Search results for: Thermal images.
2429 Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems
Authors: Ezio Bassi, Francesco Vercesi, Francesco Benzi
Abstract:
The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine.Keywords: synchronous reluctance motor, vibro-acoustic, lift systems, genetic algorithm
Procedia PDF Downloads 1782428 Biomass Waste-To-Energy Technical Feasibility Analysis: A Case Study for Processing of Wood Waste in Malta
Authors: G. A. Asciak, C. Camilleri, A. Rizzo
Abstract:
The waste management in Malta is a national challenge. Coupled with Malta’s recent economic boom, which has seen massive growth in several sectors, especially the construction industry, drastic actions need to be taken. Wood waste, currently being dumped in landfills, is one type of waste which has increased astronomically. This research study aims to carry out a thorough examination on the possibility of using this waste as a biomass resource and adopting a waste-to-energy technology in order to generate electrical energy. This study is composed of three distinct yet interdependent phases, namely, data collection from the local SMEs, thermal analysis using the bomb calorimeter, and generation of energy from wood waste using a micro biomass plant. Data collection from SMEs specializing in wood works was carried out to obtain information regarding the available types of wood waste, the annual weight of imported wood, and to analyse the manner in which wood shavings are used after wood is manufactured. From this analysis, it resulted that five most common types of wood available in Malta which would suitable for generating energy are Oak (hardwood), Beech (hardwood), Red Beech (softwood), African Walnut (softwood) and Iroko (hardwood). Subsequently, based on the information collected, a thermal analysis using a 6200 Isoperibol calorimeter on the five most common types of wood was performed. This analysis was done so as to give a clear indication with regards to the burning potential, which will be valuable when testing the wood in the biomass plant. The experiments carried out in this phase provided a clear indication that the African Walnut generated the highest gross calorific value. This means that this type of wood released the highest amount of heat during the combustion in the calorimeter. This is due to the high presence of extractives and lignin, which accounts for a slightly higher gross calorific value. This is followed by Red Beech and Oak. Moreover, based on the findings of the first phase, both the African Walnut and Red Beech are highly imported in the Maltese Islands for use in various purposes. Oak, which has the third highest gross calorific value is the most imported and common wood used. From the five types of wood, three were chosen for use in the power plant on the basis of their popularity and their heating values. The PP20 biomass plant was used to burn the three types of shavings in order to compare results related to the estimated feedstock consumed by the plant, the high temperatures generated, the time taken by the plant to produce gasification temperatures, and the projected electrical power attributed to each wood type. From the experiments, it emerged that whilst all three types reached the required gasification temperature and thus, are feasible for electrical energy generation. African Walnut was deemed to be the most suitable fast-burning fuel. This is followed by Red-beech and Oak, which required a longer period of time to reach the required gasification temperatures. The results obtained provide a clear indication that wood waste can not only be treated instead of being dumped in dumped in landfill but coupled.Keywords: biomass, isoperibol calorimeter, waste-to-energy technology, wood
Procedia PDF Downloads 2432427 An Efficient Encryption Scheme Using DWT and Arnold Transforms
Authors: Ali Abdrhman M. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The color image is decomposed into red, green, and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using a key image that has same original size and is generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours of color image recovery can be obtained with accepted level of distortion using Canny edge detector. Experiments have demonstrated that proposed algorithm can fully encrypt 2D color image and completely reconstructed without any distortion. It has shown that the color image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: color image, wavelet transform, edge detector, Arnold transform, lossy image encryption
Procedia PDF Downloads 4832426 Corrosion Control of Carbon Steel Surface by Phosphonic Acid Nano-Layers
Authors: T. Abohalkuma, J. Telegdi
Abstract:
