Search results for: yield enhancement
393 'Sit Down, Breathe, and Feel What?' Bringing a Contemplative Intervention into a Public Urban Middle School
Authors: Lunthita M. Duthely, John T. Avella, John Ganapati Coleman
Abstract:
For as many as one in three adolescents living in the United States, the adolescent years is a period of low well-being and mental health challenges—from depressive symptoms to mild to moderate psychological diagnoses. Longitudinal population health studies demonstrated that these challenges persist in young adulthood, and beyond. The positive psychology (PS) approach is a more preventative approach to well-being, which contrasts the traditional, deficits approach to curing mental illness. The research among adult populations formed the basis for PS studies among adolescents. The empirical evidence for the effectiveness of PS interventions exists for both adult and youth populations. Positive Psychology interventions target individuals’ strengths, such as hope and optimism, and positive emotions, such as gratitude. Positive psychology interventions such as increasing gratitude, proved effective in many outcomes among youth, including psychological, social, and academically-related outcomes. Although gratitude-inducing studies have been conducted for the past decade in the United States, few studies have been conducted among samples of urban youth, particularly youth of diverse cultural backgrounds. For nearly two decades, the secular practice of meditation has been tested among adults and more recently among youth, focused mostly among clinical samples. The field of Contemplative Sciences explores practices such as Hatha Yoga, Tai Chi, and Meditation, as preventative practices among children and adolescents. A more recent initiative is to explore Contemplative Practices in the school environment. Contemplative Practices yield a variety of positive outcomes, including academic, social, psychological, physiological, and neurological changes among children and adolescents. Again, few studies were conducted among adolescents of diverse cultural backgrounds. The purpose of this doctoral dissertation research study was to test a gratitude-meditation intervention among middle school students attending a public charter school, located in an urban region of Metropolitan Miami. The objective of this presentation is to summarize the challenges and success of bringing a positive psychology and meditation intervention into an urban middle school. Also, the most recent findings on positive psychology and meditation interventions conducted in school environments will be presented as well.Keywords: adolescents, contemplative intervention, gratitude, secular meditation, positive psychology, school engagement, Sri Chinmoy
Procedia PDF Downloads 397392 Protecting Human Health under International Investment Law
Authors: Qiang Ren
Abstract:
In the past 20 years, under the high standard of international investment protection, there have been numerous cases of investors ignoring the host country's measures to protect human health. Examples include investment disputes triggered by the Argentine government's measures related to human health, quality, and price of drinking water under the North American Free Trade Agreement. Examples also include Philip Morris v. Australia, in which case the Australian government announced the passing of the Plain Packing of Cigarettes Act to address the threat of smoking to public health in 2010. In order to take advantage of the investment treaty protection between Hong Kong and Australia, Philip Morris Asia acquired Philip Morris Australia in February 2011 and initiated investment arbitration under the treaty before the passage of the Act in July 2011. Philip Morris claimed the Act constitutes indirect expropriation and violation of fair and equitable treatment and claimed 4.16 billion US dollars compensation. Fortunately, the case ended at the admissibility decision stage and did not enter the substantive stage. Generally, even if the host country raises a human health defense, most arbitral tribunals will rule that the host country revoke the corresponding policy and make huge compensation in accordance with the clauses in the bilateral investment treaty to protect the rights of investors. The significant imbalance in the rights and obligations of host states and investors in international investment treaties undermines the ability of host states to act in pursuit of human health and social interests beyond economic interests. This squeeze on the nation's public policy space and disregard for the human health costs of investors' activities raises the need to include human health in investment rulemaking. The current international investment law system that emphasizes investor protection fails to fully reflect the requirements of the host country for the healthy development of human beings and even often brings negative impacts to human health. At a critical moment in the reform of the international investment law system, in order to achieve mutual enhancement of investment returns and human health development, human health should play a greater role in influencing and shaping international investment rules. International investment agreements should not be limited to investment protection tools but should also be part of national development strategies to serve sustainable development and human health. In order to meet the requirements of the new sustainable development goals of the United Nations, human health should be emphasized in the formulation of international investment rules, and efforts should be made to shape a new generation of international investment rules that meet the requirements of human health and sustainable development.Keywords: human health, international investment law, Philip Morris v. Australia, investor protection
Procedia PDF Downloads 179391 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties
Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts
Abstract:
Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.Keywords: bismuth seleinde, nanostructures, topological insulator, vapour-solid deposition
Procedia PDF Downloads 232390 Nanoporous Metals Reinforced with Fullerenes
Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca
Abstract:
Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals
Procedia PDF Downloads 239389 Antihypertensive Effect of Formulated Apium graveolens: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Authors: Maryam Shayani Rad, Seyed Ahmad Mohajeri, Mohsen Mouhebati, Seyed Danial Mousavi
Abstract:
High blood pressure is one of the most important and serious health-threatening because of no symptoms in most people, which can lead to sudden heart attack, heart failure, and stroke. Nowadays, herbal medicine is one of the best and safest strategies for treatment that have no adverse effects. Apium graveolens (celery) can be used as an alternative treatment for many health conditions such as hypertension. Natural compounds reduce blood pressure via different mechanisms in which Apium graveolens extract provides potent calcium channel blocking properties. A randomized, double-blind, placebo-controlled, cross-over clinical trial was done to evaluate the efficacy of formulated Apium graveolens extract with a maximum yield of 3-n-butylphthalide to reduce systolic and diastolic blood pressure in patients with hypertension. 54 hypertensive patients in the range of 20-68 years old were randomly assigned to the treatment group (26 cases) and the placebo control group (26 cases) and were crossed over after washout duration. The treatment group received at least 2 grams of formulated powder in hard capsules orally, before each meal, 2 times daily. The control group received 2 grams of placebo in hard capsules orally, exactly as the same as shape, time, and doses of treatment group. Treatment was administrated in 12 weeks with 4 weeks washout period at the middle of the study, meaning 4 weeks drug consumption for the treatment group, 4 weeks washout and 4 weeks placebo consumption, and vice versa for the placebo control group. The clinical assessment was done 4 times, including at the beginning and ending of the drug and placebo consumption period by 24-hour ambulatory blood pressure monitoring (ABPM) holter, which measured blood pressure every 15 minutes continuously. There was a statistically significant decrease in both systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the end of drug duration compared to baseline. The changes after 4 weeks on average was about 12.34 mm Hg for the SBP (P < 0.005) and 7.83 mm Hg for the DBP (P < 0.005). The results from this clinical trial study showed this Apium graveolens extract formulation in the mentioned dosage had a significant effect on blood pressure-lowering for hypertensive patients.Keywords: Apium graveolens extract, clinical trial, cross-over, hypertension
