Search results for: mathematical modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5159

Search results for: mathematical modeling

1859 The Transport of Radical Species to Single and Double Strand Breaks in the Liver’s DNA Molecule by a Hybrid Method of Type Monte Carlo - Diffusion Equation

Authors: H. Oudira, A. Saifi

Abstract:

The therapeutic utility of certain Auger emitters such as iodine-125 depends on their position within the cell nucleus . Or diagnostically, and to maintain as low as possible cell damage, it is preferable to have radionuclide localized outside the cell or at least the core. One solution to this problem is to consider markers capable of conveying anticancer drugs to the tumor site regardless of their location within the human body. The objective of this study is to simulate the impact of a complex such as bleomycin on single and double strand breaks in the DNA molecule. Indeed, this simulation consists of the following transactions: - Construction of BLM -Fe- DNA complex. - Simulation of the electron’s transport from the metastable state excitation of Fe 57 by the Monte Carlo method. - Treatment of chemical reactions in the considered environment by the diffusion equation. For physical, physico-chemical and finally chemical steps, the geometry of the complex is considered as a sphere of 50 nm centered on the binding site , and the mathematical method used is called step by step based on Monte Carlo codes.

Keywords: concentration, yield, radical species, bleomycin, excitation, DNA

Procedia PDF Downloads 440
1858 Image Encryption Using Eureqa to Generate an Automated Mathematical Key

Authors: Halima Adel Halim Shnishah, David Mulvaney

Abstract:

Applying traditional symmetric cryptography algorithms while computing encryption and decryption provides immunity to secret keys against different attacks. One of the popular techniques generating automated secret keys is evolutionary computing by using Eureqa API tool, which got attention in 2013. In this paper, we are generating automated secret keys for image encryption and decryption using Eureqa API (tool which is used in evolutionary computing technique). Eureqa API models pseudo-random input data obtained from a suitable source to generate secret keys. The validation of generated secret keys is investigated by performing various statistical tests (histogram, chi-square, correlation of two adjacent pixels, correlation between original and encrypted images, entropy and key sensitivity). Experimental results obtained from methods including histogram analysis, correlation coefficient, entropy and key sensitivity, show that the proposed image encryption algorithms are secure and reliable, with the potential to be adapted for secure image communication applications.

Keywords: image encryption algorithms, Eureqa, statistical measurements, automated key generation

Procedia PDF Downloads 467
1857 A Mathematical Model of Blood Perfusion Dependent Temperature Distribution in Transient Case in Human Dermal Region

Authors: Yogesh Shukla

Abstract:

Many attempts have been made to study temperature distribution problem in human tissues under normal environmental and physiological conditions at constant arterial blood temperature. But very few attempts have been made to investigate temperature distribution in human tissues under different arterial blood temperature. In view of above, a finite element model has been developed to unsteady temperature distribution in dermal region in human body. The model has been developed for one dimension unsteady state case. The variation in parameters like thermal conductivity, blood mass flow and metabolic activity with respect to position and time has been incorporated in the model. Appropriate boundary conditions have been framed. The central difference approach has been used in space variable and trapezoidal rule has been employed a long time variable. Numerical results have been obtained to study relationship among temperature and time.

Keywords: rate of metabolism, blood mass flow rate, thermal conductivity, heat generation, finite element method

Procedia PDF Downloads 335
1856 Floodplain Modeling of River Jhelum Using HEC-RAS: A Case Study

Authors: Kashif Hassan, M.A. Ahanger

Abstract:

Floods have become more frequent and severe due to effects of global climate change and human alterations of the natural environment. Flood prediction/ forecasting and control is one of the greatest challenges facing the world today. The forecast of floods is achieved by the use of hydraulic models such as HEC-RAS, which are designed to simulate flow processes of the surface water. Extreme flood events in river Jhelum , lasting from a day to few are a major disaster in the State of Jammu and Kashmir, India. In the present study HEC-RAS model was applied to two different reaches of river Jhelum in order to estimate the flood levels corresponding to 25, 50 and 100 year return period flood events at important locations and to deduce flood vulnerability of important areas and structures. The flow rates for the two reaches were derived from flood-frequency analysis of 50 years of historic peak flow data. Manning's roughness coefficient n was selected using detailed analysis. Rating Curves were also generated to serve as base for determining the boundary conditions. Calibration and Validation procedures were applied in order to ensure the reliability of the model. Sensitivity analysis was also performed in order to ensure the accuracy of Manning's n in generating water surface profiles.

