Search results for: fluid flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5781

Search results for: fluid flow

2481 Mueller Matrix Polarimetry for Analysis Scattering Biological Fluid Media

Authors: S. Cherif, A. Medjahed, M. Bouafia, A. Manallah

Abstract:

A light wave is characterized by 4 characteristics: its amplitude, its frequency, its phase and the direction of polarization of its luminous vector (the electric field). It is in this last characteristic that we will be interested. The polarization of the light was introduced in order to describe the vectorial behavior of the light; it describes the way in which the electric field evolves in a point of space. Our work consists in studying diffusing mediums. Different types of biological fluids were selected to study the evolution of each with increasing scattering power of the medium, and in the same time to make a comparison between them. When crossing these mediums, the light undergoes modifications and/or deterioration of its initial state of polarization. This phenomenon is related to the properties of the medium, the idea is to compare the characteristics of the entering and outgoing light from the studied medium by a white light. The advantage of this model is that it is experimentally accessible workable intensity measurements with CCD sensors and allows operation in 2D. The latter information is used to discriminate some physical properties of the studied areas. We chose four types of milk to study the evolution of each with increasing scattering power of the medium.

Keywords: light polarization, Mueller matrix, Mueller images, diffusing medium, milk

Procedia PDF Downloads 321
2480 Negative RT-PCR in a Newborn Infected with Zika Virus: A Case Report

Authors: Vallejo Michael, Acuña Edgar, Roa Juan David, Peñuela Rosa, Parra Alejandra, Casallas Daniela, Rodriguez Sheyla

Abstract:

Congenital Zika Virus Syndrome is an entity composed by a variety of birth defects presented in newborns that have been exposed to the Zika Virus during pregnancy. The syndrome characteristic features are severe microcephaly, cerebral tissue abnormalities, ophthalmological abnormalities such as uveitis and chorioretinitis, arthrogryposis, clubfoot deformity and muscular tone abnormalities. The confirmatory test is the Reverse transcription polymerase chain reaction (RT-PCR) associated to the physical findings. Here we present the case of a newborn with microcephaly whose mother presented a confirmed Zika Virus infection during the third trimester of pregnancy, despite of the evident findings and the history of Zika infection the RT-PCR in amniotic and cerebrospinal fluid of the newborn was negative. RT-PCR has demonstrated a low sensibility in samples with low viral loads, reason why, we propose a clinical diagnosis in patients with clinical history of Zika Virus infection during pregnancy accompanied by evident clinical manifestations of the child.

Keywords: congenital, Zika virus, microcephaly, reverse transcriptase polymerase chain reaction

Procedia PDF Downloads 189
2479 NSBS: Design of a Network Storage Backup System

Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan

Abstract:

The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.

Keywords: agent, network backup system, three architecture model, NSBS

Procedia PDF Downloads 445
2478 Experimental Investigation on Correlation Between Permeability Variation and Sabkha Soil Salts Dissolution

Authors: Fahad A. Alotaibi

Abstract:

An increase in salt dissolution rate with continuous water flow is expected to lead to the progressive collapse of the soil structure. Evaluation of the relationship between soil salt dissolution and the variation of sabkha soil permeability in terms of type, rate, and quantity in order to assure construction safety in these environments. The current study investigates the relationship of soil permeability with the rate of dissolution of calcium (Ca2+), sulfate (SO4-2), chloride (CL−1), magnesium (Mg2+), sodium (Na+), and potassium (K+1) ions. Results revealed an increase in sabkha soil permeability with the rate of ions dissolution. This makes the efficiency of using a waterproofing stabilization agent in the reduction of sabkha salts dissolution the main criterion is selecting suitable stabilizing method.

Keywords: sabkha, permeability, salts, dissolution

Procedia PDF Downloads 94
2477 Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids

Authors: Sameh Frikha, Mohamed Salah Abid

Abstract:

We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture.

