Search results for: real anthropometric database
3643 Comparison of Different DNA Extraction Platforms with FFPE tissue
Authors: Wang Yanping Karen, Mohd Rafeah Siti, Park MI Kyoung
Abstract:
Formalin-fixed paraffin embedded (FFPE) tissue is important in the area of oncological diagnostics. This method of preserving tissues enabling them to be stored easily at ambient temperature for a long time. This decreases the risk of losing the DNA quantity and quality after extraction, reducing sample wastage, and making FFPE more cost effective. However, extracting DNA from FFPE tissue is a challenge as DNA purified is often highly cross-linked, fragmented, and degraded. In addition, this causes problems for many downstream processes. In this study, there will be a comparison of DNA extraction efficiency between One BioMed’s Xceler8 automated platform with commercial available extraction kits (Qiagen and Roche). The FFPE tissue slices were subjected to deparaffinization process, pretreatment and then DNA extraction using the three mentioned platforms. The DNA quantity were determined with real-time PCR (BioRad CFX ) and gel electrophoresis. The amount of DNA extracted with the One BioMed’s X8 platform was found to be comparable with the other two manual extraction kits.Keywords: DNA extraction, FFPE tissue, qiagen, roche, one biomed X8
Procedia PDF Downloads 1103642 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.Keywords: breadth-first search, BFS, graph ordering, graph algorithm
Procedia PDF Downloads 1393641 Detection of Voltage Sag and Voltage Swell in Power Quality Using Wavelet Transforms
Authors: Nor Asrina Binti Ramlee
Abstract:
Voltage sag, voltage swell, high-frequency noise and voltage transients are kinds of disturbances in power quality. They are also known as power quality events. Equipment used in the industry nowadays has become more sensitive to these events with the increasing complexity of equipment. This leads to the importance of distributing clean power quality to the consumer. To provide better service, the best analysis on power quality is very vital. Thus, this paper presents the events detection focusing on voltage sag and swell. The method is developed by applying time domain signal analysis using wavelet transform approach in MATLAB. Four types of mother wavelet namely Haar, Dmey, Daubechies, and Symlet are used to detect the events. This project analyzed real interrupted signal obtained from 22 kV transmission line in Skudai, Johor Bahru, Malaysia. The signals will be decomposed through the wavelet mothers. The best mother is the one that is capable to detect the time location of the event accurately.Keywords: power quality, voltage sag, voltage swell, wavelet transform
Procedia PDF Downloads 3743640 Preference Aggregation and Mechanism Design in the Smart Grid
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Smart Grid is the vision of the future power system that combines advanced monitoring and communication technologies to provide energy in a smart, efficient, and user-friendly manner. This proposal considers a demand response model in the Smart Grid based on utility maximization. Given a set of consumers with conflicting preferences in terms of consumption and a utility company that aims to minimize the peak demand and match demand to supply, we study the problem of aggregating these preferences while modelling the problem as a game. We also investigate whether an equilibrium can be reached to maximize the social benefit. Based on such equilibrium, we propose a dynamic pricing heuristic that computes the equilibrium and sets the prices accordingly. The developed approach was analysed theoretically and evaluated experimentally using real appliances data. The results show that our proposed approach achieves a substantial reduction in the overall energy consumption.Keywords: heuristics, smart grid, aggregation, mechanism design, equilibrium
Procedia PDF Downloads 1183639 Assessment of Fluid Flow Hydrodynamics for Cylindrical and Conical Fluidized Bed Reactor
Authors: N. G. Thangan, A. B. Deoghare, P. M. Padole
Abstract:
Computational Fluid Dynamics (CFD) aids in modeling the prototype of a real world processes. CFD approach is useful in predicting the fluid flow, heat transfer mass transfer and other flow related phenomenon. In present study, hydrodynamic characteristics of gas-solid cylindrical fluidized bed is compared with conical fluidized beds. A 2D fluidized bed consists of different configurations of particle size of iron oxide, bed height and superficial velocities of nitrogen. Simulations are performed to capture the complex physics associated with it. The Eulerian multiphase model is prepared in ANSYS FLUENT v.14 which is used to simulate fluidization process. It is analyzed with nitrogen as primary phase and iron oxide as secondary phase. The bed hydrodynamics is assessed prominently to examine effect on fluidization time, pressure drop, minimum fluidization velocity, and gas holdup in the system.Keywords: fluidized bed, bed hydrodynamics, Eulerian multiphase approach, computational fluid dynamics