Preparation, characterization, and application of self-assembled monolayers (SAM) formed by fluorophosphonic and undecenyl phosphonic acids on carbon steel surfaces as anticorrosive nanocoatings were demonstrated. The anticorrosive efficacy of these SAM layers was followed by atomic force microscopy, as the change in the surface morphology caused by layer deposition and corrosion processes was monitored. The corrosion process was determined by electrochemical potentiodynamic polarization, whereas the surface wettability of the carbon steel samples was tested with the use of static and dynamic contact angle measurements. Results showed that both chemicals produced good protection against corrosion as they performed as anodic inhibitors, especially with increasing the time of layer formation, which results in a more compact molecular film. According to the atomic force microscope (AFM) images, the fluoro-phosphonic acid self-assembled molecular layer can control the general as well as the pitting corrosion, but the SAM layers of the undecenyl-phosphonic acid cannot inhibit the pitting corrosion. The AFM and the contact angle measurements confirmed the results achieved by electrochemical measurements.Keywords: nanolayers, corrosion, phosphonic acids, coatings
Procedia PDF Downloads 1712425 Bag of Local Features for Person Re-Identification on Large-Scale Datasets
Authors: Yixiu Liu, Yunzhou Zhang, Jianning Chi, Hao Chu, Rui Zheng, Libo Sun, Guanghao Chen, Fangtong Zhou
Abstract:
In the last few years, large-scale person re-identification has attracted a lot of attention from video surveillance since it has a potential application prospect in public safety management. However, it is still a challenging job considering the variation in human pose, the changing illumination conditions and the lack of paired samples. Although the accuracy has been significantly improved, the data dependence of the sample training is serious. To tackle this problem, a new strategy is proposed based on bag of visual words (BoVW) model of designing the feature representation which has been widely used in the field of image retrieval. The local features are extracted, and more discriminative feature representation is obtained by cross-view dictionary learning (CDL), then the assignment map is obtained through k-means clustering. Finally, the BoVW histograms are formed which encodes the images with the statistics of the feature classes in the assignment map. Experiments conducted on the CUHK03, Market1501 and MARS datasets show that the proposed method performs favorably against existing approaches.Keywords: bag of visual words, cross-view dictionary learning, person re-identification, reranking
Procedia PDF Downloads 1952424 Intuitive Decision Making When Facing Risks
Authors: Katharina Fellnhofer
Abstract:
The more information and knowledge that technology provides, the more important are profoundly human skills like intuition, the skill of using nonconscious information. As our world becomes more complex, shaken by crises, and characterized by uncertainty, time pressure, ambiguity, and rapidly changing conditions, intuition is increasingly recognized as a key human asset. However, due to methodological limitations of sample size or time frame or a lack of real-world or cross-cultural scope, precisely how to measure intuition when facing risks on a nonconscious level remains unclear. In light of the measurement challenge related to intuition’s nonconscious nature, a technique is introduced to measure intuition via hidden images as nonconscious additional information to trigger intuition. This technique has been tested in a within-subject fully online design with 62,721 real-world investment decisions made by 657 subjects in Europe and the United States. Bayesian models highlight the technique’s potential to measure skill at using nonconscious information for conscious decision making. Over the long term, solving the mysteries of intuition and mastering its use could be of immense value in personal and organizational decision-making contexts.Keywords: cognition, intuition, investment decisions, methodology
Procedia PDF Downloads 862423 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation
Authors: Hamed Alqahtani, Manolya Kavakli-Thorne
Abstract:
The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.Keywords: disentanglement, face detection, generative adversarial networks, video surveillance
Procedia PDF Downloads 1292422 Thermal Buckling Analysis of Functionally Graded Beams with Various Boundary Conditions
Authors: Gholamreza Koochaki
Abstract:
This paper presents the buckling analysis of functionally graded beams with various boundary conditions. The first order shear deformation beam theory (Timoshenko beam theory) and the classical theory (Euler-Bernoulli beam theory) of Reddy have been applied to the functionally graded beams buckling analysis The material property gradient is assumed to be in thickness direction. The equilibrium and stability equations are derived using the total potential energy equations, classical theory and first order shear deformation theory assumption. The temperature difference and applied voltage are assumed to be constant. The critical buckling temperature of FG beams are upper than the isotropic ones. Also, the critical temperature is different for various boundary conditions.Keywords: buckling, functionally graded beams, Hamilton's principle, Euler-Bernoulli beam
Procedia PDF Downloads 3922421 Simultaneous Determination of Some Phenolic Pesticides in Environmental and Biological Samples
Authors: Yasmeen F. Pervez, Etesh K. Janghel, Santosh Kumar Sar
Abstract:
Simple and sensitive analytical thermal gradient-thin layer chromatography technique has been developed for the simultaneous determination of phenolic pesticides like carbaryl, propoxur and carbofuran. It is based on the differential migration of colored derivatives formed by the reaction of hydrolysed phenolic compound with diazotized 3, 4 dimethyl aniline on a silica gel plate. Quantitative evaluation of hydrolyzed phenolic compound is made by visual comparison of intensities of color by spectrophotometry. The color system obeys Beer’s law in the following working range in ppm : carbaryl, 0.5-6.6; propoxur, 0.8-7.2; and carbofuran, 0.2-3.3 respectively. The Molar absorptivity, Sandell’s sensitivity, Correlation coefficient have been determined. The effects of analytical parameters on migration and analysis have been evaluated. The methods are highly reproducible and have been successfully applied to determination of phenolic pesticides in environmental and biological samples.Keywords: phenolic pesticides (carbaryl, propoxur and carbofuran), 3.4 dimethyl aniline, environmental, biological samples
Procedia PDF Downloads 4062420 Numerical Simulation of the Air Pollutants Dispersion Emitted by CPH Using ANSYS CFX
Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu
Abstract:
This paper presents the results obtained by numerical simulation of the pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion used by electric thermal power plant using the software ANSYS CFX-CFD. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. We considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations we have measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that we calculated the average concentration, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.Keywords: air pollutants, computational fluid dynamics, dispersion, simulation
Procedia PDF Downloads 4572419 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer
Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang
Abstract:
Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network
Procedia PDF Downloads 3232418 Effect of Asymmetric Amphiphilic Dicationic Ionic Liquids as Oil Spill Dispersants in Red Sea
Authors: Raghda El-Nagara, Maher I. Nessim, Carmen E. Elshafee, Renee I. Abdallah, Yasser M. Moustafa
Abstract:
Three asymmetric dicationic ionic liquids (ADILs), 1-(2-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)ethyl)-3-methyl pyridinium bromide (IL₁), 1-(6-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)hexyl)-3-methyl pyridinium bromide (IL₂) and 1-(10-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)decyl)-3-methyl pyridinium bromide (IL₃) were synthesized with yield of 83.54, 84.12 & 83.05% respectively. They were elucidated via conventional tools of analysis (elemental analysis, FT-IR, and 1H-NMR). The thermogravimetric analysis confirmed that the three ADILs possessed high thermal stability (up to 500ᵒC). Their critical micelle concentration (CMC) was investigated and exhibited values of 5.5-1*10⁻³ Mol./L. They were evaluated as oil spill dispersants were at different temperatures (10, 30 & 50ᵒC) with different concentrations (750, 1500, 2000, 3000 ppm). Data reveals that the efficiency is ranked as follows: IL₂ > IL₁ > IL₃, which showed high dispersion efficiency reached to 63% with the concentration of 1500 ppm.Keywords: ionic liquids, amphiphilic, oil spill dispersants, dicationic, efficiency test
Procedia PDF Downloads 1522417 Enhancing the Structural and Electrochemical Performance of Li-Rich Layered Metal Oxides Cathodes for Li-Ion Battery by Coating with the Active Material
Authors: Cyril O. Ehi-Eromosele, Ajayi Kayode
Abstract:
The Li-rich layered metal oxides (LLO) are the most promising candidates for promising electrodes of high energy Li-ion battery (LIB). In literature, these electrode system has either been designed as a hetero-structure of the primary components (composite) or as a core-shell structure with improved electrochemistry reported for both configurations when compared with its primary components. With the on-going efforts to improve on the electrochemical performance of the LIB, it is important to investigate comparatively the structural and electrochemical characteristics of the core-shell like and ‘composite’ forms of these materials with the same compositions and synthesis conditions which could influence future engineering of these materials. Therefore, this study concerns the structural and electrochemical properties of the ‘composite’ and core-shell like LLO cathode materials with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₂O₂ (LiNi₀.₅Mn₀.₃Co₀.₂O₂ as core and Li₂MnO₃ as the shell). The results show that the core-shell sample (–CS) gave better electrochemical performance than the ‘composite’ sample (–C). Both samples gave the same initial charge capacity of ~300 mAh/g when cycled at 10 mA/g and comparable charge capacity (246 mAh/g for the –CS sample and 240 mAh/g for the –C sample) when cycled at 200 mA/g. However, the –CS sample gave a higher initial discharge capacity at both current densities. The discharge capacity of the –CS sample was 232 mAh/g and 164 mAh/g while the –C sample is 208 mAh/g and 143 mAh/g at the current densities of 10 mA/g and 200 mA/g, respectively. Electrochemical impedance spectroscopy (EIS) results show that the –CS sample generally exhibited a smaller resistance than the –C sample both for the uncycled and after 50th cycle. Detailed structural analysis is on-going, but preliminary results show that the –CS sample had bigger unit cell volume and a higher degree of cation mixing. The thermal stability of the –CS sample was higher than the –C sample. XPS investigation also showed that the pristine –C sample gave a more reactive surface (showing formation of carbonate species to a greater degree) which could result in the greater resistance seen in the EIS result. To reinforce the results obtained for the 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₃O₂ composition, the same investigations were extended to another ‘composite’ and core-shell like LLO cathode materials also with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂. In this case, the aim was to determine the electrochemical performance of the material using a low Ni content (LiNi₀.₃Mn₀.₃Co₀.₃O₂) as the core to clarify the contributions of the core-shell configuration to the electrochemical performance of these materials. Ni-rich layered oxides show active catalytic surface leading to electrolyte oxidation resulting in poor thermal stability and cycle life. Here, the core-shell sample also gave better electrochemical performance than the ‘composite’ sample with 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂ composition. Furthermore, superior electrochemical performance was also recorded for the core-shell like spinel modified LLO (0.5Li₂MnO₃-0.45LiNi₀.₅Mn₀.₃Co₀.₂O₂-0.05LiNi₀.₅Mn₁.₅O₄) when compared to the composite system. These results show that the core-shell configuration can generally be used to improve the structural and electrochemical properties of the LLO and spinel modified LLO materials.Keywords: lithium-ion battery, lithium rich oxide cathode, core-shell structure, composite structure
Procedia PDF Downloads 1222416 Fabrication and Characterization of Glass Nanofibers through Electrospinning of Silica Sol-Gel along with in situ Synthesis of Ag Nanoparticles
Authors: Mahsa Kangazian Kangazi, Ali Akbar Ghareh Aghaji, Majid Montazer
Abstract:
Nowadays, silica nanofibers are highly regarded among the inorganic nanofibers due to the high reactivity and availability of silicon compounds in nature. Sol-gel process is required for electrospinning of silica nanofibers in which a metal alkoxide is hydrolyzed, and the viscosity is increased. In this study, silica nanofibers containing silver nanoparticles were synthesized and electrospun from a mixture of silica sol with an easy spinnable polymer (PVA) as an additive. The silica sol contains tetraethyl orthosilicate (TEOS), silver nitrate, distilled water, nitric acid, and ethanol. Nanofibers were formed through electrospinning setup. The nanofibers were calcinated to remove the solvent and additive polymer. Consequently, pure silica nanofibers were produced. FTIR analysis indicated entire removal of polyvinyl alcohol from the structure and formation of silan groups. The presence of silver, silica and oxygen was confirmed by EDX. Also, XRD patterns revealed the presence of silver nanoparticles with a mean crystal size of 18 nm. FESEM images showed that adding silver nitrate into the sol-gel, resulted in lower nanofibers diameter from 286 to 136 nm. Furthermore, the electrospun nanofibers were more resistance in acidic media than alkaline media.Keywords: in situ synthesis of silver nanoparticles, silica nanofibers, sol-gel, tetraethyl orthosilicate