Keywords: coefficient of performance, environment friendly zeotropic mixture, integrated cascade, ultra low temperature, vapor compression refrigeration cycles

Procedia PDF Downloads 247
2476 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: continuous production, magnetic nanoparticles, microfluidics, nanomaterials

Procedia PDF Downloads 572
2475 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 113
2474 Phase-Averaged Analysis of Three-Dimensional Vorticity in the Wake of Two Yawed Side-By-Side Circular Cylinders

Authors: T. Zhou, S. F. Mohd Razali, Y. Zhou, H. Wang, L. Cheng

Abstract:

The wake flow behind two yawed side-by-side circular cylinders is investigated using a three-dimensional vorticity probe. Four yaw angles (α), namely, 0°, 15°, 30° and 45° and two cylinder spacing ratios T* of 1.7 and 3.0 were tested. For T* = 3.0, there exist two vortex streets and the cylinders behave as independent and isolated ones. The maximum contour value of the coherent stream-wise vorticity is only about 10% of that of the spanwise vorticity. With the increase of α, increases whereas decreases. At α = 45°, is about 67% of. For T* = 1.7, only a single peak is detected in the energy spectrum. The span-wise vorticity contours have an organized pattern only at α = 0°. The maximum coherent vorticity contours of and for T* = 1.7 are about 30% and 7% of those for T* = 3.0. The independence principle (IP) in terms of Strouhal numbers is applicable in both wakes when α< 40°.

Keywords: circular cylinder wake, vorticity, vortex shedding, side-by-side

Procedia PDF Downloads 324
2473 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel

Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn

Abstract:

Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.

Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method

Procedia PDF Downloads 470
2472 Assessing the Blood-Brain Barrier (BBB) Permeability in PEA-15 Mutant Cat Brain using Magnetization Transfer (MT) Effect at 7T

Authors: Sultan Z. Mahmud, Emily C. Graff, Adil Bashir

Abstract:

Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is a multifunctional adapter protein which is associated with the regulation of apoptotic cell death. Recently it has been discovered that PEA-15 is crucial in normal neurodevelopment of domestic cats, a gyrencephalic animal model, although the exact function of PEA-15 in neurodevelopment is unknown. This study investigates how PEA-15 affects the blood-brain barrier (BBB) permeability in cat brain, which can cause abnormalities in tissue metabolite and energy supplies. Severe polymicrogyria and microcephaly have been observed in cats with a loss of function PEA-15 mutation, affecting the normal neurodevelopment of the cat. This suggests that the vital role of PEA-15 in neurodevelopment is associated with gyrification. Neurodevelopment is a highly energy demanding process. The mammalian brain depends on glucose as its main energy source. PEA-15 plays a very important role in glucose uptake and utilization by interacting with phospholipase D1 (PLD1). Mitochondria also plays a critical role in bioenergetics and essential to supply adequate energy needed for neurodevelopment. Cerebral blood flow regulates adequate metabolite supply and recent findings also showed that blood plasma contains mitochondria as well. So the BBB can play a very important role in regulating metabolite and energy supply in the brain. In this study the blood-brain permeability in cat brain was measured using MRI magnetization transfer (MT) effect on the perfusion signal. Perfusion is the tissue mass normalized supply of blood to the capillary bed. Perfusion also accommodates the supply of oxygen and other metabolites to the tissue. A fraction of the arterial blood can diffuse to the tissue, which depends on the BBB permeability. This fraction is known as water extraction fraction (EF). MT is a process of saturating the macromolecules, which has an effect on the blood that has been diffused into the tissue while having minimal effect on intravascular blood water that has not been exchanged with the tissue. Measurement of perfusion signal with and without MT enables to estimate the microvascular blood flow, EF and permeability surface area product (PS) in the brain. All the experiments were performed with Siemens 7T Magnetom with 32 channel head coil. Three control cats and three PEA-15 mutant cats were used for the study. Average EF in white and gray matter was 0.9±0.1 and 0.86±0.15 respectively, perfusion in white and gray matter was 85±15 mL/100g/min and 97±20 mL/100g/min respectively, PS in white and gray matter was 201±25 mL/100g/min and 225±35 mL/100g/min respectively for control cats. For PEA-15 mutant cats, average EF in white and gray matter was 0.81±0.15 and 0.77±0.2 respectively, perfusion in white and gray matter was 140±25 mL/100g/min and 165±18 mL/100g/min respectively, PS in white and gray matter was 240±30 mL/100g/min and 259±21 mL/100g/min respectively. This results show that BBB is compromised in PEA-15 mutant cat brain, where EF is decreased and perfusion as well as PS are increased in the mutant cats compared to the control cats. This findings might further explain the function of PEA-15 in neurodevelopment.