Procedia PDF Downloads 213388 Qualitative Characterization of Proteins in Common and Quality Protein Maize Corn by Mass Spectrometry
Authors: Benito Minjarez, Jesse Haramati, Yury Rodriguez-Yanez, Florencio Recendiz-Hurtado, Juan-Pedro Luna-Arias, Salvador Mena-Munguia
Abstract:
During the last decades, the world has experienced a rapid industrialization and an expanding economy favoring a demographic boom. As a consequence, countries around the world have focused on developing new strategies related to the production of different farm products in order to meet future demands. Consequently, different strategies have been developed seeking to improve the major food products for both humans and livestock. Corn, after wheat and rice, is the third most important crop globally and is the primary food source for both humans and livestock in many regions around the globe. In addition, maize (Zea mays) is an important source of protein accounting for up to 60% of the daily human protein supply. Generally, many of the cereal grains have proteins with relatively low nutritional value, when they are compared with proteins from meat. In the case of corn, much of the protein is found in the endosperm (75 to 85%) and is deficient in two essential amino acids, lysine, and tryptophan. This deficiency results in an imbalance of amino acids and low protein content; normal maize varieties have less than half of the recommended amino acids for human nutrition. In addition, studies have shown that this deficiency has been associated with symptoms of growth impairment, anemia, hypoproteinemia, and fatty liver. Due to the fact that most of the presently available maize varieties do not contain the quality and quantity of proteins necessary for a balanced diet, different countries have focused on the research of quality protein maize (QPM). Researchers have characterized QPM noting that these varieties may contain between 70 to 100% more residues of the amino acids essential for animal and human nutrition, lysine, and tryptophan, than common corn. Several countries in Africa, Latin America, as well as China, have incorporated QPM in their agricultural development plan. Large parts of these countries have chosen a specific QPM variety based on their local needs and climate. Reviews have described the breeding methods of maize and have revealed the lack of studies on genetic and proteomic diversity of proteins in QPM varieties, and their genetic relationships with normal maize varieties. Therefore, molecular marker identification using tools such as mass spectrometry may accelerate the selection of plants that carry the desired proteins with high lysine and tryptophan concentration. To date, QPM maize lines have played a very important role in alleviating the malnutrition, and better characterization of these lines would provide a valuable nutritional enhancement for use in the resource-poor regions of the world. Thus, the objectives of this study were to identify proteins in QPM maize in comparison with a common maize line as a control.Keywords: corn, mass spectrometry, QPM, tryptophan
Procedia PDF Downloads 289387 Experimental Design in Extraction of Pseudomonas sp. Protease from Fermented Broth by Polyethylene Glycol/Citrate Aqueous Two-Phase System
Authors: Omar Pillaca-Pullo, Arturo Alejandro-Paredes, Carol Flores-Fernandez, Marijuly Sayuri Kina, Amparo Iris Zavaleta
Abstract:
Aqueous two-phase system (ATPS) is an interesting alternative for separating industrial enzymes due to it is easy to scale-up and low cost. Polyethylene glycol (PEG) mixed with potassium phosphate or magnesium sulfate is one of the most frequently polymer/salt ATPS used, but the consequences of its use is a high concentration of phosphates and sulfates in wastewater causing environmental issues. Citrate could replace these inorganic salts due to it is biodegradable and does not produce toxic compounds. On the other hand, statistical design of experiments is widely used for ATPS optimization and it allows to study the effects of the involved variables in the purification, and to estimate their significant effects on selected responses and interactions. The 24 factorial design with four central points (20 experiments) was employed to study the partition and purification of proteases produced by Pseudomonas sp. in PEG/citrate ATPS system. ATPS was prepared with different sodium citrate concentrations [14, 16 and 18% (w/w)], pH values (7, 8 and 9), PEG molecular weight (2,000; 4,000 and 6,000 g/mol) and PEG concentrations [18, 20 and 22 % (w/w)]. All system components were mixed with 15% (w/w) of the fermented broth and deionized water was added to a final weight of 12.5 g. Then, the systems were mixed and kept at room temperature until to reach two-phases separation. Volumes of the top and bottom phases were measured, and aliquots from both phases were collected for subsequent proteolytic activity and total protein determination. Influence of variables such as PEG molar mass (MPEG), PEG concentration (CPEG), citrate concentration (CSal) and pH were evaluated on the following responses: purification factor (PF), activity yield (Y), partition coefficient (K) and selectivity (S). STATISTICA program version 10 was used for the analysis. According to the obtained results, higher levels of CPEG and MPEG had a positive effect on extraction, while pH did not influence on the process. On the other hand, the CSal could be related with low values of Y because of the citrate ions have a negative effect on solubility and enzymatic structure. The optimum values of Y (66.4 %), PF (1.8), K (5.5) and S (4.3) were obtained at CSal (18%), MPEG (6,000 g/mol), CPEG (22%) and pH 9. These results indicated that the PEG/citrate system is accurate to purify these Pseudomonas sp. proteases from fermented broth as a first purification step.Keywords: citrate, polyethylene glycol, protease, Pseudomonas sp
Procedia PDF Downloads 195386 Internet of Things in Higher Education: Implications for Students with Disabilities
Authors: Scott Hollier, Ruchi Permvattana
Abstract:
The purpose of this abstract is to share the findings of a recently completed disability-related Internet of Things (IoT) project undertaken at Curtin University in Australia. The project focused on identifying how IoT could support people with disabilities with their educational outcomes. To achieve this, the research consisted of an analysis of current literature and interviews conducted with students with vision, hearing, mobility and print disabilities. While the research acknowledged the ability to collect data with IoT is now a fairly common occurrence, its benefits and applicability still need to be grounded back into real-world applications. Furthermore, it is important to consider if there are sections of our society that may benefit from these developments and if those benefits are being fully realised in a rush by large companies to achieve IoT dominance for their particular product or digital ecosystem. In this context, it is important to consider a group which, to our knowledge, has had little specific mainstream focus in the IoT area –people with disabilities. For people with disabilities, the ability for every device to interact with us and with each other has the potential to yield significant benefits. In terms of engagement, the arrival of smart appliances is already offering benefits such as the ability for a person in a wheelchair to give verbal commands