Keywords: flood plain, HEC-RAS, Jhelum, return period

Procedia PDF Downloads 411
1855 Study and Modeling of Flood Watershed in Arid and Semi Arid Regions of Algeria

Authors: Belagoune Fares, Boutoutaou Djamel

Abstract:

The study on floods in Algeria established by the National Agency of Water Resources (ANRH) shows that the country is confronted with the phenomenon of very destructive floods and floods especially in arid and semiarid regions. Flooding of rivers in these areas is less known. They are characterized by their sudden duration (rain showers, thunderstorm).The duration of the flood is of the order of minutes to hours. The human and material damage caused by these floods were still high. The study area encompasses three watersheds in semi-arid and arid south and Algeria. THERE are pools of Chott-Melghir (68,751 km2), highland Constantine-07 (9578 km2) and El Hodna-05 basin (25,843 km2). The total area of this zone is about 104,500km2.Studies of protection against floods and design studies of hydraulic structures (spillway, storm basin, etc.) require the raw data which is often unknown in several places particularly at ungauged wadis of these areas. This makes it very difficult to schedules and managers working in the field of hydraulic studies. The objective of this study and propose a methodology for determining flows in the absence of observations in the semi-arid and arid south eastern Algeria. The objective of the study is to propose a methodology for these areas of flood calculation for ungauged rivers.

Keywords: flood, watershed, specific flow, coefficient of variation, arid

Procedia PDF Downloads 486
1854 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics

Authors: M. Bodner, M. Scampicchio

Abstract:

Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.

Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA

Procedia PDF Downloads 128
1853 Factors Affecting Sustainability of a 3D Printed Object

Authors: Kadrefi Athanasia, Fronimaki Evgenia, Mavri Maria

Abstract:

3D Printing (3DP) is a distinct, disruptive technology that belongs to a wider group of manufacturing technologies, Additive Manufacturing (AM). In 3DP, a custom digital file turns into a solid object using a single computer and a 3D printer. Among multiple advantages, 3DP offers production with fewer steps compared to conventional manufacturing, lower production costs, and customizable designs. 3DP can be performed by several techniques, while the most common is Fused Deposition Modeling (FDM). FDM belongs to a wider group of AM techniques, material extrusion, where a digital file converts into a solid object using raw material (called filament) melted in high temperatures. As in most manufacturing procedures, environmental issues have been raised here, too. This study aims to review the literature on issues that determine technical and mechanical factors that affect the sustainability and resilience of a final 3D-printed object. The research focuses on the collection of papers that deal with 3D printing techniques and use keywords or phrases like ‘3D printed objects’, ‘factors of 3DP sustainability’, ‘waste materials,’ ‘infill patterns,’ and ‘support structures.’ After determining factors, a pilot survey will be conducted at the 3D Printing Lab in order to define the significance of each factor in the final 3D printed object.

Keywords: additive manufacturing, 3D printing, sustainable manufacturing, sustainable production

Procedia PDF Downloads 37
1852 Potential of Visualization and Information Modeling on Productivity Improvement and Cost Saving: A Case Study of a Multi-Residential Construction Project

Authors: Sara Rankohi, Lloyd Waugh

Abstract:

Construction sites are information saturated. Digitalization is hitting construction sites to meet the incredible demand of knowledge sharing and information documentations. From flying drones, 3D Lasers scanners, pocket mobile applications, to augmented reality glasses and smart helmet, visualization technologies help real-time information imposed straight onto construction professional’s field of vision. Although these technologies are very applicable and can have the direct impact on project cost and productivity, experience shows that only a minority of construction professionals quickly adapt themselves to benefit from them in practice. The majority of construction managers still tend to apply traditional construction management methods. This paper investigates a) current applications of visualization technologies in construction projects management, b) the direct effect of these technologies on productivity improvement and cost saving of a multi-residential building project via a case study on Mac Taggart Senior Care project located in Edmonton, Alberta. The research shows the imaged based technologies have a direct impact on improving project productivity and cost savings.