Procedia PDF Downloads 1792415 Testing of Gas Turbine KingTech with Biodiesel
Authors: Nicolas Lipchak, Franco Aiducic, Santiago Baieli
Abstract:
The present work is a part of the research project called ‘Testing of gas turbine KingTech with biodiesel’, carried out by the Department of Industrial Engineering of the National Technological University at Buenos Aires. The research group aims to experiment with biodiesel in a gas turbine Kingtech K-100 to verify the correct operation of it. In this sense, tests have been developed to obtain real data of parameters inherent to the work cycle, to be used later as parameters of comparison and performance analysis. In the first instance, the study consisted in testing the gas turbine with a mixture composition of 50% Biodiesel and 50% Diesel. The parameters arising from the measurements made were compared with the parameters of the gas turbine with a composition of 100% Diesel. In the second instance, the measured parameters were used to calculate the power generated and the thermal efficiency of the Kingtech K-100 turbine. The turbine was also inspected to verify the status of the internals due to the use of biofuels. The conclusions obtained allow empirically demonstrate that it is feasible to use biodiesel in this type of gas turbines, without the use of this fuel generates a loss of power or degradation of internals.Keywords: biodiesel, efficiency, KingTech, turbine
Procedia PDF Downloads 2452414 The Use of Thermally Modified Diatomite to Remove Lead Ions
Authors: Hilary Limo Rutto
Abstract:
To better understand the application of diatomite as an adsorbent for the removal of Pb2+ from heavy metal-contaminated water, in this paper, diatomite was used to adsorb Pb2+ from aqueous solution under various conditions. The intrinsic exchange properties were further improved by heating the raw diatomite with fluxing agent at different temperatures and modification with manganese oxides. It is evident that the mass of the adsorbed Pb2+ generally increases after thermal treatment and modification with manganese oxides. The adsorption characteristics of lead on diatomite were studied at pH range of 2.5–12. The favourable pH range was found to be 7.5-8.5. The thermodynamic parameters (i.e.,∆H° ∆G° ∆S°) were evaluated from the temperature dependent adsorption isotherms. The results indicated that the adsorption process of Pb2+ on diatomite was spontaneous, endothermic and physical in nature. The equilibrium data have been analyzed using Langmuir and freundlich isotherm. The Langmuir isotherm was demonstrated to provide the best correlation for the adsorption of lead onto diatomite. The kinetics was studied using Pseudo- first and second-order model on the adsorption of lead onto diatomite. The results give best fit in second-order studies and it can be concluded that the adsorption of lead onto diatomite is second order reaction.Keywords: thermally modified, diatomite, adsorption, lead
Procedia PDF Downloads 2342413 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method
Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt
Abstract:
Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS
Procedia PDF Downloads 1512412 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation
Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang
Abstract:
Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good.Keywords: convective and radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate
Procedia PDF Downloads 3332411 The Study of Wetting Properties of Silica-Poly (Acrylic Acid) Thin Film Coatings
Authors: Sevil Kaynar Turkoglu, Jinde Zhang, Jo Ann Ratto, Hanna Dodiuk, Samuel Kenig, Joey Mead
Abstract:
Superhydrophilic, crack-free thin film coatings based on silica nanoparticles were fabricated by dip-coating method. Both thermodynamic and dynamic effects on the wetting properties of the thin films were investigated by modifying the coating formulation via changing the particle-to-binder ratio and weight % of silica in solution. The formulated coatings were characterized by a number of analyses. Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Scanning electron microscope (SEM) images were taken to examine the morphology of the coating surface. Atomic force microscopy (AFM) analysis was done to study surface topography. The presence of hydrophilic functional groups and nano-scale roughness were found to be responsible for the superhydrophilic behavior of the films. In addition, surface chemistry, compared to surface roughness, was found to be a primary factor affecting the wetting properties of the thin film coatings.Keywords: poly (acrylic acid), silica nanoparticles, superhydrophilic coatings, surface wetting
