Phase-Averaged Analysis of Three-Dimensional Vorticity in the Wake of Two Yawed Side-By-Side Circular Cylinders

Authors : T. Zhou, S. F. Mohd Razali, Y. Zhou, H. Wang, L. Cheng
Abstract : The wake flow behind two yawed side-by-side circular cylinders is investigated using a three-dimensional vorticity probe. Four yaw angles (α), namely, $0^{\circ}, 15^{\circ}, 30^{\circ}$ and 45° and two cylinder spacing ratios T^{*} of 1.7 and 3.0 were tested. For T^{*} $=3.0$, there exist two vortex streets and the cylinders behave as independent and isolated ones. The maximum contour value of the coherent stream-wise vorticity is only about 10% of that of the spanwise vorticity. With the increase of α, increases whereas decreases. At $\alpha=45^{\circ}$, is about 67% of. For $T^{*}=1.7$, only a single peak is detected in the energy spectrum. The span-wise vorticity contours have an organized pattern only at $\alpha=0^{\circ}$. The maximum coherent vorticity contours of and for $\mathrm{T}^{*}=1.7$ are about 30% and 7% of those for $T^{*}=3.0$. The independence principle (IP) in terms of Strouhal numbers is applicable in both wakes when $\alpha<40^{\circ}$.

Keywords : circular cylinder wake, vorticity, vortex shedding, side-by-side
Conference Title : ICFMTE 2014 : International Conference on Fluid Mechanics and Thermal Engineering
Conference Location : Zurich, Switzerland
Conference Dates : January 14-15, 2014