Procedia PDF Downloads 4533638 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 2583637 A National Systematic Review on Determining Prevalence of Mobbing Exposure in Turkish Nurses
Authors: Betül Sönmez, Aytolan Yıldırım
Abstract:
Objective: This systematic review aims to methodically analyze studies regarding mobbing behavior prevalence, individuals performing this behavior and the effects of mobbing on Turkish nurses. Background: Worldwide reports on mobbing cases have increased in the past years, a similar trend also observable in Turkey. It has been demonstrated that among healthcare workers, mobbing is significantly widespread in nurses. The number of studies carried out in this regard has also increased. Method: The main criteria for choosing articles in this systematic review were nurses located in Turkey, regardless of any specific date. In November 2014, a search using the keywords 'mobbing, bullying, psychological terror/violence, emotional violence, nurses, healthcare workers, Turkey' in PubMed, Science Direct, Ebscohost, National Thesis Centre database and Google search engine led to 71 studies in this field. 33 studies were not met the inclusion criteria specified for this study. Results: The findings were obtained using the results of 38 studies carried out in the past 13 years in Turkey, a large sample consisting of 8,877 nurses. Analysis of the incidences of mobbing behavior revealed a broad spectrum, ranging from none-slight experiences to 100% experiences. The most frequently observed mobbing behaviors include attacking personality, blocking communication and attacking professional and social reputation. Victims mostly experienced mobbing from their managers, the most common consequence of these actions being psychological effects. Conclusions: The results of studies with various scales indicate exposure of nurses to similar mobbing behavior. The high frequency of exposure of nurses to mobbing behavior in such a large sample highlights the importance of considering this issue in terms of individual and institutional consequences that adversely affect the performance of nurses.Keywords: mobbing, bullying, workplace violence, nurses, Turkey
Procedia PDF Downloads 2793636 Identification of miRNA-miRNA Interactions between Virus and Host in Human Cytomegalovirus Infection
Authors: Kai-Yao Huang, Tzong-Yi Lee, Pin-Hao Ho, Tzu-Hao Chang, Cheng-Wei Chang
Abstract:
Background: Human cytomegalovirus (HCMV) infects much people around the world, and there were many researches mention that many diseases were caused by HCMV. To understand the mechanism of HCMV lead to diseases during infection. We observe a microRNA (miRNA) – miRNA interaction between HCMV and host during infection. We found HCMV miRNA sequence component complementary with host miRNA precursors, and we also found that the host miRNA abundances were decrease in HCMV infection. Hence, we focus on the host miRNA which may target by the other HCMV miRNA to find theirs target mRNAs expression and analysis these mRNAs affect what kind of signaling pathway. Interestingly, we found the affected mRNA play an important role in some diseases related pathways, and these diseases had been annotated by HCMV infection. Results: From our analysis procedure, we found 464 human miRNAs might be targeted by 26 HCMV miRNAs and there were 291 human miRNAs shows the concordant decrease trend during HCMV infection. For case study, we found hcmv-miR-US22-5p may regulate hsa-mir-877 and we analysis the KEGG pathway which built by hsa-mir-877 validate target mRNA. Additionally, through survey KEGG Disease database found that these mRNA co-regulate some disease related pathway for instance cancer, nerve disease. However, there were studies annotated that HCMV infection casuse cancer and Alzheimer. Conclusions: This work supply a different scenario of miRNA target interactions(MTIs). In previous study assume miRNA only target to other mRNA. Here we wonder there is possibility that miRNAs might regulate non-mRNA targets, like other miRNAs. In this study, we not only consider the sequence similarity with HCMV miRNAs and human miRNA precursors but also the expression trend of these miRNAs. Then we analysis the human miRNAs validate target mRNAs and its associated KEGG pathway. Finally, we survey related works to validate our investigation.Keywords: human cytomegalovirus, HCMV, microRNA, miRNA