Keywords: BBB, cat brain, magnetization transfer, PEA-15

Procedia PDF Downloads 122
2471 Encapsulated Bioflavonoids: Nanotechnology Driven Food Waste Utilization

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits fall into the category of those commercially grown fruits that constitute an excellent repository of phytochemicals with health-promoting properties. Fruits belonging to the citrus family, when processed by industries, produce tons of agriculture by-products in the form of peels, pulp, and seeds, which normally have no further usage and are commonly discarded. In spite of this, such residues are of paramount importance due to their richness in valuable compounds; therefore, agro-waste is considered a valuable bioresource for various purposes in the food sector. A range of biological properties, including anti-oxidative, anti-cancerous, anti-inflammatory, anti-allergenicity, and anti-aging activity, have been reported for these bioactive compounds. Taking advantage of these inexpensive residual sources requires special attention to extract bioactive compounds. Mandarin (Citrus nobilis X Citrus deliciosa) is a potential source of bioflavonoids with antioxidant properties, and it is increasingly regarded as a functional food. Despite these benefits, flavonoids suffer from a barrier of pre-systemic metabolism in gastric fluid, which impedes their effectiveness. Therefore, colloidal delivery systems can completely overcome the barrier in question. This study involved the extraction and identification of key flavonoids from mandarin biomass. Using a green chemistry approach, supercritical fluid extraction at 330 bar, temperature 40C, and co-solvent 10% ethanol was employed for extraction, and the identification of flavonoids was made by mass spectrometry. As flavonoids are concerned with a limitation, the obtained extract was encapsulated in polylactic-co-glycolic acid (PLGA) matrix using a solvent evaporation method. Additionally, the antioxidant potential was evaluated by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. A release pattern of flavonoids was observed over time using simulated gastrointestinal fluids. From the results, it was observed that the total flavonoids extracted from the mandarin biomass were estimated to be 47.3 ±1.06 mg/ml rutin equivalents as total flavonoids. In the extract, significantly, polymethoxyflavones (PMFs), tangeretin and nobiletin were identified, followed by hesperetin and naringin. The designed flavonoid-PLGA nanoparticles exhibited a particle size between 200-250nm. In addition, the bioengineered nanoparticles had a high entrapment efficiency of nearly 80.0% and maintained stability for more than a year. Flavonoid nanoparticles showed excellent antioxidant activity with an IC50 of 0.55μg/ml. Morphological studies revealed the smooth and spherical shape of nanoparticles as visualized by Field emission scanning electron microscopy (FE-SEM). Simulated gastrointestinal studies of free extract and nanoencapsulation revealed the degradation of nearly half of the flavonoids under harsh acidic conditions in the case of free extract. After encapsulation, flavonoids exhibited sustained release properties, suggesting that polymeric encapsulates are efficient carriers of flavonoids. Thus, such technology-driven and biomass-derived products form the basis for their use in the development of functional foods with improved therapeutic potential and antioxidant properties. As a result, citrus processing waste can be considered a new resource that has high value and can be used for promoting its utilization.

