Search results for: non-formal learning contexts
4598 Technology Impact in Learning and Teaching English Language Writing
Authors: Laura Naka
Abstract:
The invention of computer writing programs has changed the way of teaching second language writing. This artificial intelligence engine can provide students with feedback on their essays, on their grammatical and spelling errors, convenient writing and editing tools to facilitate student’s writing process. However, it is not yet proved if this technology is helping students to improve their writing skills. There are several programs that are of great assistance for students concerning their writing skills. New technology provides students with different software programs which enable them to be more creative, to express their opinions and ideas in words, pictures and sounds, but at the end main and most correct feedback should be given by their teachers. No matter how new technology affects in writing skills, always comes from their teachers. This research will try to present some of the advantages and disadvantages that new technology has in writing process for students. The research takes place in the University of Gjakova ‘’Fehmi Agani’’ Faculty of Education-Preschool Program. The research aims to provide random sample response by using questionnaires and observation.Keywords: English language learning, technology, academic writing, teaching L2.
Procedia PDF Downloads 5714597 The Video Database for Teaching and Learning in Football Refereeing
Authors: M. Armenteros, A. Domínguez, M. Fernández, A. J. Benítez
Abstract:
The following paper describes the video database tool used by the Fédération Internationale de Football Association (FIFA) as part of the research project developed in collaboration with the Carlos III University of Madrid. The database project began in 2012, with the aim of creating an educational tool for the training of instructors, referees and assistant referees, and it has been used in all FUTURO III courses since 2013. The platform now contains 3,135 video clips of different match situations from FIFA competitions. It has 1,835 users (FIFA instructors, referees and assistant referees). In this work, the main features of the database are described, such as the use of a search tool and the creation of multimedia presentations and video quizzes. The database has been developed in MySQL, ActionScript, Ruby on Rails and HTML. This tool has been rated by users as "very good" in all courses, which prompt us to introduce it as an ideal tool for any other sport that requires the use of video analysis.Keywords: assistants referees, cloud computing, e-learning, instructors, FIFA, referees, soccer, video database
Procedia PDF Downloads 4394596 A Review of Intelligent Fire Management Systems to Reduce Wildfires
Authors: Nomfundo Ngombane, Topside E. Mathonsi
Abstract:
Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires
Procedia PDF Downloads 784595 How Different Perceived Affordances of Game Elements Shape Motivation and Performance in Gamified Learning: A Cognitive Evaluation Theory Perspective
Authors: Kibbeum Na
Abstract:
Previous gamification research has produced mixed results regarding the effectiveness of gamified learning. One possible explanation for this is that individuals perceive the game elements differently. Cognitive Evaluation Theory posits that external rewards can boost or undermine intrinsic motivation, depending on whether the rewards are perceived as informational or controlling. This research tested the hypothesis that game elements can be perceived as either informational feedback or external reward, and the motivational impact differ accordingly. An experiment was conducted using an educational math puzzle to compare the motivation and performance as a result of different perceived affordances game elements. Participants were primed to perceive the game elements as either informational feedback or external reward, and the duration of an attempt to solve the unsolvable puzzle – amotivation indicator – and the puzzle score – a performance indicator–were measured with the game elements incorporated and then without the game elements. Badges and points were deployed as the main game elements. Results showed that, regardless of priming, a significant decrease in performance occurred when the game elements were removed, whereas the control group who solved non-gamified math puzzles maintained their performance. The undermined performance with gamification removal indicates that learners may perceive some game elements as controlling factors irrespective of the way they are presented. The results of the current study also imply that some game elements are better not being implemented to preserve long-term performance. Further research delving into the extrinsic reward-like nature of game elements and its impact on learning motivation is called for.Keywords: cognitive Evaluation Theory, game elements, gamification, motivation, motivational affordance, performance
Procedia PDF Downloads 1064594 Enhancing Goal Achievement through Improved Communication Skills
Abstract:
An extensive body of research studies suggest that students, teachers, and supervisors can enhance the likelihood of reaching their goals by improving their communication skills. It is highly important to learn how and when to provide different kinds of feedback, e.g. anticipatory, corrective and positive) will gain better result and higher morale. The purpose of this mixed methods research is twofold: 1) To find out what factors affect effective communication among different stakeholders and how these factors affect student learning2) What are the good practices for improving communication among different stakeholders and improve student achievement. This presentation first begins with an introduction to the recent research on Marshall’s Nonviolent Communication Techniques (NVC), including four important components: observations, feelings, needs, requests. These techniques can be effectively applied at all levels of communication. To develop an in-depth understanding of the relationship among different techniques within, this research collected, compared, and combined qualitative and quantitative data to better improve communication and support student learning.Keywords: education, communication, psychology, student learning, language teaching
Procedia PDF Downloads 514593 A Framework for Systemically Understanding and Increasing Compliance with Water Regulation in Time Limited and Uncertain Contexts
Authors: Luisa Perez-Mujica
Abstract:
Traditionally, non-compliance in water regulation has been understood to be attributable to lack of information or knowledge of regulations. In other words, it is confusing behavioural change and education with communication or regulations. However, compliance is a complex response to water regulation factors including 1) knowledge and understanding of regulations; 2) perception that resources are overregulated; 3) presence of regulatory officers in the field; 4) accurate communication of what is being protected; 5) time lag between behavioral change projects and observation of outcomes and 6) how success of behavioral change is measured and evaluated. This paper presents a framework for designing education and behavioral change projects by understanding non-compliance in terms of the interaction of its factors, including a process for prioritizing projects, actions, evaluation and monitoring of outcomes. By taking a systemic approach to compliance, a more directed type of actions can be efficiently identified and prioritized, preventing the reactive nature of education and behavioral change projects.Keywords: water regulation, compliance, behaviour change, systems thinking
Procedia PDF Downloads 2404592 The Effect of Technology- facilitated Lesson Study toward Teacher’s Computer Assisted Language Learning Competencies
Authors: Yi-Ning Chang
Abstract:
With the rapid advancement of technology, it has become crucial for educators to adeptly integrate technology into their teaching and develop a robust Computer-Assisted Language Learning (CALL) competency. Addressing this need, the present study adopted a technology-based Lesson Study approach to assess its impact on the CALL competency and professional capabilities of EFL teachers. Additionally, the study delved into teachers' perceptions of the benefits derived from participating in the creation of technologically integrated lesson plans. The iterative process of technology-based Lesson Study facilitated ample peer discussion, enabling teachers to flexibly design and implement lesson plans that incorporate various technological tools. This 15-week study included 10 in- service teachers from a university of science and technology in the central of Taiwan. The collected data included pre- and post- lesson planning scores, pre- and post- TPACK survey scores, classroom observation forms, designed lesson plans, and reflective essays. The pre- and post- lesson planning and TPACK survey scores were analyzed employing a pair-sampled t test; students’ reflective essays were respectively analyzed applying content analysis. The findings revealed that the teachers’ lesson planning ability and CALL competencies were improved. Teachers perceived a better understanding of integrating technology with teaching subjects, more effective teaching skills, and a deeper understanding of technology. Pedagogical implications and future studies are also discussed.Keywords: CALL, language learning, lesson study, lesson plan
Procedia PDF Downloads 404591 Towards Better Quality in Healthcare and Operations Management: A Developmental Literature Review
Authors: Marc Dorval, Marie-Hélène Jobin
Abstract:
This work presents the various perspectives, dimensions, components and definitions given to quality in the operations management (OM) and healthcare services (HCS) literature in time, highlighting gaps and learning opportunities between the two disciplines through a thorough search into their rich and distinct body of knowledge. Greater and new insights about the general nature of quality are obtained with findings such as in OM, quality has been approached in six fairly distinct paradigms (excellence, value, conformity to specifications, attributes, satisfaction and meeting or exceeding customer expectations), whereas in HCS, two approaches are prominent (Donabedian’s structure, process and outcomes model and Lohr and Schroeder’s circumscribed definition). The two disciplines views on quality seem to have progressed much in parallel with little cross-learning from each other. This work then proposes an encompassing definition of quality as a lever and suggests further research and development avenues for a better use of the concept of quality by academics and practitioners alike toward the goals of greater organizational performance and improved management in healthcare and possibly other service domains.Keywords: healthcare, management, operations, quality, services