Procedia PDF Downloads 4373635 Networked Radar System to Increase Safety of Urban Railroad Crossing
Authors: Sergio Saponara, Luca Fanucci, Riccardo Cassettari, Ruggero Piernicola, Marco Righetto
Abstract:
The paper presents an innovative networked radar system for detection of obstacles in a railway level crossing scenario. This Monitoring System (MS) is able to detect moving or still obstacles within the railway level crossing area automatically, avoiding the need of human presence for surveillance. The MS is also connected to the National Railway Information and Signaling System to communicate in real-time the level crossing status. The architecture is compliant with the highest Safety Integrity Level (SIL4) of the CENELEC standard. The number of radar sensors used is configurable at set-up time and depends on how large the level crossing area can be. At least two sensors are expected and up four can be used for larger areas. The whole processing chain that elaborates the output sensor signals, as well as the communication interface, is fully-digital, was designed in VHDL code and implemented onto a Xilinx Virtex 6.Keywords: radar for safe mobility, railroad crossing, railway, transport safety
Procedia PDF Downloads 4843634 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking
Authors: Shiuh-Jer Huang, Yu-Sheng Hsu
Abstract:
On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.Keywords: vehicle auto-parking, parking space detection, parking path tracking control, intelligent fuzzy controller
Procedia PDF Downloads 2463633 Reading and Writing Memories in Artificial and Human Reasoning
Authors: Ian O'Loughlin
Abstract:
Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.Keywords: artificial reasoning, human memory, machine learning, neural networks
Procedia PDF Downloads 2723632 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 2403631 A Smart Visitors’ Notification System with Automatic Secure Door Lock Using Mobile Communication Technology
Authors: Rabail Shafique Satti, Sidra Ejaz, Madiha Arshad, Marwa Khalid, Sadia Majeed
Abstract:
The paper presents the development of an automated security system to automate the entry of visitors, providing more flexibility of managing their record and securing homes or workplaces. Face recognition is part of this system to authenticate the visitors. A cost effective and SMS based door security module has been developed and integrated with the GSM network and made part of this system to allow communication between system and owner. This system functions in real time as when the visitor’s arrived it will detect and recognizes his face and on the result of face recognition process it will open the door for authorized visitors or notifies and allows the owner’s to take further action in case of unauthorized visitor. The proposed system is developed and it is successfully ensuring security, managing records and operating gate without physical interaction of owner.Keywords: SMS, e-mail, GSM modem, authenticate, face recognition, authorized
Procedia PDF Downloads 7903630 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm
Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho
Abstract:
Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.
Procedia PDF Downloads 2553629 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 513628 Topic-to-Essay Generation with Event Element Constraints
Authors: Yufen Qin
Abstract:
Topic-to-Essay generation is a challenging task in Natural language processing, which aims to generate novel, diverse, and topic-related text based on user input. Previous research has overlooked the generation of articles under the constraints of event elements, resulting in issues such as incomplete event elements and logical inconsistencies in the generated results. To fill this gap, this paper proposes an event-constrained approach for a topic-to-essay generation that enforces the completeness of event elements during the generation process. Additionally, a language model is employed to verify the logical consistency of the generated results. Experimental results demonstrate that the proposed model achieves a better BLEU-2 score and performs better than the baseline in terms of subjective evaluation on a real dataset, indicating its capability to generate higher-quality topic-related text.Keywords: event element, language model, natural language processing, topic-to-essay generation.