Procedia PDF Downloads 1342410 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation
Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent
Abstract:
Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene
Procedia PDF Downloads 2082409 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA
Procedia PDF Downloads 2302408 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1822407 Photoluminescence of Barium and Lithium Silicate Glasses and Glass Ceramics Doped with Rare Earth Ions
Authors: Augustas Vaitkevicius, Mikhail Korjik, Eugene Tretyak, Ekaterina Trusova, Gintautas Tamulaitis
Abstract:
Silicate materials are widely used as luminescent materials in amorphous and crystalline phase. Lithium silicate glass is popular for making neutron sensitive scintillation glasses. Cerium-doped single crystalline silicates of rare earth elements and yttrium have been demonstrated to be good scintillation materials. Due to their high thermal and photo-stability, silicate glass ceramics are supposed to be suitable materials for producing light converters for high power white light emitting diodes. In this report, the influence of glass composition and crystallization on photoluminescence (PL) of different silicate glasses was studied. Barium (BaO-2SiO₂) and lithium (Li₂O-2SiO₂) glasses were under study. Cerium, dysprosium, erbium and europium ions as well as their combinations were used for doping. The influence of crystallization was studied after transforming the doped glasses into glass ceramics by heat treatment in the temperature range of 550-850 degrees Celsius for 1 hour. The study was carried out by comparing the photoluminescence (PL) spectra, spatial distributions of PL parameters and quantum efficiency in the samples under study. The PL spectra and spatial distributions of their parameters were obtained by using confocal PL microscopy. A WITec Alpha300 S confocal microscope coupled with an air cooled CCD camera was used. A CW laser diode emitting at 405 nm was exploited for excitation. The spatial resolution was in sub-micrometer domain in plane and ~1 micrometer perpendicularly to the sample surface. An integrating sphere with a xenon lamp coupled with a monochromator was used to measure the external quantum efficiency. All measurements were performed at room temperature. Chromatic properties of the light emission from the glasses and glass ceramics have been evaluated. We observed that the quantum efficiency of the glass ceramics is higher than that of the corresponding glass. The investigation of spatial distributions of PL parameters revealed that heat treatment of the glasses leads to a decrease in sample homogeneity. In the case of BaO-2SiO₂: Eu, 10 micrometer long needle-like objects are formed, when transforming the glass into glass ceramics. The comparison of PL spectra from within and outside the needle-like structure reveals that the ratio between intensities of PL bands associated with Eu²⁺ and Eu³⁺ ions is larger in the bright needle-like structures. This indicates a higher degree of crystallinity in the needle-like objects. We observed that the spectral positions of the PL bands are the same in the background and the needle-like areas, indicating that heat treatment imposes no significant change to the valence state of the europium ions. The evaluation of chromatic properties confirms applicability of the glasses under study for fabrication of white light sources with high thermal stability. The ability to combine barium and lithium glass matrixes and doping by Eu, Ce, Dy, and Tb enables optimization of chromatic properties.Keywords: glass ceramics, luminescence, phosphor, silicate
Procedia PDF Downloads 3172406 Improvement in Quality-Factor Superconducting Co-Planer Waveguide Resonators by Passivation Air-Interfaces Using Self-Assembled Monolayers
Authors: Saleem Rao, Mohammed Al-Ghadeer, Archan Banerjee, Hossein Fariborzi
Abstract:
Materials imperfection, particularly two-level-system (TLS) defects in planer superconducting quantum circuits, contributes significantly to decoherence, ultimately limiting the performance of quantum computation and sensing. Oxides at air interfaces are among the host of TLS, and different material has been used to reduce TLS losses. Passivation with an inorganic layer is not an option to reduce these interface oxides; however, they can be etched away, but their regrowth remains a problem. Here, we report the chemisorption of molecular self-assembled monolayers (SAMs) at air interfaces of superconducting co-planer waveguide (CPW) resonators that suppress the regrowth of oxides and also modify the dielectric constant of the interface. With SAMs, we observed sustained order of magnitude improvement in quality factor -better than oxide etched interfaces. Quality factor measurements at millikelvin temperature and at single photon, XPS data, and TEM images of SAM passivated air interface sustenance our claim. Compatibility of SAM with micro-/nano-fabrication processes opens new ways to improve the coherence time in cQED.Keywords: superconducting circuits, quality-factor, self-assembled monolayer, coherence
Procedia PDF Downloads 832405 Dose Measurement in Veterinary Radiology Using Thermoluminescent Dosimeter
Authors: E. Saeedian, M. Shakerian, A. Zarif Sanayei, Z. Rakeb, F. N. Alizadeh, S. Sarshough, S. Sina
Abstract:
Radiological protection for plants and animals is an area of regulatory importance. Acute doses of 0.1 Gy/d (10 rad/d) or below are highly unlikely to produce permanent, measurable negative effects on populations or communities of plants or animals. The advancement of radio diagnostics for domestic animals, particularly dogs and cats, has gained popularity in veterinary medicine. As pets are considered to be members of the family worldwide, they are entitled to the same care and protection. It is important to have a system of radiological protection for nonhuman organisms that complies with the focus on human health as outlined in ICRP publication 19. The present study attempts to assess surface-skin entrance doses in small pets undergoing abdominal radio diagnostic procedures utilizing a direct measurements technique with a thermoluminescent dosimeter. These measurements allow the determination of the entrance skin dose (ESD) by calculating the amount of radiation absorbed by the skin during exposure. A group of Thirty TLD-100 dosimeters produced by Harshaw Company, each with repeatability greater than 95% and calibration using ¹³⁷Cs gamma source, were utilized to measure doses to ten small pets, including cats and dogs in the radiological department in a veterinary clinic in Shiraz, Iran. Radiological procedures were performed using a portable imaging unit (Philips Super M100, Philips Medical System, Germany) to acquire images of the abdomen; ten exams of abdomen images of different pets were monitored, measuring the thicknesses of the two projections (lateral and ventrodorsal) and the distance of the X-ray source from the surface of each pet during the exams. A group of two dosimeters was used for each pet which has been stacked on their skin on the abdomen region. The outcome of this study involved medical procedures with the same kVp, mAs, and nearly identical positions for different diagnostic X-ray procedures executed over a period of two months. The result showed the mean ESD value was 260.34±50.06 µGy due to the approximate size of pets. Based on the results, the ESD value is associated with animal size, and larger animals have higher values. If a procedure doesn't require repetition, the dose can be optimized. For smaller animals, the main challenge in veterinary radiology is the dose increase caused by repetitions, which is most noticeable in the ventrodorsal position due to the difficulty in immobilizing the animal. Animals are an area of regulatory importance. Acute doses of 0.1 Gy/d (10 rad/d) or below are highly unlikely to produce permanent, measurable negative effects on populations or communities of plants or animals. The advancement of radio diagnostics for domestic animals, particularly dogs and cats, has gained popularity in veterinary medicine. As pets are considered to be members of the family worldwide, they are entitled to the same care and protection. It is important to have a system of radiological protection for nonhuman organisms that complies with the focus on human health as outlined in ICRP publication 19. The present study attempts to assess surface-skin entrance doses in small pets undergoing abdominal radio diagnostic procedures utilizing direct measurements.Keywords: direct dose measuring, dosimetry, radiation protection, veterinary medicine
Procedia PDF Downloads 702404 Tribological Investigation of Piston Ring Liner Assembly
Authors: Bharatkumar Sutaria, Tejaskumar Chaudhari
Abstract:
An engine performance can be increased by minimizing losses. There are various losses observed in the engines. i.e. thermal loss, heat loss and mechanical losses. Mechanical losses are in the tune of 15 to 20 % of the overall losses. Piston ring assembly contributes the highest friction in the mechanical frictional losses. The variation of piston speed in stroke length the friction force development is not uniform. In present work, comparison has been made between theoretical and experimental friction force under different operating conditions. The experiments are performed using variable operating parameters such as load, speed, temperature and lubricants. It is found that reducing trend of friction force and friction coefficient is in good nature with mixed lubrication regime of the Stribeck curve. Overall outcome from the laboratory test performance of segmented piston ring assembly using multi-grade oil offers reasonably good results at room and elevated temperatures.Keywords: friction force, friction coefficient, piston rings, Stribeck curve
Procedia PDF Downloads 4862403 Mueller Matrix Polarimetry for Analysis Scattering Biological Fluid Media
Authors: S. Cherif, A. Medjahed, M. Bouafia, A. Manallah
Abstract:
A light wave is characterized by 4 characteristics: its amplitude, its frequency, its phase and the direction of polarization of its luminous vector (the electric field). It is in this last characteristic that we will be interested. The polarization of the light was introduced in order to describe the vectorial behavior of the light; it describes the way in which the electric field evolves in a point of space. Our work consists in studying diffusing mediums. Different types of biological fluids were selected to study the evolution of each with increasing scattering power of the medium, and in the same time to make a comparison between them. When crossing these mediums, the light undergoes modifications and/or deterioration of its initial state of polarization. This phenomenon is related to the properties of the medium, the idea is to compare the characteristics of the entering and outgoing light from the studied medium by a white light. The advantage of this model is that it is experimentally accessible workable intensity measurements with CCD sensors and allows operation in 2D. The latter information is used to discriminate some physical properties of the studied areas. We chose four types of milk to study the evolution of each with increasing scattering power of the medium.Keywords: light polarization, Mueller matrix, Mueller images, diffusing medium, milk
Procedia PDF Downloads 3302402 Application of Artificial Neural Network and Background Subtraction for Determining Body Mass Index (BMI) in Android Devices Using Bluetooth
Authors: Neil Erick Q. Madariaga, Noel B. Linsangan
Abstract:
Body Mass Index (BMI) is one of the different ways to monitor the health of a person. It is based on the height and weight of the person. This study aims to compute for the BMI using an Android tablet by obtaining the height of the person by using a camera and measuring the weight of the person by using a weighing scale or load cell. The height of the person was estimated by applying background subtraction to the image captured and applying different processes such as getting the vanishing point and applying Artificial Neural Network. The weight was measured by using Wheatstone bridge load cell configuration and sending the value to the computer by using Gizduino microcontroller and Bluetooth technology after the amplification using AD620 instrumentation amplifier. The application will process the images and read the measured values and show the BMI of the person. The study met all the objectives needed and further studies will be needed to improve the design project.Keywords: body mass index, artificial neural network, vanishing point, bluetooth, wheatstone bridge load cell
Procedia PDF Downloads 3242401 Energy System for Algerian Green Building in Tlemcen, North Africa
Authors: M. A. Boukli Hacene, N. E.Chabane Sari, A. Benzair
Abstract:
This article highlights a method for natural heating and cooling of systems in areas of moderate climate. Movement of air is generated inside a space by an underground piping system. In this paper, we discuss a feasibility study in Algeria of air-conditioning using a ground source heat pump (GSHP) with vertical mounting, coupled with a solar collector. This study consists of modeling ground temperature at different depths, for a clay soil in the city of Tlemcen. Our model is developed from the non-stationary heat equation for a homogeneous medium and takes into consideration the soil thermal diffusivity. It uses the daily ambient temperature during a typical year for the locality of Tlemcen. The study shows the feasibility of using a heating/cooling GSHP in the town of Tlemcen for the particular soil type; and indicates that the duration of air flow in the borehole has a major influence on the outgoing temperature drilling.Keywords: green building, heat pump, insulation, climate change
Procedia PDF Downloads 2192400 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 26