Keywords: citrus, agrowaste, flavonoids, nanoparticles

Procedia PDF Downloads 109
2470 Stability and Rheology of Sodium Diclofenac-Loaded and Unloaded Palm Kernel Oil Esters Nanoemulsion Systems

Authors: Malahat Rezaee, Mahiran Basri, Raja Noor Zaliha Raja Abdul Rahman, Abu Bakar Salleh

Abstract:

Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that have been progressively considered in pharmaceutical science for transdermal delivery of drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils; contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research was aimed to study the effect of O/S ratio on stability and rheological behavior of sodium diclofenac loaded and unloaded palm kernel oil esters nanoemulsion systems. The effect of different O/S ratio of 0.25, 0.50, 0.75, 1.00 and 1.25 on stability of the drug-loaded and unloaded nanoemulsion formulations was evaluated by centrifugation, freeze-thaw cycle and storage stability tests. Lecithin and cremophor EL were used as surfactant. The stability of the prepared nanoemulsion formulations was assessed based on the change in zeta potential and droplet size as a function of time. Instability mechanisms including coalescence and Ostwald ripening for the nanoemulsion system were discussed. In comparison between drug-loaded and unloaded nanoemulsion formulations, drug-loaded formulations represented smaller particle size and higher stability. In addition, the O/S ratio of 0.5 was found to be the best ratio of oil and surfactant for production of a nanoemulsion with the highest stability. The effect of O/S ratio on rheological properties of drug-loaded and unloaded nanoemulsion systems was studied by plotting the flow curves of shear stress (τ) and viscosity (η) as a function of shear rate (γ). The data were fitted to the Power Law model. The results showed that all nanoemulsion formulations exhibited non-Newtonian flow behaviour by displaying shear thinning behaviour. Viscosity and yield stress were also evaluated. The nanoemulsion formulation with the O/S ratio of 0.5 represented higher viscosity and K values. In addition, the sodium diclofenac loaded formulations had more viscosity and higher yield stress than drug-unloaded formulations.

Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, rheoligy, stability

Procedia PDF Downloads 409
2469 iPSC-derived MSC Mediated Immunosuppression during Mouse Airway Transplantation

Authors: Mohammad Afzal Khan, Fatimah Alanazi, Hala Abdalrahman Ahmed, Talal Shamma, Kilian Kelly, Mohammed A. Hammad, Abdullah O. Alawad, Abdullah Mohammed Assiri, Dieter Clemens Broering

Abstract:

Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite the remarkable short-term recovery, long-term lung survival continues to face several significant challenges, including chronic rejection and severe toxic side-effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The Cymerus™ manufacturing facilitates the production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune-tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c→C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/ at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium and collagen deposition during rejection. We demonstrated that iPSC-derived MSC treatment leads to significant increase in tissue expression of hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post-transplantation. Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune-tolerance and rescue allograft from sustained hypoxic/ischemic phase and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.

Keywords: stem cell therapy, immunotolerance, regulatory T cells, hypoxia and ischemia, microvasculature

Procedia PDF Downloads 148
2468 Learn through AR (Augmented Reality)

Authors: Prajakta Musale, Bhargav Parlikar, Sakshi Parkhi, Anshu Parihar, Aryan Parikh, Diksha Parasharam, Parth Jadhav

Abstract:

AR technology is basically a development of VR technology that harnesses the power of computers to be able to read the surroundings and create projections of digital models in the real world for the purpose of visualization, demonstration, and education. It has been applied to education, fields of prototyping in product design, development of medical models, battle strategy in the military and many other fields. Our Engineering Design and Innovation (EDAI) project focuses on the usage of augmented reality, visual mapping, and 3d-visualization along with animation and text boxes to help students in fields of education get a rough idea of the concepts such as flow and mechanical movements that may be hard to visualize at first glance.