Procedia PDF Downloads 2383627 Deradicalization for Former Terrorists through Entrepreneurship Program
Authors: Jamal Wiwoho, Pujiyono, Triyanto
Abstract:
Terrorism is a real enemy for all countries, including Indonesia. Bomb attacks in some parts of Indonesia are proof that Indonesia has serious problems with terrorism. Perpetrators of terror are arrested and imprisoned, and some of them were executed. However, this method did not succeed in stopping the terrorist attacks. Former terrorists continue to carry out bomb attacks. Therefore, this paper proposes a program towards deradicalization efforts of former terrorists through entrepreneurship. This is necessary because it is impossible to change their radical ideology. The program is also motivated by understanding that terrorists generally come from poor families. This program aims to occupy their time with business activities so there is no time to plan and carry out bomb attacks. This research is an empirical law study. Data were collected by literature study, observation, and in-depth interviews. Data were analyzed with the Miles and Huberman interactive model. The results show that the entrepreneurship program is effective to prevent terrorist attack. Former terrorists are busy with their business. Therefore, they have no time to carry out bomb attacks.Keywords: deradicalization, terrorism, terrorists, entrepreneurship
Procedia PDF Downloads 2733626 An Exploration Survival Risk Factors of Stroke Patients at a General Hospital in Northern Taiwan
Authors: Hui-Chi Huang, Su-Ju Yang, Ching-Wei Lin, Jui-Yao Tsai, Liang-Yiang
Abstract:
Background: The most common serious complication following acute stroke is pneumonia. It has been associated with the increased morbidity, mortality, and medical cost after acute stroke in elderly patients. Purpose: The aim of this retrospective study was to investigate the relationship between stroke patients, risk factors of pneumonia, and one-year survival rates in a group of patients, in a tertiary referal center in Northern Taiwan. Methods: From January 2012 to December 2013, a total of 1730 consecutively administered stroke patients were recruited. The Survival analysis and multivariate regression analyses were used to examine the predictors for the one-year survival in stroke patients of a stroke registry database from northern Taiwan. Results: The risk of stroke mortality increased with age≧ 75 (OR=2.305, p < .0001), cancer (OR=3.221, p=<.0001), stayed in intensive care unit (ICU) (OR=2.28, p <.0006), dysphagia (OR=5.026, p<.0001), without speech therapy(OR=0.192, p < .0001),serum albumin < 2.5(OR=0.322, p=.0053) , eGFR > 60(OR=0.438, p <. 0001), admission NIHSS >11(OR=1.631, p=.0196), length of hospitalization (d) > 30(OR=0.608, p=.0227), and stroke subtype (OR=0.506, p=.0032). After adjustment of confounders, pneumonia was not significantly associated with the risk of mortality. However, it is most likely to develop in patients who are age ≧ 75, dyslipidemia , coronary artery disease , albumin < 2.5 , eGFR <60 , ventilator use , stay in ICU , dysphagia, without speech therapy , urinary tract infection , Atrial fibrillation , Admission NIHSS > 11, length of hospitalization > 30(d) , stroke severity (mRS=3-5) ,stroke Conclusion: In this study, different from previous research findings, we found that elderly age, severe neurological deficit and rehabilitation therapy were significantly associated with Post-stroke Pneumonia. However, specific preventive strategies are needed to target the high risk groups to improve their long-term outcomes after acute stroke. These findings could open new avenues in the management of stroke patients.Keywords: stroke, risk, pneumonia, survival
Procedia PDF Downloads 2443625 The Effect of Antibiotic Use on Blood Cultures: Implications for Future Policy
Authors: Avirup Chowdhury, Angus K. McFadyen, Linsey Batchelor
Abstract:
Blood cultures (BCs) are an important aspect of management of the septic patient, identifying the underlying pathogen and its antibiotic sensitivities. However, while the current literature outlines indications for initial BCs to be taken, there is little guidance for repeat sampling in the following 5-day period and little information on how antibiotic use can affect the usefulness of this investigation. A retrospective cohort study was conducted using inpatients who had undergone 2 or more BCs within 5 days between April 2016 and April 2017 at a 400-bed hospital in the west of Scotland and received antibiotic therapy between the first and second BCs. The data for BC sampling was collected from the electronic microbiology database, and cross-referenced with data from the hospital electronic prescribing system. Overall, 283 BCs were included in the study, taken from 92 patients (mean 3.08 cultures per patient, range 2-10). All 92 patients had initial BCs, of which 83 were positive (90%). 