Procedia PDF Downloads 2294590 Investigating Chinese Students' Engagement with Teacher Feedback: Multiple Case Studies in a UK University
Authors: Fangfei Li
Abstract:
This research was conducted to explore how Chinese overseas students, who rarely received teacher feedback during their undergraduate studies in China, engaged in a different feedback provision context in the UK universities. In particular, this research provides some insights into Chinese students’ perspectives on how they made sense of the teacher feedback they obtained and how they took it on board in their assignments. Research questions in this study are 1) What are Chinese overseas students’ perceptions of teacher feedback on courses in UK higher education? 2) How do they respond to the teacher feedback they obtained? 3) What factors might influence their engagement with teacher feedback? Multiple case studies of five Chinese overseas students in a UK university have been carried out to address the research questions. The main data collection instruments are various types of semi-structured interviews, consisting of background interviews, scenario-based activities, stimulated recall sessions and retrospective interviews. Research findings indicate that student engagement with teacher feedback is a complex learning process incorporating several stages: from initial teacher input to ultimate transformational learning. Apart from students interpreting teachers’ comments/suggestions by themselves, students’ understandings of and responses to teacher feedback could also be influenced by pre-submission guidance, peer discussion, use of exemplars and post-submission discussion with teachers. These are key factors influencing students to make use of teacher feedback. Findings also reveal that the level of students’ reflections on tutor feedback influences the quality of their assignments and even their future learning. To sum up, this paper will discuss the current concepts of teacher feedback in existing studies and research findings of this study from which reconceptualization of teacher feedback has occurred.Keywords: Chinese students, student engagement, teacher feedback, the UK higher education
Procedia PDF Downloads 3484589 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards
Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia
Abstract:
Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.Keywords: aquaponics, deep learning, internet of things, vermiponics
Procedia PDF Downloads 714588 Using Possibility Books to Develop Creativity Mindsets - a New Pedagogy for Learning Science, Math, and Engineering
Authors: Michael R. Taber, Kristin Stanec
Abstract:
This paper presents year-two of a longitudinal study on implementing Possibility Books into undergraduate courses to develop a student's creativity mindset: tolerating ambiguity, willingness to risk failure, curiosity, and openness to embrace possibility thinking through unexpected connections. Courses involved in this research span disciplines in the natural and social sciences and the humanities. Year one of the project developed indices from which baseline data could be analyzed. The two significant indices ( > 0.7) were "creativity mindset" and "intentional interactions." Preliminary qualitative and quantitative data analysis indicated that students found the new pedagogical intervention as a safe space to learn new strategies, recognize patterns, and define structures through innovative notetaking forms. Possibility Books in Natural Science courses were designed to develop students' conceptualization of science and math. Using Possibility Books in all disciplines provided a space for students to practice divergent thinking (i.e.,Possibilities), convergent thinking (i.e., forms that express meaning), and risk-taking (i.e., the vulnerability associated with expression). Qualitative coding of open responses on a post-survey revealed two major themes: 1) Possibility Books provided a mind space for learning about self, and 2) provided a calming opportunity to connect concepts. Quantitative analysis indicated significant correlations between focused headspace and notetaking (r = 0.555, p < 0.001), focused headspace, and connecting with others (r = 0.405, p < 0.001).Keywords: pedagogy, science education, learning methods, creativity mindsets
Procedia PDF Downloads 234587 Training Engineering Students in Sustainable Development
Authors: Hoong C. Chin, Soon H. Chew, Zhaoxia Wang
Abstract:
Work on sustainable developments and the call for action in education for sustainable development have been ongoing for a number of years. Training engineering students with the relevant competencies, particularly in sustainable development literacy, has been identified as an urgent task in universities. This requires not only a holistic, multi-disciplinary approach to education but also a suitable training environment to develop the needed skills and to inculcate the appropriate attitudes in students towards sustainable development. To demonstrate how this can be done, a module involving an overseas field trip was introduced in 2013 at the National University of Singapore. This paper provides details of the module and describes its training philosophy and methods. Measured against the student learning outcomes, stipulated by the Engineering Accreditation Board, the module scored well on all of them, particularly those related to complex problem solving, environmental and sustainability awareness, multi-disciplinary team work and varied-level communications.Keywords: civil engineering education, socio-economically sustainable infrastructure, student learning outcome, sustainable development
Procedia PDF Downloads 3504586 An Experimental Quantitative Case Study of Competency-Based Learning in Online Mathematics Education
Authors: Pascal Roubides
Abstract:
The presentation proposed herein describes a research case study of a hybrid application of the competency-based education model best exemplified by Western Governor’s University, within the general temporal confines of an accelerated (8-week) term of a College Algebra course at the author’s institution. A competency-based model was applied to an accelerated online College Algebra course, built as an Open Educational Resources (OER) course, seeking quantifiable evidence of any differences in the academic achievement of students enrolled in the competency-based course and the academic achievement of the current delivery of the same course. Competency-based learning has been gaining in support in recent times and the author’s institution has also been involved in its own efforts to design and develop courses based on this approach. However, it is unknown whether there had been any research conducted to quantify evidence of the effect of this approach against traditional approaches prior to the author’s case study. The research question sought to answer in this experimental quantitative study was whether the online College Algebra curriculum at the author’s institution delivered via an OER-based competency-based model can produce statistically significant improvement in retention and success rates against the current delivery of the same course. Results obtained in this study showed that there is no statistical difference in the retention rate of the two groups. However, there was a statistically significant difference found between the rates of successful completion of students in the experimental group versus those in the control group.Keywords: competency-based learning, online mathematics, online math education, online courses
Procedia PDF Downloads 1284585 Linguistic Attitudes and Language Learning Needs of Heritage Language Learners of Spanish in the United States
Authors: Sheryl Bernardo-Hinesley
Abstract:
Heritage language learners are students who have been raised in a home where a minority language is spoken, who speaks or merely understand the minority heritage language, but to some degree are bilingual in the majority and the heritage language. In view of the rising university enrollment by Hispanics in the United States who have chosen to study Spanish, university language programs are currently faced with challenges of accommodating the language needs of heritage language learners of Spanish. The present study investigates the heritage language perception and language attitudes by heritage language learners of Spanish, as well as their classroom language learning experiences and needs. In order to carry out the study, a qualitative survey was used to gather data from university students. Analysis of students' responses indicates that heritage learners are motivated to learn the heritage language. In relation to the aspects of focus of a language course for heritage learners, results show that the aspects of interest are accent marks and spelling, grammatical accuracy, vocabulary, writing, reading, and culture.Keywords: heritage language learners, language acquisition, linguistic attitudes, Spanish in the US
Procedia PDF Downloads 2124584 Application of Metaverse Service to Construct Nursing Education Theory and Platform in the Post-pandemic Era
Authors: Chen-Jung Chen, Yi-Chang Chen
Abstract:
While traditional virtual reality and augmented reality only allow for small movement learning and cannot provide a truly immersive teaching experience to give it the illusion of movement, the new technology of both content creation and immersive interactive simulation of the metaverse can just reach infinite close to the natural teaching situation. However, the mixed reality virtual classroom of metaverse has not yet explored its theory, and it is rarely implemented in the situational simulation teaching of nursing education. Therefore, in the first year, the study will intend to use grounded theory and case study methods and in-depth interviews with nursing education and information experts. Analyze the interview data to investigate the uniqueness of metaverse development. The proposed analysis will lead to alternative theories and methods for the development of nursing education. In the second year, it will plan to integrate the metaverse virtual situation simulation technology into the alternate teaching strategy in the pediatric nursing technology course and explore the nursing students' use of this teaching method as the construction of personal technology and experience. By leveraging the unique features of distinct teaching platforms and developing processes to deliver alternative teaching strategies in a nursing technology teaching environment. The aim is to increase learning achievements without compromising teaching quality and teacher-student relationships in the post-pandemic era. A descriptive and convergent mixed methods design will be employed. Sixty third-grade nursing students will be recruited to participate in the research and complete the pre-test. The students in the experimental group (N=30) agreed to participate in 4 real-time mixed virtual situation simulation courses in self-practice after class and conducted qualitative interviews after each 2 virtual situation courses; the control group (N=30) adopted traditional practice methods of self-learning after class. Both groups of students took a post-test after the course. Data analysis will adopt descriptive statistics, paired t-tests, one-way analysis of variance, and qualitative content analysis. This study addresses key issues in the virtual reality environment for teaching and learning within the metaverse, providing valuable lessons and insights for enhancing the quality of education. The findings of this study are expected to contribute useful information for the future development of digital teaching and learning in nursing and other practice-based disciplines.Keywords: metaverse, post-pandemic era, online virtual classroom, immersive teaching
Procedia PDF Downloads 684583 Research of Database Curriculum Construction under the Environment of Massive Open Online Courses
Authors: Wang Zhanquan, Yang Zeping, Gu Chunhua, Zhu Fazhi, Guo Weibin
Abstract:
Recently, Massive Open Online Courses (MOOCs) are becoming the new trend of education. There are many problems under the environment of Database Principle curriculum teaching process in MOOCs, such as teaching ideas and theories which are out of touch with the reality, how to carry out the technical teaching and interactive practice in the MOOCs environment, thus the methods of database course under the environment of MOOCs are proposed. There are three processes to deal with problem solving in the research, which are problems proposed, problems solved, and inductive analysis. The present research includes the design of teaching contents, teaching methods in classroom, flipped classroom teaching mode under the environment of MOOCs, learning flow method and large practice homework. The database designing ability is systematically improved based on the researching methods.Keywords: problem solving-driven, MOOCs, teaching art, learning flow;
Procedia PDF Downloads 3634582 A Data-Driven Platform for Studying the Liquid Plug Splitting Ratio
Authors: Ehsan Atefi, Michael Grigware
Abstract:
Respiratory failure secondary to surfactant deficiency resulting from respiratory distress syndrome is considered one major cause of morbidity in preterm infants. Surfactant replacement treatment (SRT) is considered an effective treatment for this disease. Here, we introduce an AI-mediated approach for estimating the distribution of surfactant in the lung airway of a newborn infant during SRT. Our approach implements machine learning to precisely estimate the splitting ratio of a liquid drop during bifurcation at different injection velocities and patient orientations. This technique can be used to calculate the surfactant residue remaining on the airway wall during the surfactant injection process. Our model works by minimizing the pressure drop difference between the two airway branches at each generation, subject to mass and momentum conservation. Our platform can be used to generate feedback for immediately adjusting the velocity of injection and patient orientation during SRT.Keywords: respiratory failure, surfactant deficiency, surfactant replacement, machine learning
Procedia PDF Downloads 1264581 Finding the English Competency for Developing Public Health Village Volunteers at Ban Prasukchai in Chumpuang District, Nakhon Ratchasima Province in Thailand
Authors: Kittivate Boonyopakorn
Abstract:
The purposes of this study were to find the English competence of the public health volunteers and to develop the use of their English. The samples for the study were 41 public health village volunteers at Ban Prasukchai, in Thailand. The findings showed that the sum of all scores for the pre-test was 452, while the score for the post-test was 1,080. Therefore, the results of the experiment confirm that the post-test scores (1,080) significantly are higher than the pre-test (452). The mean score (N=41) for the pre-test was 11.02 while the mean score (N=41) for the post-test was 18.10. The standard deviation for the pre-test was 2.734; however, for the post-test it was 1.934. In addition to the experts-evaluated research tools, the results of the evaluation for the structured interviews (IOC) were 1 in value. The evaluation of congruence for the content with learning objectives (IOC) were 0.66 to 1.00 in value. The evaluation of congruence for the pre and post-test with learning objectives (IOC) are 1 in value.Keywords: finding the English competency, developing public health, village volunteers