to an IoT-enabled washing machine if the buttons are out of reach, or for a blind person to receive a notification on a smartphone when dinner has finished cooking in an IoT-enabled microwave. With clear benefits of IoT being identified for people with disabilities, it is important to also identify what implications there are for education. With higher education being a critical pathway for many people with disabilities in finding employment, the question as to whether such technologies can support the educational outcomes of people with disabilities was what ultimately led to this research project. This research will discuss several significant findings that have emerged from the research in relation to how consumer-based IoT can be used in the classroom to support the learning needs of students with disabilities, how industrial-based IoT sensors and actuators can be used to monitor and improve the real-time learning outcomes for the delivery of lectures and student engagement, and a proposed method for students to gain more control over their learning environment. The findings shared in this presentation are likely to have significant implications for the use of IoT in the classroom through the implementation of affordable and accessible IoT solutions and will provide guidance as to how policies can be developed as the implications of both benefits and risks continue to be considered by educators.Keywords: disability, higher education, internet of things, students
Procedia PDF Downloads 119385 Erosion Wear of Cast Al-Si Alloys
Authors: Pooja Verma, Rajnesh Tyagi, Sunil Mohan
Abstract:
Al-Si alloys are widely used in various components such as liner-less engine blocks, piston, compressor bodies and pumps for automobile sector and aerospace industries due to their excellent combination of properties like low thermal expansion coefficient, low density, excellent wear resistance, high corrosion resistance, excellent cast ability, and high hardness. The low density and high hardness of primary Si phase results in significant reduction in density and improvement in wear resistance of hypereutectic Al-Si alloys. Keeping in view of the industrial importance of the alloys, hypereutectic Al-Si alloys containing 14, 16, 18 and 20 wt. % of Si were prepared in a resistance furnace using adequate amount of deoxidizer and degasser and their erosion behavior was evaluated by conducting tests at impingement angles of 30°, 60°, and 90° with an erodent discharge rate of 7.5 Hz, pressure 1 bar using erosion test rig. Microstructures of the cast alloys were examined using Optical microscopy (OM) and scanning electron microscopy (SEM) and the presence of Si particles was confirmed by x-ray diffractometer (XRD). The mechanical properties and hardness were measured using uniaxial tension tests at a strain rate of 10-3/s and Vickers hardness tester. Microstructures of the alloys and X-ray examination revealed the presence of primary and eutectic Si particles in the shape of cuboids or polyhedral and finer needles. Yield strength (YS), ultimate tensile strength (UTS), and uniform elongation of the hypereutectic Al-Si alloys were observed to increase with increasing content of Si. The optimal strength and ductility was observed for Al-20 wt. % Si alloy which is significantly higher than the Al-14 wt. % Si alloy. The increased hardness and the strength of the alloys with increasing amount of Si has been attributed presence of Si in the solid solution which creates strain, and this strain interacts with dislocations resulting in solid-solution strengthening. The interactions between distributed primary Si particles and dislocations also provide Orowan strengthening leading to increased strength. The steady state erosion rate was found to decrease with increasing angle of impact as well as Si content for all the alloys except at 900 where it was observed to increase with the increase in the Si content. The minimum erosion rate is observed in Al-20 wt. % Si alloy at 300 and 600 impingement angles because of its higher hardness in comparison to other alloys. However, at 90° impingement angle the wear rate for Al-20 wt. % Si alloy is found to be the minimum due to deformation, subsequent cracking and chipping off material.Keywords: Al-Si alloy, erosion wear, cast alloys, dislocation, strengthening
Procedia PDF Downloads 66384 Sculpted Forms and Sensitive Spaces: Walking through the Underground in Naples
Authors: Chiara Barone
Abstract:
In Naples, the visible architecture is only what emerges from the underground. Caves and tunnels cross it in every direction, intertwining with each other. They are not natural caves but spaces built by removing what is superfluous in order to dig a form out of the material. Architects, as sculptors of space, do not determine the exterior, what surrounds the volume and in which the forms live, but an interior underground space, perceptive and sensitive, able to generate new emotions each time. It is an intracorporeal architecture linked to the body, not in its external relationships, but rather with what happens inside. The proposed aims to reflect on the design of underground spaces in the Neapolitan city. The idea is to intend the underground as a spectacular museum of the city, an opportunity to learn in situ the history of the place along an unpredictable itinerary that crosses the caves and, in certain points, emerges, escaping from the world of shadows. Starting form the analysis and the study of the many overlapping elements, the archaeological one, the geological layer and the contemporary city above, it is possible to develop realistic alternatives for underground itineraries. The objective is to define minor paths to ensure the continuity between the touristic flows and entire underground segments already investigated but now disconnected: open-air paths, which abyss in the earth, retracing historical and preserved fragments. The visitor, in this way, passes from real spaces to sensitive spaces, in which the imaginary replaces the real experience, running towards exciting and secret knowledge. To safeguard the complex framework of the historical-artistic values, it is essential to use a multidisciplinary methodology based on a global approach. Moreover, it is essential to refer to similar design projects for the archaeological underground, capable of guide action strategies, looking at similar conditions in other cities, where the project has led to an enhancement of the heritage in the city. The research limits the field of investigation, by choosing the historic center of Naples, applying bibliographic and theoretical research to a real place. First of all, it’s necessary to deepen the places’ knowledge understanding the potentialities of the project as a link between what is below and what is above. Starting from a scientific approach, in which theory and practice are constantly intertwined through the architectural project, the major contribution is to provide possible alternative configurations for the underground space and its relationship with the city above, understanding how the condition of transition, as passage between the below and the above becomes structuring in the design process. Starting from the consideration of the underground as both a real physical place and a sensitive place, which engages the memory, imagination, and sensitivity of a man, the research aims at identifying possible configurations and actions useful for future urban programs to make the underground a central part of the lived city, again.Keywords: underground paths, invisible ruins, imaginary, sculpted forms, sensitive spaces, Naples
Procedia PDF Downloads 107383 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures
Authors: Hamed Khosravi, Reza Eslami-Farsani
Abstract:
Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption
Procedia PDF Downloads 343382 Hibiscus Sabdariffa Extracts: A Sustainable and Eco-Friendly Resource for Multifunctional Cellulosic Fibers
Authors: Mohamed Rehan, Gamil E. Ibrahim, Mohamed S. Abdel-Aziz, Shaimaa R. Ibrahim, Tawfik A. Khattab
Abstract:
The utilization of natural products in finishing textiles toward multifunctional applications without side effects is an extremely motivating goal. Hibiscus sabdariffa usually has been used for many traditional medicine applications. To develop an additional use for Hibiscus sabdariffa, an extraction of bioactive compounds from Hibiscus sabdariffa followed by finishing on cellulosic fibers was designed to cleaner production of the value-added textiles fibers with multifunctional applications. The objective of this study is to explore, identify, and evaluate the bioactive compound extracted from Hibiscus sabdariffa by different solvent via ultrasonic technique as a potential eco-friendly agent for multifunctional cellulosic fabrics via two approaches. In the first approach, Hibiscus sabdariffa extract was used as a source of sustainable eco-friendly for simultaneous coloration and multi-finishing of cotton fabrics via in situ incorporations of nanoparticles (silver and metal oxide). In the second approach, the micro-capsulation of Hibiscus sabdariffa extracts was followed by coating onto cotton gauze to introduce multifunctional healthcare applications. The effect of the solvent type was accelerated by ultrasonic on the phytochemical, antioxidant, and volatile compounds of Hibiscus sabdariffa. The surface morphology and elemental content of the treated fabrics were explored using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The multifunctional properties of treated fabrics, including coloration, sensor properties and protective properties against pathogenic microorganisms and UV radiation as well as wound healing property were evaluated. The results showed that the water, as well as ethanol/water, was selected as a solvent for the extraction of natural compounds from Hibiscus Sabdariffa with high in extract yield, total phenolic contents, flavonoid contents, and antioxidant activity. These natural compounds were utilized to enhance cellulosic fibers functionalization by imparting faint/dark red color, antimicrobial against different organisms, and antioxidants as well as UV protection properties. The encapsulation of Hibiscus Sabdariffa extracts, as well as wound healing, is under consideration and evaluation. As a result, the current study presents a sustainable and eco-friendly approach to design cellulosic fabrics for multifunctional medical and healthcare applications.Keywords: cellulosic fibers, Hibiscus sabdariffa extract, multifunctional application, nanoparticles
Procedia PDF Downloads 147381 Testing of Populations of Selected Fungal Pathogens of Cereals for Resistance to Fungicides
Authors: Martina Čapková
Abstract:
Today, it is essential to ensure effective protection of cultivated cereal crops against fungal pathogens, which are one of the main factors limiting the yield and quality of cereal crops worldwide. The economic impact of losses caused by the emergence of resistant pathogen populations to fungicides is significant and it is therefore essential to seek effective strategies to protect against the establishment and emergence of resistant populations. In this study, the susceptibility analysis of fungal pathogens to different fungicidal agents was carried out. The results showed variability in the efficacy of fungicidal agents against the pathogens and suggest the need to reconsider the use of certain agents in crop protection. The efficacy of a total of five fungicidal active ingredients (fluxapyroxad, azoxystrobin, fenpicoxamid, prothioconazole, mefentrifluconazole) was tested at different concentrations on a total of 236 isolates of the pathogens Monographella nivalis, Oculimacula yallundae, Zymoseptoria tritici and Ramularia collo-cygni. The hypothesis of this work, based on the assumption of the existence of variation in the susceptibility of pathogens to fungicides, was confirmed. The aim was to determine the level of susceptibility of the selected fungal pathogen isolates of cereal crops to commonly used fungicidal agents. The fungicide with the highest proportion of individuals showing lower susceptibility (EC50 > 0.5 µg/ml) was azoxystrobin. The EC50 value refers to the effective concentration of the fungicidal agent inhibiting mycelial growth by 50%. Most of the Monographella nivalis isolates (94.83%) showed resistance to azoxystrobin, while they did not show resistance to prothioconazole and only 6.78% of the isolates were resistant to fenpicoxamide. Isolates of the pathogen Oculimacula yallundae showed resistance neither to prothioconazole nor to fluxapyroxad. The pathogen Zymoseptoria tritici showed the highest level of variability in fungicide resistance, with isolates showing no resistance to fenpicoxamide, while 85.51% of the isolates showed resistance to azoxystrobin. The pathogen Ramularia collo-cygni showed the highest level of resistance to all the fungicidal active ingredients tested. Overall, the study provides important insights for optimising cereal crop protection strategies and reducing the risk of fungal pathogen resistance to fungicides. However, it is necessary to continuously monitor the occurrence of resistant isolates in pathogen populations and to investigate new control methods and adapt them to changing agricultural conditions.Keywords: wheat, barley, diseases, protection, fungicides, fungicide resistance, monitoring
Procedia PDF Downloads 17380 Adaptation of Extra Early Maize 'Zea Mays L.' Varieties for Climate Change Mitigation in South Western Nigeria
Authors: Akinwumi Omotayo, Badu-B Apraku, Joseph Olobasola, Petra Abdul Saghir, Yinka Sobowale
Abstract:
In southwestern Nigeria, climate change has led to loss of at least two months of rainfall. Consequently, only one cycle of maize can now be grown because of the shorter duration of rainy season as against two cycles in the past. The Early and Extra-early maturing varieties of maize were originally developed for the semi-arid and arid zones of West and Central Africa where there are seasonal challenges of water threatening optimum performance of the traditional maize grown, which are commonly late in maturity (115 to 120 days). The early varieties of maize mature in 90 to 95 days; while the Extra-Early maize varieties reach physiological maturity in less than 90 days. It was broadly hypothesized that the extra early varieties of maize could mitigate the effects of climate change in southwestern Nigeria with higher levels of rainfall by reinstating the original two cycles of rain-fed maize crop. Trials were therefore carried out in southwestern Nigeria on the possibility of adapting the extra early maize to mitigate the effects of climate change. The trial was the Mother/Baby design. The mother trial involves the evaluation of extra-early varieties following ideal recommendations and closely supervised centrally at the University research farm and the Agricultural Development Programmes (ADPs). This requires farmers to observe and evaluate the technology and the management regime meant to precede the second stage of evaluation at several satellite farmers field managed by selected farmers. The Baby Trial is expected to provide a realistic assessment of the technology by farmers in their own environment. A stratified selection of thirty farmers for the Baby Trial ensured appropriate representation across the different categories of the farming population by age and gender. Data from the trials indicate that extra early maize can be grown in two cycles rain fed in south west Nigeria and a third and fourth cycle could be obtained with irrigation. However the long duration varieties outyielded the extra early maize in both the mother and baby trials. When harvested green, the extra early maize served as source of food between March and May when there was scarcity of food. This represents a major advantage. The study recommends that further work needs to be done to improve the yield of extra early maize to encourage farmers to adopt.Keywords: adaptation, climate change, extra early, maize varieties, mitigation
Procedia PDF Downloads 201379 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp
Authors: Ali Mohammed Ali Lmbash
Abstract:
The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.Keywords: smart architecture, Hatay Camp, sustainability, machine learning.