65 had a further sample within 24 hours of commencement of antibiotics, with 35 positive (54%). 23 had samples within 24-48 hours, with 4 (17%) positive; 12 patients had sampling at 48-72 hours, 12 at 72-96 hours, and 10 at 96-120 hours, with none positive. McNemar’s Exact Test was used to calculate statistical significance for patients who received blood cultures in multiple time blocks (Initial, < 24h, 24-120h, > 120h). For initial vs. < 24h-post BCs (53 patients tested), the proportion of positives fell from 46/53 to 29/53 (one-tailed P=0.002, OR 3.43, 95% CI 1.48-7.96). For initial vs 24-120h (n=42), the proportions were 38/42 and 4/42 respectively (P < 0.001, OR 35.0, 95% CI 4.79-255.48). For initial vs > 120h (n=36), these were 33/36 and 2/36 (P < 0.001,OR ∞). These were also calculated for a positive in initial or < 24h vs. 24-120h (n=42), with proportions of 41/42 and 4/42 (P < 0.001, OR 38.0, 95% CI 5.22-276.78); and for initial or < 24h vs > 120h (n=36), with proportions of 35/36 and 2/36 respectively (P < 0.001, OR ∞). This data appears to show that taking an initial BC followed by a BC within 24 hours of antibiotic commencement would maximise blood culture yield while minimising the risk of false negative results. This could potentially remove the need for as many as 46% of BC samples without adversely affecting patient care. BC yield decreases sharply after 48 hours of antibiotic use, and may not provide any clinically useful information after this time. Further multi-centre studies would validate these findings, and provide a foundation for future health policy generation.Keywords: antibiotics, blood culture, efficacy, inpatient
Procedia PDF Downloads 1733624 Managing the Cloud Procurement Process: Findings from a Case Study
Authors: Andreas Jede, Frank Teuteberg
Abstract:
Cloud computing (CC) has already gained overall appreciation in research and practice. Whereas the willingness to integrate cloud services in various IT environments is still unbroken, the previous CC procurement processes run mostly in an unorganized and non-standardized way. In practice, a sufficiently specific, yet applicable business process for the important acquisition phase is often lacking. And research does not appropriately remedy this deficiency yet. Therefore, this paper introduces a field-tested approach for CC procurement. Based on an extensive literature review and augmented by expert interviews, we designed a model that is validated and further refined through an in-depth real-life case study. For the detailed process description, we apply the event-driven process chain notation (EPC). The gained valuable insights into the case study may help CC research to shift to a more socio-technical area. For practice, next to giving useful organizational instructions we will provide extended checklists and lessons learned.Keywords: cloud procurement process, IT-organization, event-driven process chain, in-depth case study
Procedia PDF Downloads 3953623 Leveraging on Application of Customer Relationship Management Strategy as Business Driving Force: A Case Study of Major Industries
Authors: Odunayo S. Faluse, Roger Telfer
Abstract:
Customer relationship management is a business strategy that is centred on the idea that ‘Customer is the driving force of any business’ i.e. Customer is placed in a central position in any business. However, this belief coupled with the advancement in information technology in the past twenty years has experienced a change. In any form of business today it can be concluded that customers are the modern dictators to whom the industry always adjusts its business operations due to the increase in availability of information, intense market competition and ever growing negotiating ideas of customers in the process of buying and selling. The most vital role of any organization is to satisfy or meet customer’s needs and demands, which eventually determines customer’s long-term value to the industry. Therefore, this paper analyses and describes the application of customer relationship management operational strategies in some of the major industries in business. Both developed and up-coming companies nowadays value the quality of customer services and client’s loyalty, they also recognize the customers that are not very sensitive when it comes to changes in price and thereby realize that attracting new customers is more tasking and expensive than retaining the existing customers. However, research shows that several factors have recently amounts to the sudden rise in the execution of CRM strategies in the marketplace, such as a diverted attention of some organization towards integrating ideas in retaining existing customers rather than attracting new one, gathering data about customers through the use of internal database system and acquiring of external syndicate data, also exponential increase in technological intelligence. Apparently, with this development in business operations, CRM research in Academia remain nascent; hence this paper gives detailed critical analysis of the recent advancement in the use of CRM and key research opportunities for future development in using the implementation of CRM as a determinant factor for successful business optimization.Keywords: agriculture, banking, business strategies, CRM, education, healthcare