Procedia PDF Downloads 4504580 Generating Music with More Refined Emotions
Authors: Shao-Di Feng, Von-Wun Soo
Abstract:
To generate symbolic music with specific emotions is a challenging task due to symbolic music datasets that have emotion labels are scarce and incomplete. This research aims to generate more refined emotions based on the training datasets that are only labeled with four quadrants in Russel’s 2D emotion model. We focus on the theory of Music Fadernet and map arousal and valence to the low-level attributes, and build a symbolic music generation model by combining transformer and GM-VAE. We adopt an in-attention mechanism for the model and improve it by allowing modulation by conditional information. And we show the music generation model could control the generation of music according to the emotions specified by users in terms of high-level linguistic expression and by manipulating their corresponding low-level musical attributes. Finally, we evaluate the model performance using a pre-trained emotion classifier against a pop piano midi dataset called EMOPIA, and by subjective listening evaluation, we demonstrate that the model could generate music with more refined emotions correctly.Keywords: music generation, music emotion controlling, deep learning, semi-supervised learning
Procedia PDF Downloads 894579 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System
Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha
Abstract:
Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time
Procedia PDF Downloads 5774578 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1224577 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 894576 Exploring Artificial Intelligence as a Transformative Tool for Urban Management
Authors: R. R. Govind
Abstract:
In the digital age, artificial intelligence (AI) is having a significant impact on the rapid changes that cities are experiencing. This study explores the profound impact of AI on urban morphology, especially with regard to promoting friendly design choices. It addresses a significant research gap by examining the real-world effects of integrating AI into urban design and management. The main objective is to outline a framework for integrating AI to transform urban settings. The study employs an urban design framework to effectively navigate complicated urban environments, emphasize the need for urban management, and provide efficient planning and design strategies. Taking Gangtok's informal settlements as a focal point, the study employs AI methodologies such as machine learning, predictive analytics, and generative AI to tackle issues of 'urban informality'. The insights garnered not only offer valuable perspectives but also unveil AI's transformative potential in addressing contemporary urban challenges.Keywords: urban design, artificial intelligence, urban challenges, machine learning, urban informality
Procedia PDF Downloads 614575 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning
Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman
Abstract:
Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning
Procedia PDF Downloads 1024574 The Possibility of Content and Language Integrated Learning at Japanese Primary Schools
Authors: Rie Adachi
Abstract:
In Japan, it is required to improve students’ English communicative proficiency and the Education Ministry will start English education for the third grade and upper from year 2020 on. Considering the problems with the educational system, Content and Language Integrated Learning (CLIL) is more appropriate to be employed in elementary schools rather than just introducing English lessons. Effective CLIL takes place in the 4Cs Framework, and different strategies are used in various activities, such as arts and crafts, bodily expression, singing, playing roles, etc. After a CLIL workshop for local teachers focused on the 4Cs, the writer conducted a survey of the 36 participants using a questionnaire and found that they did not know the word CLIL, but seemed to have an interest after attending the workshop. The writer concluded that researchers and practitioners need to spread awareness of the 4Cs framework, to apply CLIL into Japanese educational context, to provide CLIL teacher training program and so on, in order to practice CLIL in Japanese elementary schools and nurture students with a global mindset.Keywords: CLIL, 4Cs, homeroom teachers, intercultural understanding
Procedia PDF Downloads 1684573 Errors in Selected Writings of EFL Students: A Study of Department of English, Taraba State University, Jalingo, Nigeria
Authors: Joy Aworookoroh
Abstract:
Writing is one of the active skills in language learning. Students of English as a foreign language are expected to write efficiently and proficiently in the language; however, there are usually challenges to optimal performance and competence in writing. Errors, on the other hand, in a foreign language learning situation are more positive than negative as they provide the basis for solving the limitations of the students. This paper investigates the situation in the Department of English, Taraba State University Jalingo. Students are administered a descriptive writing test across different levels of study. The target students are multilingual with an L1 of either Kuteb, Hausa or Junkun languages. The essays are accessed to identify the different kinds of errors in them alongside the classification of the order. Errors of correctness, clarity, engagement, and delivery were identified. However, the study identified that the degree of errors reduces alongside the experience and exposure of the students to an EFL classroom.Keywords: errors, writings, descriptive essay, multilingual
Procedia PDF Downloads 634572 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 1264571 Evaluation of AR-4BL-MAST with Multiple Markers Interaction Technique for Augmented Reality Based Engineering Application
Authors: Waleed Maqableh, Ahmad Al-Hamad, Manjit Sidhu
Abstract:
Augmented reality (AR) technology has the capability to provide many benefits in the field of education as a modern technology which aided learning and improved the learning experience. This paper evaluates AR based application with multiple markers interaction technique (touch-to-print) which is designed for analyzing the kinematics of 4BL mechanism in mechanical engineering. The application is termed as AR-4BL-MAST and it allows the users to touch the symbols on a paper in natural way of interaction. The evaluation of this application was performed with mechanical engineering students and human–computer interaction (HCI) experts to test its effectiveness as a tangible user interface application where the statistical results show its ability as an interaction technique, and it gives the users more freedom in interaction with the virtual mechanical objects.Keywords: augmented reality, multimedia, user interface, engineering, education technology
Procedia PDF Downloads 5754570 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 1374569 Using Chatbots to Create Situational Content for Coursework
Authors: B. Bricklin Zeff
Abstract:
This research explores the development and application of a specialized chatbot tailored for a nursing English course, with a primary objective of augmenting student engagement through situational content and responsiveness to key expressions and vocabulary. Introducing the chatbot, elucidating its purpose, and outlining its functionality are crucial initial steps in the research study, as they provide a comprehensive foundation for understanding the design and objectives of the specialized chatbot developed for the nursing English course. These elements establish the context for subsequent evaluations and analyses, enabling a nuanced exploration of the chatbot's impact on student engagement and language learning within the nursing education domain. The subsequent exploration of the intricate language model development process underscores the fusion of scientific methodologies and artistic considerations in this application of artificial intelligence (AI). Tailored for educators and curriculum developers in nursing, practical principles extending beyond AI and education are considered. Some insights into leveraging technology for enhanced language learning in specialized fields are addressed, with potential applications of similar chatbots in other professional English courses. The overarching vision is to illuminate how AI can transform language learning, rendering it more interactive and contextually relevant. The presented chatbot is a tangible example, equipping educators with a practical tool to enhance their teaching practices. Methodologies employed in this research encompass surveys and discussions to gather feedback on the chatbot's usability, effectiveness, and potential improvements. The chatbot system was integrated into a nursing English course, facilitating the collection of valuable feedback from participants. Significant findings from the study underscore the chatbot's effectiveness in encouraging more verbal practice of target expressions and vocabulary necessary for performance in role-play assessment strategies. This outcome emphasizes the practical implications of integrating AI into language education in specialized fields. This research holds significance for educators and curriculum developers in the nursing field, offering insights into integrating technology for enhanced English language learning. The study's major findings contribute valuable perspectives on the practical impact of the chatbot on student interaction and verbal practice. Ultimately, the research sheds light on the transformative potential of AI in making language learning more interactive and contextually relevant, particularly within specialized domains like nursing.Keywords: chatbot, nursing, pragmatics, role-play, AI
Procedia PDF Downloads 65