Keywords: image-based technologies, project management, cost, productivity improvement

Procedia PDF Downloads 339
1851 Numerical Modeling to Validate Theoretical Models of Toppling Failure in Rock Slopes

Authors: Hooman Dabirmanesh, Attila M. Zsaki

Abstract:

Traditionally, rock slope stability is carried out using limit equilibrium analysis when investigating toppling failure. In these equilibrium methods, internal forces exerted between columns are not clearly defined, and to the authors’ best knowledge, there is no consensus in literature with respect to the results of analysis. A discrete element method-based numerical model was developed and applied to simulate the behavior of rock layers subjected to toppling failure. Based on this calibrated numerical model, a study of the location and distribution of internal forces that result in equilibrium was carried out. The sum of side forces was applied at a point on a block which properly represents the force to determine the inter-column force distribution. In terms of the side force distribution coefficient, the result was compared to those obtained from laboratory centrifuge tests. The results of the simulation show the suitable criteria to select the correct position for the internal exerted force between rock layers. In addition, the numerical method demonstrates how a theoretical method could be reliable by considering the interaction between the rock layers.

Keywords: contact bond, discrete element, force distribution, limit equilibrium, tensile stress

Procedia PDF Downloads 130
1850 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 419
1849 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: path planning, obstacle avoidance, autonomous mobile robots, algorithms

Procedia PDF Downloads 216
1848 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell

Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS

Procedia PDF Downloads 483
1847 Estimations of Spectral Dependence of Tropospheric Aerosol Single Scattering Albedo in Sukhothai, Thailand

Authors: Siriluk Ruangrungrote

Abstract:

Analyses of available data from MFR-7 measurement were performed and discussed on the study of tropospheric aerosol and its consequence in Thailand. Since, ASSA (w) is one of the most important parameters for a determination of aerosol effect on radioactive forcing. Here the estimation of w was directly determined in terms of the ratio of aerosol scattering optical depth to aerosol extinction optical depth (ωscat/ωext) without any utilization of aerosol computer code models. This is of benefit for providing the elimination of uncertainty causing by the modeling assumptions and the estimation of actual aerosol input data. Diurnal w of 5 cloudless-days in winter and early summer at 5 distinct wavelengths of 415, 500, 615, 673 and 870 nm with the consideration of Rayleigh scattering and atmospheric column NO2 and Ozone contents were investigated, respectively. Besides, the tendency of spectral dependence of ω representing two seasons was observed. The characteristic of spectral results reveals that during wintertime the atmosphere of the inland rural vicinity for the period of measurement possibly dominated with a lesser amount of soil dust aerosols loading than one in early summer. Hence, the major aerosol loading particularly in summer was subject to a mixture of both soil dust and biomass burning aerosols.

Keywords: aerosol scattering optical depth, aerosol extinction optical depth, biomass burning aerosol, soil dust aerosol

Procedia PDF Downloads 387
1846 Facility Data Model as Integration and Interoperability Platform

Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes

Abstract:

Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.

Keywords: airport ontology, energy management, facility data model, ontology modeling

Procedia PDF Downloads 426
1845 Assessment and Forecasting of the Impact of Negative Environmental Factors on Public Health

Authors: Nurlan Smagulov, Aiman Konkabayeva, Akerke Sadykova, Arailym Serik

Abstract:

Introduction. Adverse environmental factors do not immediately lead to pathological changes in the body. They can exert the growth of pre-pathology characterized by shifts in physiological, biochemical, immunological and other indicators of the body state. These disorders are unstable, reversible and indicative of body reactions. There is an opportunity to objectively judge the internal structure of the adaptive body reactions at the level of individual organs and systems. In order to obtain a stable response of the body to the chronic effects of unfavorable environmental factors of low intensity (compared to production environment factors), a time called the «lag time» is needed. The obtained results without considering this factor distort reality and, for the most part, cannot be a reliable statement of the main conclusions in any work. A technique is needed to reduce methodological errors and combine mathematical logic using statistical methods and a medical point of view, which ultimately will affect the obtained results and avoid a false correlation. Objective. Development of a methodology for assessing and predicting the environmental factors impact on the population health considering the «lag time.» Methods. Research objects: environmental and population morbidity indicators. The database on the environmental state was compiled from the monthly newsletters of Kazhydromet. Data on population morbidity were obtained from regional statistical yearbooks. When processing static data, a time interval (lag) was determined for each «argument-function» pair. That is the required interval, after which the harmful factor effect (argument) will fully manifest itself in the indicators of the organism's state (function). The lag value was determined by cross-correlation functions of arguments (environmental indicators) with functions (morbidity). Correlation coefficients (r) and their reliability (t), Fisher's criterion (F) and the influence share (R2) of the main factor (argument) per indicator (function) were calculated as a percentage. Results. The ecological situation of an industrially developed region has an impact on health indicators, but it has some nuances. Fundamentally opposite results were obtained in the mathematical data processing, considering the «lag time». Namely, an expressed correlation was revealed after two databases (ecology-morbidity) shifted. For example, the lag period was 4 years for dust concentration, general morbidity, and 3 years – for childhood morbidity. These periods accounted for the maximum values of the correlation coefficients and the largest percentage of the influencing factor. Similar results were observed in relation to the concentration of soot, dioxide, etc. The comprehensive statistical processing using multiple correlation-regression variance analysis confirms the correctness of the above statement. This method provided the integrated approach to predicting the degree of pollution of the main environmental components to identify the most dangerous combinations of concentrations of leading negative environmental factors. Conclusion. The method of assessing the «environment-public health» system (considering the «lag time») is qualitatively different from the traditional (without considering the «lag time»). The results significantly differ and are more amenable to a logical explanation of the obtained dependencies. The method allows presenting the quantitative and qualitative dependence in a different way within the «environment-public health» system.

Keywords: ecology, morbidity, population, lag time

Procedia PDF Downloads 62
1844 Association of Non Synonymous SNP in DC-SIGN Receptor Gene with Tuberculosis (Tb)

Authors: Saima Suleman, Kalsoom Sughra, Naeem Mahmood Ashraf

Abstract:

Mycobacterium tuberculosis is a communicable chronic illness. This disease is being highly focused by researchers as it is present approximately in one third of world population either in active or latent form. The genetic makeup of a person plays an important part in producing immunity against disease. And one important factor association is single nucleotide polymorphism of relevant gene. In this study, we have studied association between single nucleotide polymorphism of CD-209 gene (encode DC-SIGN receptor) and patients of tuberculosis. Dry lab (in silico) and wet lab (RFLP) analysis have been carried out. GWAS catalogue and GEO database have been searched to find out previous association data. No association study has been found related to CD-209 nsSNPs but role of CD-209 in pulmonary tuberculosis have been addressed in GEO database.Therefore, CD-209 has been selected for this study. Different databases like ENSEMBLE and 1000 Genome Project has been used to retrieve SNP data in form of VCF file which is further submitted to different software to sort SNPs into benign and deleterious. Selected SNPs are further annotated by using 3-D modeling techniques using I-TASSER online software. Furthermore, selected nsSNPs were checked in Gujrat and Faisalabad population through RFLP analysis. In this study population two SNPs are found to be associated with tuberculosis while one nsSNP is not found to be associated with the disease.

Keywords: association, CD209, DC-SIGN, tuberculosis

Procedia PDF Downloads 294
1843 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia

Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez

Abstract:

This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.

Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models

Procedia PDF Downloads 171
1842 Evaluating Effect of Business Process Reengineering Performance of Private Banks

Authors: Elham Fakhrpoor, Daryush Mohammadi Zanjirani, Maziyar Nojaba

Abstract:

Business process reengineering is one of the most important strategies in banks in recent years that not only it increases customers’ satisfaction, but also it increases performance of banks. The purpose of elementary (initial) business process reengineering is reinforcing banks abilities to obtain new customers and making long-term relationships with existed customers and increasing customers’ satisfaction among service quality in global level. Banks specially the private ones are the main streams of state, because cash flow is necessary to survive a state. What guarantees survival and permanency of financial institutes’ activities is providing favorite, certain, and proper services. Capital market being small and state financial system being bank-oriented needs optimum usage from banks. According to this fact and role and importance of developing banking system, the present study tried to offer a constructed model using Lisrel and also spss software to evaluate effects of business process reengineering on performance of private banks. We have one min hypothesis and four sub-hypotheses. The main hypothesis says reengineering factors have positive effects on bank performances (balanced- scores card aspects). These hypotheses were tested by structural equations modeling.

Keywords: effect, business, reengineering, private bank

Procedia PDF Downloads 263
1841 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén

Abstract:

A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.

Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery

Procedia PDF Downloads 431
1840 The Characteristics of Settlement Owing to the Construction of Several Parallel Tunnels with Short Distances

Authors: Lojain Suliman, Xinrong Liu, Xiaohan Zhou

Abstract:

Since most tunnels are built in crowded metropolitan settings, the excavation process must take place in highly condensed locations, including high-density cities. In this way, the tunnels are typically located close together, which leads to more interaction between the parallel existing tunnels, and this, in turn, leads to more settlement. This research presents an examination of the impact of a large-scale tunnel excavation on two forms of settlement: surface settlement and settlement surrounding the tunnel. Additionally, research has been done on the properties of interactions between two and three parallel tunnels. The settlement has been evaluated using three primary techniques: theoretical modeling, numerical simulation, and data monitoring. Additionally, a parametric investigation on how distance affects the settlement characteristic for parallel tunnels with short distances has been completed. Additionally, it has been observed that the sequence of excavation has an impact on the behavior of settlements. Nevertheless, a comparison of the model test and numerical simulation yields significant agreement in terms of settlement trend and value. Additionally, when compared to the FEM study, the suggested analytical solution exhibits reduced sensitivity in the settlement prediction. For example, the settlement of the small tunnel diameter does not appear clearly on the settlement curve, while it is notable in the FEM analysis. It is advised, however, that additional studies be conducted in the future employing analytical solutions for settlement prediction for parallel tunnels.

Keywords: settlement, FEM, analytical solution, parallel tunnels

Procedia PDF Downloads 12
1839 How to Reconcile Financial Incentives and Pro-Social Motivations of Loan Officers in Microfinance?

Authors: Julie De Pril, Cécile Godfroid

Abstract:

Nowadays, achieving double bottom line has become a widely recognized objective for microfinance institutions (MFIs). They would like to be financially sustainable or even profitable while continuing to focus on their social mission. In order to rise their financial performance, MFIs tend to grant financial bonuses to loan officers so that they increase their performance and efficiency. However, as argued by motivation crowding theory, monetary rewards may not have only positive effects but can also erode intrinsic motivation. Since MFIs pursue social objectives in addition to their financial ones, their employees’ intrinsic motivations may include the willingness to help others, like in many non-profit organizations. This is called pro-social motivation in the psychology literature. Particularly, this type of motivation should be highly reflected among microfinance loan officers as a part of their role consists in improving clients’ welfare. Therefore, it seems to be crucial for MFIs to find an equilibrium between the efficiency benefits obtained thanks to the granting of financial incentives and the deterioration of social performance that may result from the reduction of the loan officers’ pro-social motivation. This paper attempts to suggest, with a mathematical model, an optimal incentive scheme MFIs could rely on.

Keywords: loan officers, microfinance, prosocial motivation, rewards

Procedia PDF Downloads 291
1838 The Pressure Distribution on the Rectangular and Trapezoidal Storage Tanks' Perimeters Due to Liquid Sloshing Impact

Authors: Hassan Saghi, Gholam Reza Askarzadeh Garmroud, Seyyed Ali Reza Emamian

Abstract:

Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank’s perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks’ perimeters due to liquid sloshing impact. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions are solved using coupled BEM-FEM. The code performance for sloshing modeling is validated against available data. Finally, this code is used for partially filled rectangular and trapezoidal storage tanks and the pressure distribution on the tanks’ perimeters due to liquid sloshing impact is estimated. The results show that the maximum pressure on the perimeter of the rectangular and trapezoidal storage tanks was decreased along the sidewalls from the top to the bottom. Furthermore, the period of the pressure distribution is different for different points on the tank’s perimeter and it is bigger in the trapezoidal tanks compared to the rectangular ones.