Procedia PDF Downloads 2253622 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York
Authors: Haowei Lu, Anaya Aaron
Abstract:
Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty
Procedia PDF Downloads 353621 Minimal Invasive Esophagectomy for Esophageal Cancer: An Institutional Review From a Dedicated Centre of Pakistan
Authors: Nighat Bakhtiar, Ali Raza Khan, Shahid Khan Khattak, Aamir Ali Syed
Abstract:
Introduction: Chemoradiation followed by resection has been the standard therapy for resectable (cT1-4aN0-3M0) esophageal carcinoma. The optimal surgical approach remains a matter of debate. Therefore, the purpose of this study was to share our experiences of minimal invasive esophagectomies concerning morbidity, mortality and oncological quality. This study aims to enlighten the world about the surgical outcomes after minimally invasive esophagectomy at Shaukat Khanum Hospital Lahore. Objective: The purpose of this study is to review an institutional experience of Surgical outcomes of Minimal Invasive esophagectomies for esophageal cancer. Methodology: This retrospective study was performed after ethical approval at Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) Pakistan. Patients who underwent Minimal Invasive esophagectomies for esophageal cancer from March 2018 to March 2023 were selected. Data was collected through the human information system (HIS) electronic database of SKMCH&RC. Data was described using mean and median with minimum and maximum values for quantitative variables. For categorical variables, a number of observations and percentages were reported. Results: A total of 621 patients were included in the study, with the mean age of the patient was 39 years, ranging between 18-58 years. Mean Body Mass Index of patients was 21.2.1±4.1. Neo-adjuvant chemoradiotherapy was given to all patients. The mean operative time was 210.36 ± 64.51 minutes, and the mean blood loss was 121 milliliters. There was one mortality in 90 days, while the mean postoperative hospital stay was 6.58 days with a 4.64 standard deviation. The anastomotic leak rate was 4.2%. Chyle leak was observed in 12 patients. Conclusion: The minimal invasive technique is a safe approach for esophageal cancers, with minimal complications and fast recovery.Keywords: minimal invasive, esophagectomy, laparscopic, cancer
Procedia PDF Downloads 793620 Coal Mining Safety Monitoring Using Wsn
Authors: Somdatta Saha
Abstract:
The main purpose was to provide an implementable design scenario for underground coal mines using wireless sensor networks (WSNs). The main reason being that given the intricacies in the physical structure of a coal mine, only low power WSN nodes can produce accurate surveillance and accident detection data. The work mainly concentrated on designing and simulating various alternate scenarios for a typical mine and comparing them based on the obtained results to arrive at a final design. In the Era of embedded technology, the Zigbee protocols are used in more and more applications. Because of the rapid development of sensors, microcontrollers, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of coal mine. The underground system collects temperature, humidity and methane values of coal mine through sensor nodes in the mine; it also collects the number of personnel inside the mine with the help of an IR sensor, and then transmits the data to information processing terminal based on ARM.Keywords: ARM, embedded board, wireless sensor network (Zigbee)
Procedia PDF Downloads 3413619 Motivational Orientation of the Methodical System of Teaching Mathematics in Secondary Schools
Authors: M. Rodionov, Z. Dedovets
Abstract:
The article analyses the composition and structure of the motivationally oriented methodological system of teaching mathematics (purpose, content, methods, forms, and means of teaching), viewed through the prism of the student as the subject of the learning process. Particular attention is paid to the problem of methods of teaching mathematics, which are represented in the form of an ordered triad of attributes corresponding to the selected characteristics. A systematic analysis of possible options and their methodological interpretation enriched existing ideas about known methods and technologies of training, and significantly expanded their nomenclature by including previously unstudied combinations of characteristics. In addition, examples outlined in this article illustrate the possibilities of enhancing the motivational capacity of a particular method or technology in the real learning practice of teaching mathematics through more free goal-setting and varying the conditions of the problem situations. The authors recommend the implementation of different strategies according to their characteristics in teaching and learning mathematics in secondary schools.Keywords: education, methodological system, the teaching of mathematics, students motivation
Procedia PDF Downloads 3553618 Robot-Assisted Laparoscopic Surgeries: Current Use in Pediatric Urology Patients
Authors: Rimel Mwamba, Mohan Gundeti
Abstract:
Introduction: The use of robot-assisted laparoscopic surgeries (RALS) has largely increased in recent years, offering faster and safer treatment options for pediatric patients. In the field of urology, RALS has shown a significant advantage over laparoscopic and open surgeries but continues to be controversial in pediatric cases due to limited comprehensive data on its use. Methods: In this review, we aim to summarize the factors associated with RALS use in pediatric cases involving pyeloplasty, ureteral reimplantation, heminephrectomy, and lower urinary tract reconstruction. We used PubMed, EMBASE, and the Cochrane Database of Systematic Reviews to systematically search for literature on the topic. We then critically assessed and compiled data on RALS outcomes, complications, and associated factors. Results: To date, numerous comparative studies have been conducted on pediatric RALS, with only one randomized control trial investigating the nuances of robotic use against standard of care treatments. These robotic approaches have shown promise in post-surgical outcomes for pediatric patients undergoing upper and lower urinary tract reconstruction. Barriers to use still persist, however, showcasing a need to increase access to the technology, refine instruments for pediatric use, address cost barriers, and provide proper training for surgeons. Conclusion: RALS providesan opportunity to improve pediatric patient outcomes for numerous urologic complications. Additional studies are required to better compare the use of RALS with current standard practices. Due to the difficult nature of conducting randomized control trials, additional prospective observational studies are needed.Keywords: pediatric urology, robot-assisted laparoscopic surgeries (RALS), pyeloplasty, ureteral reimplantation, heminephrectomy, and lower urinary tract reconstruction
Procedia PDF Downloads 993617 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images
Authors: Gherbi Nabil
Abstract:
Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM
Procedia PDF Downloads 233616 The Role of Social Media in Activating Youth Participation in the Community
Authors: Raya Hamed Hilal Al Maamari
Abstract:
The Gulf societies have been undergoing radical changes due to the technology transfer. It altered the humanities attitudes, especially, youth habits as they have become an addicted to using social media. This study aimed to find out the ratio of social media in guiding youth to participate with government’s institutions in decision-making and developing their societies. The study considered a descriptive study, social survey method was used on a sample of 100 young from different gulf countries, using an electronic questionnaire, as well as, some interviews with famous leaders of youth groups. Finally, the researcher suggested some effective ways activate youth efforts using social media in an effective manner to plan for the development policy in the community. The findings illustrated that social media plays a vital role in encouraging youth to participate enthusiastically in providing services. Noticeably, social media contains large numbers of youth. Therefore, the influences will be widely and feasible. Moreover, the study indicated the fact that most of the youth teamwork started in social media. Then, it has been growing in the real society.Keywords: community, participation, social media, youth
Procedia PDF Downloads 3773615 Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design
Authors: Claudeny Simone Alves Santana, Alexandre Simas De Medeiros, Marcelino Aurélio Vieira Da Silva
Abstract:
The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability.Keywords: life cycle assessment, greenhouse gases, urban paving, service cost
Procedia PDF Downloads 763614 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers
Authors: B. Neethu, Diptesh Das
Abstract:
The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.Keywords: bridge, semi active control, sliding mode control, MR damper
Procedia PDF Downloads 127