Keywords: spatial mapping, ARKit, depth sensing, real-time rendering

Procedia PDF Downloads 49
2467 Effect of Electromagnetic Fields on Protein Extraction from Shrimp By-Products for Electrospinning Process

Authors: Guido Trautmann-Sáez, Mario Pérez-Won, Vilbett Briones, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzáles-Cavieres

Abstract:

Shrimp by-products are a valuable source of protein. However, traditional protein extraction methods have limitations in terms of their efficiency. Protein extraction from shrimp (Pleuroncodes monodon) industrial by-products assisted with ohmic heating (OH), microwave (MW) and pulsed electric field (PEF). It was performed by chemical method (using NaOH and HCl 2M) assisted with OH, MW and PEF in a continuous flow system (5 ml/s). Protein determination, differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). Results indicate a 19.25% (PEF) 3.65% (OH) and 28.19% (MW) improvement in protein extraction efficiency. The most efficient method was selected for the electrospinning process and obtaining fiber.

Keywords: electrospinning process, emerging technology, protein extraction, shrimp by-products

Procedia PDF Downloads 70
2466 Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry

Authors: A. Ja, J. Belabid, A. Cheddadi

Abstract:

This paper reports the numerical simulation of double diffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.

Keywords: natural convection, double-diffusion, porous medium, annular geometry, finite differences

Procedia PDF Downloads 328
2465 Performance Evaluation of Thermosiphon Based Solar Water Heater in India

Authors: Dnyandip K. Bhamare, Manish K Rathod, Jyotirmay Banerjee

Abstract:

This paper aims to study performance of a thermosiphon solar water heating system with the help of the proposed analytical model. This proposed model predicts the temperature and mass flow rate in a thermosiphon solar water heating system depending on radiation intensity and ambient temperature. The performance of the thermosiphon solar water heating system is evaluated in the Indian context. For this, eight cities in India are selected considering radiation intensity and geographical positions. Predicted performance at various cities reveals the potential for thermosiphon solar water in India.

Keywords: solar water heater, collector outlet temperature, thermosyphon, India

Procedia PDF Downloads 239
2464 Thermodynamic Analysis of a Vapor Absorption System Using Modified Gouy-Stodola Equation

Authors: Gulshan Sachdeva, Ram Bilash

Abstract:

In this paper, the exergy analysis of vapor absorption refrigeration system using LiBr-H2O as working fluid is carried out with the modified Gouy-Stodola approach rather than the classical Gouy-Stodola equation and effect of varying input parameters is also studied on the performance of the system. As the modified approach uses the concept of effective temperature, the mathematical expressions for effective temperature have been formulated and calculated for each component of the system. Various constraints and equations are used to develop program in EES to solve these equations. The main aim of this analysis is to determine the performance of the system and the components having major irreversible loss. Results show that exergy destruction rate is considerable in absorber and generator followed by evaporator and condenser. There is an increase in exergy destruction in generator, absorber and condenser and decrease in the evaporator by the modified approach as compared to the conventional approach. The value of exergy determined by the modified Gouy Stodola equation deviates maximum i.e. 26% in the generator as compared to the exergy calculated by the classical Gouy-Stodola method.

Keywords: exergy analysis, Gouy-Stodola, refrigeration, vapor absorption

Procedia PDF Downloads 387
2463 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature

Authors: Ishak Hashim, Ammar Alsabery

Abstract:

The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.

Keywords: conjugate free convection, square cavity, nanofluid, spatial temperature

Procedia PDF Downloads 346
2462 Aerodynamic Analysis of Multiple Winglets for Aircrafts

Authors: S. Pooja Pragati, B. Sudarsan, S. Raj Kumar

Abstract:

This paper provides a practical design of a new concept of massive Induced Drag reductions of stream vise staggered multiple winglets. It is designed to provide an optimum performance of a winglet from conventional designs. In preparing for a mechanical design, aspects such as shape, dimensions are analyzed to yield a huge amount of reduction in fuel consumption and increased performance. Owing to its simplicity of application and effectiveness we believe that it will enable us to consider its enhanced version for the grid effect of the staggered multiple winglets on the deflected mass flow of the wing system. The objective of the analysis were to compare the aerodynamic characteristics of two winglet configuration and to investigate the performance of two winglets shape simulated at selected cant angle of 0,45,60 degree.