Procedia PDF Downloads 58378 Optimization of Culture Conditions of Paecilomyces Tenuipes, Entomopathogenic Fungi Inoculated into the Silkworm Larva, Bombyx Mori
Authors: Sung-Hee Nam, Kwang-Gill Lee, You-Young Jo, HaeYong Kweon
Abstract:
Entomopathogenic fungi is a Cordyceps species that is isolated from dead silkworm and cicada. Fungi on cicadas were described in old Chinese medicinal books and From ancient times, vegetable wasps and plant worms were widely known to have active substance and have been studied for pharmacological use. Among many fungi belonging to the genus Cordyceps, Cordyceps sinensis have been demonstrated to yield natural products possessing various biological activities and many bioactive components. Generally, It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. Due to their commercial and economic importance, the demand for Cordyceps has been rapidly increased. However, a supply of Cordyceps specimen could not meet the increasing demand because of their sole dependence on field collection and habitat destruction. Because it is difficult to obtain many insect hosts in nature and the edibility of host insect needs to be verified in a pharmacological aspect. Recently, this setback was overcome that P. tenuipes was able to be cultivated in a large scale using silkworm as host. Pharmacological effects of P. tenuipes cultured on silkworm such as strengthening immune function, anti-fatigue, anti-tumor activity and controlling liver etc have been proved. They are widely commercialized. In this study, we attempted to establish a method for stable growth inhibition of P. tenuipes on silkworm hosts and an optimal condition for synnemata formation. To determine optimum culturing conditions, temperature and light conditions were varied. The length and number of synnemata was highest at 25℃ temperature and 100~300 lux illumination. On an average, the synnemata of wild P. tenuipes measures 70 ㎜ in length and 20 in number; those of the cultured strain were relatively shorter and more in number. The number of synnemata may have increased as a result of inoculating the host with highly concentrated conidia, while the length may have decreased due to limited nutrition per individual. It is not able that changes in light illumination cause morphological variations in the synnemata. However, regulation of only light and temperature could not produce stromata like perithecia, asci, and ascospores. Yamanaka reported that although a complete fruiting body can be produced under optimal culture conditions, it should be regarded as synnemata because it does not develop into an ascoma bearing ascospores.Keywords: paecilomyces tenuipes, entomopathogenic fungi, silkworm larva, bombyx mori
Procedia PDF Downloads 322377 Facile Wick and Oil Flame Synthesis of High-Quality Hydrophilic Carbon Nano Onions for Flexible Binder-Free Supercapacitor
Authors: Debananda Mohapatra, Subramanya Badrayyana, Smrutiranjan Parida
Abstract:
Carbon nano-onions (CNOs) are the spherical graphitic nanostructures composed of concentric shells of graphitic carbon can be hypothesized as the intermediate state between fullerenes and graphite. These are very important members in fullerene family also known as the multi-shelled fullerenes can be envisioned as promising supercapacitor electrode with high energy & power density as they provide easy access to ions at electrode-electrolyte interface due to their curvature. There is still very sparse report concerning on CNOs as electrode despite having an excellent electrodechemical performance record due to their unavailability and lack of convenient methods for their high yield preparation and purification. Keeping all these current pressing issues in mind, we present a facile scalable and straightforward flame synthesis method of pure and highly dispersible CNOs without contaminated by any other forms of carbon; hence, a post processing purification procedure is not necessary. To the best of our knowledge, this is the very first time; we developed an extremely simple, light weight, novel inexpensive, flexible free standing pristine CNOs electrode without using any binder element. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by ‘dipping and drying’ process providing outstanding stretchability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102 F/g, energy density 3.5 Wh/kg and power density 1224 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge –discharge cycles. Furthermore, this unique method not only affords binder free - freestanding electrode but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium-ion batteries.Keywords: binder-free, flame synthesis, flexible, carbon nano onion
Procedia PDF Downloads 205376 Implications of Human Cytomegalovirus as a Protective Factor in the Pathogenesis of Breast Cancer
Authors: Marissa Dallara, Amalia Ardeljan, Lexi Frankel, Nadia Obaed, Naureen Rashid, Omar Rashid
Abstract:
Human Cytomegalovirus (HCMV) is a ubiquitous virus that remains latent in approximately 60% of individuals in developed countries. Viral load is kept at a minimum due to a robust immune response that is produced in most individuals who remain asymptomatic. HCMV has been recently implicated in cancer research because it may impose oncomodulatory effects on tumor cells of which it infects, which could have an impact on the progression of cancer. HCMV has been implicated in increased pathogenicity of certain cancers such as gliomas, but in contrast, it can also exhibit anti-tumor activity. HCMV seropositivity has been recorded in tumor cells, but this may also have implications in decreased pathogenesis of certain forms of cancer such as leukemia as well as increased pathogenesis in others. This study aimed to investigate the correlation between cytomegalovirus and the incidence of breast cancer. Methods The data used in this project was extracted from a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to analyze the patients infected versus patients not infection with cytomegalovirus using ICD-10, ICD-9 codes. Permission to utilize the database was given by Holy Cross Health, Fort Lauderdale, for the purpose of academic research. Data analysis was conducted using standard statistical methods. Results The query was analyzed for dates ranging from January 2010 to December 2019, which resulted in 14,309 patients in both the infected and control groups, respectively. The two groups were matched by age range and CCI score. The incidence of breast cancer was 1.642% and 235 patients in the cytomegalovirus group compared to 4.752% and 680 patients in the control group. The difference was statistically significant by a p-value of less than 2.2x 10^-16 with an odds ratio of 0.43 (0.4 to 0.48) with a 95% confidence interval. Investigation into the effects of HCMV treatment modalities, including Valganciclovir, Cidofovir, and Foscarnet, on breast cancer in both groups was conducted, but the numbers were insufficient to yield any statistically significant correlations. Conclusion This study demonstrates a statistically significant correlation between cytomegalovirus and a reduced incidence of breast cancer. If HCMV can exert anti-tumor effects on breast cancer and inhibit growth, it could potentially be used to formulate immunotherapy that targets various types of breast cancer. Further evaluation is warranted to assess the implications of cytomegalovirus in reducing the incidence of breast cancer.Keywords: human cytomegalovirus, breast cancer, immunotherapy, anti-tumor
Procedia PDF Downloads 210375 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 253374 Establishing a Sustainable Construction Industry: Review of Barriers That Inhibit Adoption of Lean Construction in Lesotho
Authors: Tsepiso Mofolo, Luna Bergh
Abstract:
The Lesotho construction industry fails to embrace environmental practices, which has then lead to excessive consumption of resources, land degradation, air and water pollution, loss of habitats, and high energy usage. The industry is highly inefficient, and this undermines its capability to yield the optimum contribution to social, economic and environmental developments. Sustainable construction is, therefore, imperative to ensure the cultivation of benefits from all these intrinsic themes of sustainable development. The development of a sustainable construction industry requires a holistic approach that takes into consideration the interaction between Lean Construction principles, socio-economic and environmental policies, technological advancement and the principles of construction or project management. Sustainable construction is a cutting-edge phenomenon, forming a component of a subjectively defined concept called sustainable development. Sustainable development can be defined in terms of attitudes and judgments to assist in ensuring long-term environmental, social and economic growth in society. The key concept of sustainable construction is Lean Construction. Lean Construction emanates from the principles of the Toyota Production System (TPS), namely the application and adaptation of the fundamental concepts and principles that focus on waste reduction, the increase in value to the customer, and continuous improvement. The focus is on the reduction of socio-economic waste, and protestation of environmental degradation by reducing carbon dioxide emission footprint. Lean principles require a fundamental change in the behaviour and attitudes of the parties involved in order to overcome barriers to cooperation. Prevalent barriers to adoption of Lean Construction in Lesotho are mainly structural - such as unavailability of financing, corruption, operational inefficiency or wastage, lack of skills and training and inefficient construction legislation and political interferences. The consequential effects of these problems trigger down to quality, cost and time of the project - which then result in an escalation of operational costs due to the cost of rework or material wastage. Factor and correlation analysis of these barriers indicate that they are highly correlated, which then poses a detrimental potential to the country’s welfare, environment and construction safety. It is, therefore, critical for Lesotho’s construction industry to develop a robust governance through bureaucracy reforms and stringent law enforcement.Keywords: construction industry, sustainable development, sustainable construction industry, lean construction, barriers to sustainable construction
Procedia PDF Downloads 295373 Studying the Effect of Reducing Thermal Processing over the Bioactive Composition of Non-Centrifugal Cane Sugar: Towards Natural Products with High Therapeutic Value
Authors: Laura Rueda-Gensini, Jader Rodríguez, Juan C. Cruz, Carolina Munoz-Camargo
Abstract:
There is an emerging interest in botanicals and plant extracts for medicinal practices due to their widely reported health benefits. A large variety of phytochemicals found in plants have been correlated with antioxidant, immunomodulatory, and analgesic properties, which makes plant-derived products promising candidates for modulating the progression and treatment of numerous diseases. Non-centrifugal cane sugar (NCS), in particular, has been known for its high antioxidant and nutritional value, but composition-wise variability due to changing environmental and processing conditions have considerably limited its use in the nutraceutical and biomedical fields. This work is therefore aimed at assessing the effect of thermal exposure during NCS production over its bioactive composition and, in turn, its therapeutic value. Accordingly, two modified dehydration methods are proposed that employ: (i) vacuum-aided evaporation, which reduces the necessary temperatures to dehydrate the sample, and (ii) window refractance evaporation, which reduces thermal exposure time. The biochemical composition of NCS produced under these two methods was compared to traditionally-produced NCS by estimating their total polyphenolic and protein content with Folin-Ciocalteu and Bradford assays, as well as identifying the major phenolic compounds in each sample via HPLC-coupled mass spectrometry. Their antioxidant activities were also compared as measured by their scavenging potential of ABTS and DPPH radicals. Results show that the two modified production methods enhance polyphenolic and protein yield in resulting NCS samples when compared to traditional production methods. In particular, reducing employed temperatures with vacuum-aided evaporation demonstrated to be superior at preserving polyphenolic compounds, as evidenced both in the total and individual polyphenol concentrations. However, antioxidant activities were not significantly different between these. Although additional studies should be performed to determine if the observed compositional differences affect other therapeutic activities (e.g., anti-inflammatory, analgesic, and immunoprotective), these results suggest that reducing thermal exposure holds great promise for the production of natural products with enhanced nutritional value.Keywords: non-centrifugal cane sugar, polyphenolic compounds, thermal processing, antioxidant activity
Procedia PDF Downloads 92372 Internet of Things-Based Smart Irrigation System
Authors: Ahmed Abdulfatah Yusuf, Collins Oduor Ondiek
Abstract:
The automation of farming activities can have a transformational impact on the agricultural sector, especially from the emerging new technologies such as the Internet of Things (IoT). The system uses water level sensors and soil moisture sensors that measure the content of water in the soil as the values generated from the sensors enable the system to use an appropriate quantity of water, which avoids over or under irrigation. Due to the increase in the world’s population, there is a need to increase food production. With this demand in place, it is difficult to increase crop yield using the traditional manual approaches that lead to the wastage of water, thus affecting crop production. Food insecurity has become a scourge greatly affecting the developing countries and agriculture is an essential part of human life and tends to be the mainstay of the economy in most developing nations. Thus, without the provision of adequate food supplies, the population of those living in poverty is likely to multiply. The project’s main objective is to design and develop an IoT (Internet of Things) microcontroller-based Smart Irrigation System. In addition, the specific research objectives are to find out the challenges with traditional irrigation approaches and to determine the benefits of IoT-based smart irrigation systems. Furthermore, the system includes Arduino, a website and a database that works simultaneously in collecting and storing the data. The system is designed to pave the way in attaining the Sustainable Development Goal (SDG 1), which aims to end extreme poverty in all forms by 2030. The research design aimed at this project is a descriptive research design. Data was gathered through online questionnaires that used both quantitative and qualitative in order to triangulate the data. Out of the 32 questionnaires sent, there were 32 responses leading to a 100% response rate. In terms of sampling, the target group of this project is urban farmers, which account for about 25% of the population of Nairobi. From the findings of the research carried out, it is evident that there is a need to move away from manual irrigation approaches due to the high wastage of water to the use of smart irrigation systems that propose a better way of conserving water while maintaining the quality and moisture of the soil. The research also found out that urban farmers are willing to adopt this system to better their farming practices. However, this system can be improved in the future by incorporating it with other features and deploying it to a larger geographical area.Keywords: crop production, food security, smart irrigation system, sustainable development goal
Procedia PDF Downloads 151371 The Shape of the Sculptor: Exploring Psychologist’s Perceptions of a Model of Parenting Ability to Guide Intervention in Child Custody Evaluations in South Africa
Authors: Anthony R. Townsend, Robyn L. Fasser
Abstract:
This research project provides an interpretative phenomenological analysis of a proposed conceptual model of parenting ability that has been designed to offer recommendations to guide intervention in child custody evaluations in South Africa. A recent review of the literature on child custody evaluations reveals that while there have been significant and valuable shifts in the capacity of the legal system aided by mental health professionals in understanding children and family dynamics, there remains a conceptual gap regarding the nature of parenting ability. With a view to addressing this paucity of a theoretical basis for considering parenting ability, this research project reviews a dimensional model for the assessment of parenting ability by conceiving parenting ability as a combination of good parenting and parental fitness. This model serves as a conceptual framework to guide child-custody evaluation and refine intervention in such cases to better meet the best interests of the child in a manner that bridges the professional gap between parties, legal entities, and mental health professionals. Using a model of good parenting as a point of theoretical departure, this model incorporates both intra-psychic and interpersonal attributes and behaviours of parents to form an impression of parenting ability and identify areas for potential enhancement. This research, therefore, hopes to achieve the following: (1) to provide nuanced descriptions of parents’ parenting ability; (2) to describe parents’ parenting potential; (3) to provide a parenting assessment tool for investigators in forensic family matters that will enable more useful recommendations and interventions; (4) to develop a language of consensus for investigators, attorneys, judges and parents, in forensic family matters, as to what comprises parenting ability and how this can be assessed; and (5) that all of the aforementioned will serve to advance the best interests of the children involved in such litigious matters. The evaluative promise and post-assessment prospects of this model are illustrated through three interlinking data sets: (1) the results of interviews with South African psychologists about the model, (2) retrospective analysis of care and contact evaluation reports using the model to determine if different conclusions or more specific recommendations are generated with its use and (3) the results of an interview with a psychologist who piloted this model by using it in care and contact evaluation.Keywords: alienation, attachment, best interests of the child, care and contact evaluation, children’s act (38 of 2005), child custody evaluation, civil forensics, gatekeeping, good parenting, good-enough parenting, health professions council of South Africa, family law, forensic mental healthcare practitioners, parental fitness, parenting ability, parent management training, parenting plan, problem-determined system, psychotherapy, support of other child-parent relationship, voice of the child
Procedia PDF Downloads 117370 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip
Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari
Abstract:
The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation
Procedia PDF Downloads 143369 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications
Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin
Abstract:
A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors
Procedia PDF Downloads 370368 Characterization of Soil Microbial Communities from Vineyard under a Spectrum of Drought Pressures in Sensitive Area of Mediterranean Region
Authors: Gianmaria Califano, Júlio Augusto Lucena Maciel, Olfa Zarrouk, Miguel Damasio, Jose Silvestre, Ana Margarida Fortes
Abstract:
Global warming, with rapid and sudden changes in meteorological conditions, is one of the major constraints to ensuring agricultural and crop resilience in the Mediterranean regions. Several strategies are being adopted to reduce the pressure of drought stress on grapevines at regional and local scales: improvements in the irrigation systems, adoption of interline cover crops, and adaptation of pruning techniques. However, still, more can be achieved if also microbial compartments associated with plants are considered in crop management. It is known that the microbial community change according to several factors such as latitude, plant variety, age, rootstock, soil composition and agricultural management system. Considering the increasing pressure of the biotic and abiotic stresses, it is of utmost necessity to also evaluate the effects of drought on the microbiome associated with the grapevine, which is a commercially important crop worldwide. In this study, we characterize the diversity and the structure of the microbial community under three long-term irrigation levels (100% ETc, 50% ETc and rain-fed) in a drought-tolerant grapevine cultivar present worldwide, Syrah. To avoid the limitations of culture-dependent methods, amplicon sequencing with target primers for bacteria and fungi was applied to the same soil samples. The use of the DNeasy PowerSoil (Qiagen) extraction kit required further optimization with the use of lytic enzymes and heating steps to improve DNA yield and quality systematically across biological treatments. Target regions (16S rRNA and ITS genes) of our samples are being sequenced with Illumina technology. With bioinformatic pipelines, it will be possible to obtain a characterization of the bacterial and fungal diversity, structure and composition. Further, the microbial communities will be assessed for their functional activity, which remains an important metric considering the strong inter-kingdom interactions existing between plants and their associated microbiome. The results of this study will lay the basis for biotechnological applications: in combination with the establishment of a bacterial library, it will be possible to explore the possibility of testing synthetic microbial communities to support plant resistance to water scarcity.Keywords: microbiome, metabarcoding, soil, vinegrape, syrah, global warming, crop sustainability
Procedia PDF Downloads 127367 Investigation of Mechanical and Tribological Property of Graphene Reinforced SS-316L Matrix Composite Prepared by Selective Laser Melting
Authors: Ajay Mandal, Jitendar Kumar Tiwari, N. Sathish, A. K. Srivastava
Abstract:
A fundamental investigation is performed on the development of graphene (Gr) reinforced stainless steel 316L (SS 316L) metal matrix composite via selective laser melting (SLM) in order to improve specific strength and wear resistance property of SS 316L. Firstly, SS 316L powder and graphene were mixed in a fixed ratio using low energy planetary ball milling. The milled powder is then subjected to the SLM process to fabricate composite samples at a laser power of 320 W and exposure time of 100 µs. The prepared composite was mechanically tested (hardness and tensile test) at ambient temperature, and obtained results indicate that the properties of the composite increased significantly with the addition of 0.2 wt. % Gr. Increment of about 25% (from 194 to 242 HV) and 70% (from 502 to 850 MPa) is obtained in hardness and yield strength of composite, respectively. Raman mapping and XRD were performed to see the distribution of Gr in the matrix and its effect on the formation of carbide, respectively. Results of Raman mapping show the uniform distribution of graphene inside the matrix. Electron back scatter diffraction (EBSD) map of the prepared composite was analyzed under FESEM in order to understand the microstructure and grain orientation. Due to thermal gradient, elongated grains were observed along the building direction, and grains get finer with the addition of Gr. Most of the mechanical components are subjected to several types of wear conditions. Therefore, it is very necessary to improve the wear property of the component, and hence apart from strength and hardness, a tribological property of composite was also measured under dry sliding condition. Solid lubrication property of Gr plays an important role during the sliding process due to which the wear rate of composite reduces up to 58%. Also, the surface roughness of worn surface reduces up to 70% as measured by 3D surface profilometry. Finally, it can be concluded that SLM is an efficient method of fabricating cutting edge metal matrix nano-composite having Gr like reinforcement, which was very difficult to fabricate through conventional manufacturing techniques. Prepared composite has superior mechanical and tribological properties and can be used for a wide variety of engineering applications. However, due to the unavailability of a considerable amount of literature in a similar domain, more experimental works need to perform, such as thermal property analysis, and is a part of ongoing study.Keywords: selective laser melting, graphene, composite, mechanical property, tribological property