Keywords: pressure distribution, liquid sloshing impact, sway motion, trapezoidal storage tank, coupled BEM-FEM

Procedia PDF Downloads 530
1837 An Empirical Study of the Impacts of Big Data on Firm Performance

Authors: Thuan Nguyen

Abstract:

In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.

Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient

Procedia PDF Downloads 223
1836 Architectural Geometric Shapes That Have Changed the World: Heydar Aliyev Centre vs. the Pyramid of Quéops

Authors: Ayda Kurtulus

Abstract:

Heydar Aliyev Centre and Quéops Pyramid are two contrasting examples of sacred geometry perceived as metaphorical alchemy by linking cosmos and earth. Zaha Hadid’s modern building has a wave-like shape and semi-circular alternations that show fluidity and movement, while The Great Pyramid of Giza is triangular. The centre is reminding of the shape of planets, an attempt to regain the balance lost in the modern-day capitalist world, while the Great Pyramid of Giza represents a vortex of energy that connects heaven and earth, harmony and balance. The sacred geometric shapes link the past and the future through God and Ra, humanism and spiritualism in an architectural evolution continuum, mind and spirit into one. An analysis of two geometrical forms, a semi-circle, and a triangle, were carried out through a comprehensive literature review, indicating that behind the materialistic perceptual beauty of buildings, ancient and contemporary, there are mathematical and sacred geometrical constructions that add value to one superficiality can interpret.

Keywords: architectural shapes, The Great Pyramid of Giza, Heydar Aliyev Centre, sacred geometry, philosophy

Procedia PDF Downloads 87
1835 Spare Part Inventory Optimization Policy: A Study Literature

Authors: Zukhrof Romadhon, Nani Kurniati

Abstract:

Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenance

Procedia PDF Downloads 39
1834 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing

Authors: Daniel Phifer, Anna Prokhodtseva

Abstract:

DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.

Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell

Procedia PDF Downloads 192
1833 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh

Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun

Abstract:

Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.

Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization

Procedia PDF Downloads 152
1832 Drying Kinetics of Vacuum Dried Beef Meat Slices

Authors: Elif Aykin Dincer, Mustafa Erbas

Abstract:

The vacuum drying behavior of beef slices (10 x 4 x 0.2 cm3) was experimentally investigated at the temperature of 60, 70, and 80°C under 25 mbar ultimate vacuum pressure and the mathematical models (Lewis, Page, Midilli, Two-term, Wangh and Singh and Modified Henderson and Pabis) were used to fit the vacuum drying of beef slices. The increase in drying air temperature resulted in a decrease in drying time. It took approximately 206, 180 and 157 min to dry beef slices from an initial moisture content to a final moisture content of 0.05 kg water/kg dry matter at 60, 70 and 80 °C of vacuum drying, respectively. It is also observed that the drying rate increased with increasing drying temperature. The coefficients (R2), the reduced chi-square (x²) and root mean square error (RMSE) values were obtained by application of six models to the experimental drying data. The best model with the highest R2 and, the lowest x² and RMSE values was selected to describe the drying characteristics of beef slices. The Page model has shown a better fit to the experimental drying data as compared to other models. In addition, the effective moisture diffusivities of beef slices in the vacuum drying at 60 - 80 °C varied in the range of 1.05 – 1.09 x 10-10 m2/s. Consequently, this results can be used to simulate vacuum drying process of beef slices and improve efficiency of the drying process.

Keywords: beef slice, drying models, effective diffusivity, vacuum

Procedia PDF Downloads 275
1831 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study

Authors: Priya Kedia, Kiranmoy Das

Abstract:

There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.

Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution

Procedia PDF Downloads 145
1830 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 343