (POE) strategy and consisted of three phases: initial evaluation, experimentation, final evaluation. The data collected through the interviews were analyzed qualitatively (open-coding for identifying students’ ideas in each domain) and quantitatively (use of non-parametric tests). Findings revealed that the haptic feedback enabled students to distinguish heavier to lighter objects when held in hands during experimentation. In D1 the haptic feedback did not differentiate PM and VM students' conceptual understanding of the function of the beam as a mean to compare the mass of objects. In D2 the haptic feedback appeared to have a negative impact on PM students’ learning. Feeling the weight of an object strengthen PM students’ misconception that heavier objects always sink, whereas the scientifically correct idea that the material of an object determines its sinking/floating behavior in the water was found to be significantly higher among the VM students than the PM ones. In D3 the PM students outperformed significantly the VM students with regard to the idea that the heavier an object is the more the spring will expand, indicating that the haptic input experienced by the PM students served as an advantage to their learning. These findings point to the fact that PMs, and thus touch sensory input, might not always be a requirement for science learning and that VMs could be considered, under certain circumstances, as a viable means for experimentation.Keywords: haptic feedback, physical and virtual manipulatives, pre-school science learning, science experimentation
Procedia PDF Downloads 13812640 Artificial Intelligence for Safety Related Aviation Incident and Accident Investigation Scenarios
Authors: Bernabeo R. Alberto
Abstract:
With the tremendous improvements in the processing power of computers, the possibilities of artificial intelligence will increasingly be used in aviation and make autonomous flights, preventive maintenance, ATM (Air Traffic Management) optimization, pilots, cabin crew, ground staff, and airport staff training possible in a cost-saving, less time-consuming and less polluting way. Through the use of artificial intelligence, we foresee an interviewing scenario where the interviewee will interact with the artificial intelligence tool to contextualize the character and the necessary information in a way that aligns reasonably with the character and the scenario. We are creating simulated scenarios connected with either an aviation incident or accident to enhance also the training of future accident/incident investigators integrating artificial intelligence and augmented reality tools. The project's goal is to improve the learning and teaching scenario through academic and professional expertise in aviation and in the artificial intelligence field. Thus, we intend to contribute to the needed high innovation capacity, skills, and training development and management of artificial intelligence, supported by appropriate regulations and attention to ethical problems.Keywords: artificial intelligence, aviation accident, aviation incident, risk, safety
Procedia PDF Downloads 2212639 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 17412638 Building the Professional Readiness of Graduates from Day One: An Empirical Approach to Curriculum Continuous Improvement
Authors: Fiona Wahr, Sitalakshmi Venkatraman
Abstract:
Industry employers require new graduates to bring with them a range of knowledge, skills and abilities which mean these new employees can immediately make valuable work contributions. These will be a combination of discipline and professional knowledge, skills and abilities which give graduates the technical capabilities to solve practical problems whilst interacting with a range of stakeholders. Underpinning the development of these disciplines and professional knowledge, skills and abilities, are “enabling” knowledge, skills and abilities which assist students to engage in learning. These are academic and learning skills which are essential to common starting points for both the learning process of students entering the course as well as forming the foundation for the fully developed graduate knowledge, skills and abilities. This paper reports on a project created to introduce and strengthen these enabling skills into the first semester of a Bachelor of Information Technology degree in an Australian polytechnic. The project uses an action research approach in the context of ongoing continuous improvement for the course to enhance the overall learning experience, learning sequencing, graduate outcomes, and most importantly, in the first semester, student engagement and retention. The focus of this is implementing the new curriculum in first semester subjects of the course with the aim of developing the “enabling” learning skills, such as literacy, research and numeracy based knowledge, skills and abilities (KSAs). The approach used for the introduction and embedding of these KSAs, (as both enablers of learning and to underpin graduate attribute development), is presented. Building on previous publications which reported different aspects of this longitudinal study, this paper recaps on the rationale for the curriculum redevelopment and then presents the quantitative findings of entering students’ reading literacy and numeracy knowledge and skills degree as well as their perceived research ability. The paper presents the methodology and findings for this stage of the research. Overall, the cohort exhibits mixed KSA levels in these areas, with a relatively low aggregated score. In addition, the paper describes the considerations for adjusting the design and delivery of the new subjects with a targeted learning experience, in response to the feedback gained through continuous monitoring. Such a strategy is aimed at accommodating the changing learning needs of the students and serves to support them towards achieving the enabling learning goals starting from day one of their higher education studies.Keywords: enabling skills, student retention, embedded learning support, continuous improvement
Procedia PDF Downloads 248