Procedia PDF Downloads 136366 The Characterization and Optimization of Bio-Graphene Derived From Oil Palm Shell Through Slow Pyrolysis Environment and Its Electrical Conductivity and Capacitance Performance as Electrodes Materials in Fast Charging Supercapacitor Application
Authors: Nurhafizah Md. Disa, Nurhayati Binti Abdullah, Muhammad Rabie Bin Omar
Abstract:
This research intends to identify the existing knowledge gap because of the lack of substantial studies to fabricate and characterize bio-graphene created from Oil Palm Shell (OPS) through the means of pre-treatment and slow pyrolysis. By fabricating bio-graphene through OPS, a novel material can be found to procure and used for graphene-based research. The characterization of produced bio-graphene is intended to possess a unique hexagonal graphene pattern and graphene properties in comparison to other previously fabricated graphene. The OPS will be fabricated by pre-treatment of zinc chloride (ZnCl₂) and iron (III) chloride (FeCl3), which then induced the bio-graphene thermally by slow pyrolysis. The pyrolizer's final temperature and resident time will be set at 550 °C, 5/min, and 1 hour respectively. Finally, the charred product will be washed with hydrochloric acid (HCL) to remove metal residue. The obtained bio-graphene will undergo different analyses to investigate the physicochemical properties of the two-dimensional layer of carbon atoms with sp2 hybridization hexagonal lattice structure. The analysis that will be taking place is Raman Spectroscopy (RAMAN), UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). In retrospect, RAMAN is used to analyze three key peaks found in graphene, namely D, G, and 2D peaks, which will evaluate the quality of the bio-graphene structure and the number of layers generated. To compare and strengthen graphene layer resolves, UV-VIS may be used to establish similar results of graphene layer from last layer analysis and also characterize the types of graphene procured. A clear physical image of graphene can be obtained by analyzation of TEM in order to study structural quality and layers condition and SEM in order to study the surface quality and repeating porosity pattern. Lastly, establishing the crystallinity of the produced bio-graphene, simultaneously as an oxygen contamination factor and thus pristineness of the graphene can be done by XRD. In the conclusion of this paper, this study is able to obtain bio-graphene through OPS as a novel material in pre-treatment by chloride ZnCl₂ and FeCl3 and slow pyrolization to provide a characterization analysis related to bio-graphene that will be beneficial for future graphene-related applications. The characterization should yield similar findings to previous papers as to confirm graphene quality.Keywords: oil palm shell, bio-graphene, pre-treatment, slow pyrolysis
Procedia PDF Downloads 84365 An Insight Into the Effective Distribution of Lineaments Over Sheared Terrains to Hydraulically Characterize the Shear Zones in Hard Rock Aquifer System
Authors: Tamal Sur, Tapas Acharya
Abstract:
Identifying the water resource in hard crystalline rock terrain has been a huge challenge over the decades as it is considered a poor groundwater province area. Over the years, usage of satellite imagery for the delineation of groundwater potential zone in sheared hard rock terrain has been occasionally successful. In numerous circumstances, it has been observed that groundwater potential zone delineated by satellite imagery study has failed to yield satisfactory result on its own. The present study discusses the fact that zones having a high concentration of lineaments oblique to the general trend of shear fabric could be good groundwater potential zones within a shear zone in crystalline fractured rock aquifer system. Due to this fact, the density of lineaments and the number of intersecting lineaments increases over that particular region, making it a suitable locale for good groundwater recharge, which is mostly composed of Precambrian metamorphic rocks i.e., quartzite, granite gneisses, porphyroclastic granite-gneiss, quartzo-feldspathic-granite-gneiss, mylonitic granites, quartz-biotite-granite gneiss and some phyllites of Purulia district of West Bengal, NE India. This study aims to construct an attempt to demonstrate the relationship of the high amount of lineament accumulation and their intersection with high groundwater fluctuation zones, i.e., good groundwater potential zones. On the basis of that, an effort has been made to characterize the shear zones with respect to their groundwater potentiality. Satellite imagery data (IRS-P6 LISS IV standard FCC image) analysis reveals the bifurcating nature of North Purulia shear zone (NPSZ) and South Purulia shear zone (SPSZ) over the study area. Careful analysis of lineament rose diagrams, lineament density map, lineament intersection density map, and frequency diagrams for water table depths with an emphasis on high water table fluctuations exhibit the fact that different structural features existing over North and South Purulia shear zones can affect the nature of hydraulic potential of that region.Keywords: crystalline hard rock terrain, groundwater recharge, hydrogeology, lineaments, shear zone, water table fluctuation
Procedia PDF Downloads 88364 A Review on Silicon Based Induced Resistance in Plants against Insect Pests
Authors: Asim Abbasi, Muhammad Sufyan, Muhammad Kamran, Iqra
Abstract:
Development of resistance in insect pests against various groups of insecticides has prompted the use of alternative integrated pest management approaches. Among these induced host plant resistance represents an important strategy as it offers a practical, cheap and long lasting solution to keep pests populations below economic threshold level (ETL). Silicon (Si) has a major role in regulating plant eco-relationship by providing strength to the plant in the form of anti-stress mechanism which was utilized in coping with the environmental extremes to get a better yield and quality end produce. Among biotic stresses, insect herbivore signifies one class against which Si provide defense. Silicon in its neutral form (H₄SiO₄) is absorbed by the plants via roots through an active process accompanied by the help of different transporters which were located in the plasma membrane of root cells or by a passive process mostly regulated by transpiration stream, which occurs via the xylem cells along with the water. Plants tissues mainly the epidermal cell walls are the sinks of absorbed silicon where it polymerizes in the form of amorphous silica or monosilicic acid. The noteworthy function of this absorbed silicon is to provide structural rigidity to the tissues and strength to the cell walls. Silicon has both direct and indirect effects on insect herbivores. Increased abrasiveness and hardness of epidermal plant tissues and reduced digestibility as a result of deposition of Si primarily as phytoliths within cuticle layer is now the most authenticated mechanisms of Si in enhancing plant resistance to insect herbivores. Moreover, increased Si content in the diet also impedes the efficiency by which insects transformed consumed food into the body mass. The palatability of food material has also been changed by Si application, and it also deters herbivore feeding for food. The production of defensive compounds of plants like silica and phenols have also been amplified by the exogenous application of silicon sources which results in reduction of the probing time of certain insects. Some studies also highlighted the role of silicon at the third trophic level as it also attracts natural enemies of insects attacking the crop. Hence, the inclusion of Si in pest management approaches can be a healthy and eco-friendly tool in future.Keywords: defensive, phytoliths, resistance, stresses
Procedia PDF Downloads 189