Keywords: multiple winglets, induced drag, aerodynamics analysis, low speed aircrafts

Procedia PDF Downloads 465
2461 Temperature Distribution Enhancement in a Conical Diffuser Fitted with Helical Screw-Tape with and without Center-Rod

Authors: Ehan Sabah Shukri, Wirachman Wisnoe

Abstract:

Temperature distribution investigation in a conical diffuser fitted with helical screw-tape with and without center-rod is studied numerically. A helical screw-tape is inserted in the diffuser to create swirl flow that helps to enhance the temperature distribution rate with inlet Reynolds number 4.3 x 104. Three pitch lengths ratios (Y/L = 0.153, 0.23 and 0.307) for the helical screw-tape with and without center-rod are simulated and compared. The geometry of the conical diffuser and the inlet condition for both arrangements are kept constant. Numerical findings show that the helical screw-tape inserts without center-rod perform significantly better than the helical tape inserts with center-rod in the conical diffuser.

Keywords: diffuser, temperature distribution, CFD, pitch ratio

Procedia PDF Downloads 396
2460 Microseismics: Application in Hydrocarbon Reservoir Management

Authors: Rahul Kumar Singh, Apurva Sharma, Dilip Kumar Srivastava

Abstract:

Tilting of our interest towards unconventional exploitation of hydrocarbons has raised a serious concern to environmentalists. Emerging technologies like horizontal/multi-lateral drilling with subsequent hydraulic fracturing or fracking etc., for exploitation of different conventional/unconventional hydrocarbon reservoirs, are related to creating micro-level seismic events below the surface of the earth. Monitoring of these micro-level seismic events is not possible by the conventional methodology of the seismic method. So, to tackle this issue, a new technology that is microseismic is very much in discussions around the globe. Multiple researches are being carried out these days around the globe in order to prove microseismic as a new essential in the E & P industry, especially for unconventional reservoir management. Microseismic monitoring is now used for reservoir surveillance, and the best application is checking the integrity of the caprock and containment of fluid in it. In general, in whatever terms we want to use micro-seismic related events monitoring and understanding the effectiveness of stimulation, this technology offers a lot of value in terms of insight into the subsurface characteristics and processes, and this makes it really a good geophysical method to be used in future.

Keywords: microseismic, monitoring, hydraulic fracturing or fracking, reservoir surveillance, seismic hazards

Procedia PDF Downloads 169
2459 Cytotoxicological Evaluation of a Folate Receptor Targeting Drug Delivery System Based on Cyclodextrins

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

For chemotherapy, a drug delivery system should be able to specifically target cancer cells and deliver the therapeutic dose without affecting normal cells. Folate receptors (FR) can be considered key targets since they are commonly over-expressed in cancer cells and they are the molecular marker used in this study. Here, cyclodextrin (CD) has being studied as a vehicle for delivering the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within the CD cavity. In this study, β-CD has been modified using folic acid so as to specifically target the FR molecular marker. Thus, the system studied here for drug delivery consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 9.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 10.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 8.5 for A549 and 132.6 µM ± 12.1 and 288.1 µM ± 16.3 for BEAS-2B. These results demonstrate that MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug.

Keywords: cyclodextrins, cancer treatment, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 292
2458 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis

Procedia PDF Downloads 366
2457 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.

Keywords: Pelamis, hinge, floating multibody, wave energy

Procedia PDF Downloads 456
2456 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films

Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost

Abstract:

In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.

Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate

Procedia PDF Downloads 106
2455 Design Channel Non Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC

Authors: Ibrahim A. Aref, Tarek El-Mihoub, Khadiga Ben Musa

Abstract:

This paper presents Carrier Sense Multiple Access (CSMA) communication model based on SoC design methodology. Such model can be used to support the modelling of the complex wireless communication systems, therefore use of such communication model is an important technique in the construction of high performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).

Keywords: systemC, modelling, simulation, CSMA

Procedia PDF Downloads 411
2454 Measures of Reliability and Transportation Quality on an Urban Rail Transit Network in Case of Links’ Capacities Loss

Authors: Jie Liu, Jinqu Cheng, Qiyuan Peng, Yong Yin

Abstract:

Urban rail transit (URT) plays a significant role in dealing with traffic congestion and environmental problems in cities. However, equipment failure and obstruction of links often lead to URT links’ capacities loss in daily operation. It affects the reliability and transport service quality of URT network seriously. In order to measure the influence of links’ capacities loss on reliability and transport service quality of URT network, passengers are divided into three categories in case of links’ capacities loss. Passengers in category 1 are less affected by the loss of links’ capacities. Their travel is reliable since their travel quality is not significantly reduced. Passengers in category 2 are affected by the loss of links’ capacities heavily. Their travel is not reliable since their travel quality is reduced seriously. However, passengers in category 2 still can travel on URT. Passengers in category 3 can not travel on URT because their travel paths’ passenger flow exceeds capacities. Their travel is not reliable. Thus, the proportion of passengers in category 1 whose travel is reliable is defined as reliability indicator of URT network. The transport service quality of URT network is related to passengers’ travel time, passengers’ transfer times and whether seats are available to passengers. The generalized travel cost is a comprehensive reflection of travel time, transfer times and travel comfort. Therefore, passengers’ average generalized travel cost is used as transport service quality indicator of URT network. The impact of links’ capacities loss on transport service quality of URT network is measured with passengers’ relative average generalized travel cost with and without links’ capacities loss. The proportion of the passengers affected by links and betweenness of links are used to determine the important links in URT network. The stochastic user equilibrium distribution model based on the improved logit model is used to determine passengers’ categories and calculate passengers’ generalized travel cost in case of links’ capacities loss, which is solved with method of successive weighted averages algorithm. The reliability and transport service quality indicators of URT network are calculated with the solution result. Taking Wuhan Metro as a case, the reliability and transport service quality of Wuhan metro network is measured with indicators and method proposed in this paper. The result shows that using the proportion of the passengers affected by links can identify important links effectively which have great influence on reliability and transport service quality of URT network; The important links are mostly connected to transfer stations and the passenger flow of important links is high; With the increase of number of failure links and the proportion of capacity loss, the reliability of the network keeps decreasing, the proportion of passengers in category 3 keeps increasing and the proportion of passengers in category 2 increases at first and then decreases; When the number of failure links and the proportion of capacity loss increased to a certain level, the decline of transport service quality is weakened.

Keywords: urban rail transit network, reliability, transport service quality, links’ capacities loss, important links

Procedia PDF Downloads 119
2453 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 38
2452 Effect of Geomagnetic Field on Motion of Conductor

Authors: Bharti Gupta, Alaukik Sharma

Abstract:

The first aim is to determine the effect of the Earth's magnetic field on the motion of a conductor to evaluate the variations of the orbital elements of the conductor due to these effects. The effects of Earth's magnetic field on the motion of conductors have been studied at different heights, longitudes and latitudes. When the conductor cut the geomagnetic line of force, then an electro-motive force (EMF) is induced across to the conductor. Due to this induced EMF, an induced current will flow through the conductor. Resulting, a Lorentz force will be applied on the conductor who opposes the motion of the conductor. So our second aim is to determine the accurate value of Induced EMF and induced Lorentz Force at different heights, longitudes and latitudes.

Keywords: induced EMF, Lorentz force, geomagnetic lines of force, moving conductor

Procedia PDF Downloads 142