Search results for: circuit models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7431

Search results for: circuit models

4131 Enabling Self-Care and Shared Decision Making for People Living with Dementia

Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan

Abstract:

People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.

Keywords: care goals, decision-making, dementia, self-care, sensors

Procedia PDF Downloads 170
4130 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 74
4129 Linear MIMO Model Identification Using an Extended Kalman Filter

Authors: Matthew C. Best

Abstract:

Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems.

Keywords: system identification, Kalman filter, linear model, MIMO, model order reduction

Procedia PDF Downloads 594
4128 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer

Authors: Feng-Sheng Wang, Chao-Ting Cheng

Abstract:

Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.

Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution

Procedia PDF Downloads 80
4127 An Improved Model of Estimation Global Solar Irradiation from in situ Data: Case of Oran Algeria Region

Authors: Houcine Naim, Abdelatif Hassini, Noureddine Benabadji, Alex Van Den Bossche

Abstract:

In this paper, two models to estimate the overall monthly average daily radiation on a horizontal surface were applied to the site of Oran (35.38 ° N, 0.37 °W). We present a comparison between the first one is a regression equation of the Angstrom type and the second model is developed by the present authors some modifications were suggested using as input parameters: the astronomical parameters as (latitude, longitude, and altitude) and meteorological parameters as (relative humidity). The comparisons are made using the mean bias error (MBE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute bias error (MABE). This comparison shows that the second model is closer to the experimental values that the model of Angstrom.

Keywords: meteorology, global radiation, Angstrom model, Oran

Procedia PDF Downloads 233
4126 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.

Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption

Procedia PDF Downloads 269
4125 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen

Abstract:

In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence

Procedia PDF Downloads 656
4124 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm

Authors: Vahid Bayrami Rad

Abstract:

Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.

Keywords: arduino board, artificial intelligence, image processing, solenoid lock

Procedia PDF Downloads 69
4123 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models

Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar

Abstract:

This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.

Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model

Procedia PDF Downloads 315
4122 Matrix Completion with Heterogeneous Cost

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: matroid optimization, matrix completion, linear algebra, algorithms

Procedia PDF Downloads 109
4121 MR-Implantology: Exploring the Use for Mixed Reality in Dentistry Education

Authors: Areej R. Banjar, Abraham G. Campbell

Abstract:

The use of Mixed Reality (MR) in teaching and training is growing popular and can improve students’ ability to perform technical procedures. This short paper outlines the creation of an interactive educational MR 3D application that aims to improve the quality of instruction for dentistry students. This application is called MRImplantology and aims to teach the fundamentals and preoperative planning of dental implant placement. MRImplantology uses cone-beam computed tomography (CBCT) images as the source for 3D dental models that dentistry students will be able to freely manipulate within a 3D MR world to aid their learning process.

Keywords: augmented reality, education, dentistry, cone-beam computed tomography CBCT, head mounted display HMD, mixed reality

Procedia PDF Downloads 190
4120 Becoming a Warrior: Conspiracy, Dramaturgy, and Follower Charisma on the Far Right

Authors: Anthony Albanese

Abstract:

While much of the literature concerning Max Weber’s concept of charisma has addressed the importance of the follower’s recognition of and devotion to the charismatic leader, very little has been said about the processes that lead to the development of follower charisma. This article examines this largely overlooked aspect of the concept, as doing so (1) exacts the dynamics behind charisma’s transferability by moving beyond follower-centric models that focus on the recognition of the leader and toward one that emphasizes the follower’s generation and exhibition of charisma, (2) bridges a crucial gap between the rather wanting “losers of modernization” thesis and the social actor’s proclivity to produce stories and self-cast in said stories, (3) presents authoritarian dispositions as a reaction to the weakening effects everydayness have on charisma, and (4) complicates Weber’s formulation by reassessing the role of continually demonstrable mastery. To illustrate these dynamics, one should turn to the January 6th Capitol attack in the United States.

Keywords: max weber, extremism, right-wing populism, charisma

Procedia PDF Downloads 92
4119 3D Mesh Coarsening via Uniform Clustering

Authors: Shuhua Lai, Kairui Chen

Abstract:

In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.

Keywords: coarsening, mesh clustering, shape approximation, mesh simplification

Procedia PDF Downloads 380
4118 Elasto-Plastic Analysis of Structures Using Adaptive Gaussian Springs Based Applied Element Method

Authors: Mai Abdul Latif, Yuntian Feng

Abstract:

Applied Element Method (AEM) is a method that was developed to aid in the analysis of the collapse of structures. Current available methods cannot deal with structural collapse accurately; however, AEM can simulate the behavior of a structure from an initial state of no loading until collapse of the structure. The elements in AEM are connected with sets of normal and shear springs along the edges of the elements, that represent the stresses and strains of the element in that region. The elements are rigid, and the material properties are introduced through the spring stiffness. Nonlinear dynamic analysis has been widely modelled using the finite element method for analysis of progressive collapse of structures; however, difficulties in the analysis were found at the presence of excessively deformed elements with cracking or crushing, as well as having a high computational cost, and difficulties on choosing the appropriate material models for analysis. The Applied Element method is developed and coded to significantly improve the accuracy and also reduce the computational costs of the method. The scheme works for both linear elastic, and nonlinear cases, including elasto-plastic materials. This paper will focus on elastic and elasto-plastic material behaviour, where the number of springs required for an accurate analysis is tested. A steel cantilever beam is used as the structural element for the analysis. The first modification of the method is based on the Gaussian Quadrature to distribute the springs. Usually, the springs are equally distributed along the face of the element, but it was found that using Gaussian springs, only up to 2 springs were required for perfectly elastic cases, while with equal springs at least 5 springs were required. The method runs on a Newton-Raphson iteration scheme, and quadratic convergence was obtained. The second modification is based on adapting the number of springs required depending on the elasticity of the material. After the first Newton Raphson iteration, Von Mises stress conditions were used to calculate the stresses in the springs, and the springs are classified as elastic or plastic. Then transition springs, springs located exactly between the elastic and plastic region, are interpolated between regions to strictly identify the elastic and plastic regions in the cross section. Since a rectangular cross-section was analyzed, there were two plastic regions (top and bottom), and one elastic region (middle). The results of the present study show that elasto-plastic cases require only 2 springs for the elastic region, and 2 springs for the plastic region. This showed to improve the computational cost, reducing the minimum number of springs in elasto-plastic cases to only 6 springs. All the work is done using MATLAB and the results will be compared to models of structural elements using the finite element method in ANSYS.

Keywords: applied element method, elasto-plastic, Gaussian springs, nonlinear

Procedia PDF Downloads 225
4117 Comparison Analysis of CFD Turbulence Fluid Numerical Study for Quick Coupling

Authors: JoonHo Lee, KyoJin An, JunSu Kim, Young-Chul Park

Abstract:

In this study, the fluid flow characteristics and performance numerical study through CFD model of the Non-split quick coupling for flow control in hydraulic system equipment for the aerospace business group focused to predict. In this study, we considered turbulence models for the application of Computational Fluid Dynamics for the CFD model of the Non-split Quick Coupling for aerospace business. In addition to this, the adequacy of the CFD model were verified by comparing with standard value. Based on this analysis, accurate the fluid flow characteristics can be predicted. It is, therefore, the design of the fluid flow characteristic contribute the reliability for the Quick Coupling which is required in industries on the basis of research results.

Keywords: CFD, FEM, quick coupling, turbulence

Procedia PDF Downloads 384
4116 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 9
4115 Urban City Centres: A Study of Centres and City Structure

Authors: B. Poorna Chander

Abstract:

Urban centre is one of the most important parts of the city where all the community activities take place. They are the active zones which enhance the structure of a city. The structure of the city refers to its form, mobility patterns, and concentration of people and lifestyles of people. The purpose of the research paper is to study how does the character or structure of city changes when a new centre is established. An attempt has been made to understand this by studying how the formation of centre has been changing the form or the structure of the city since the ancient times, what are the notions of a city and a centre by various architects, by studying the various models of the future city proposed by them. And then the data has been linked to how the formation of the new centres is changing the city. As the demands of the city are increasing, it also regulates how the new centres are formed. So both, the city and the centre are interdependent on each other.

Keywords: centre, activities, lifestyles, people, form

Procedia PDF Downloads 564
4114 Reliability of Intra-Logistics Systems – Simulating Performance Availability

Authors: Steffen Schieweck, Johannes Dregger, Sascha Kaczmarek, Michael ten Hompel

Abstract:

Logistics distributors face the issue of having to provide increasing service levels while being forced to reduce costs at the same time. Same-day delivery, quick order processing and rapidly growing ranges of articles are only some of the prevailing challenges. One key aspect of the performance of an intra-logistics system is how often and in which amplitude congestions and dysfunctions affect the processing operations. By gaining knowledge of the so called ‘performance availability’ of such a system during the planning stage, oversizing and wasting can be reduced whereas planning transparency is increased. State of the art for the determination of this KPI are simulation studies. However, their structure and therefore their results may vary unforeseeably. This article proposes a concept for the establishment of ‘certified’ and hence reliable and comparable simulation models.

Keywords: intra-logistics, performance availability, simulation, warehousing

Procedia PDF Downloads 454
4113 Enhancement Effect of Compound 4-Hydroxybenzoic Acid from Petung Bamboo (Dendrocalamus Asper) Shoots on α1β2γ2S of GABA (A) Receptor Expressed in Xenopus laevis Oocytes- Preliminary Study on Its Anti-Epileptic Potential

Authors: Muhammad Bilal, Amelia Jane Llyod, Habsah Mohamad, Jia Hui Wong, Abdul Aziz Mohamed Yusoff, Jafri Malin Abdullah, Jingli Zhang

Abstract:

Epilepsy is one of the major brain afflictions occurs with uncontrolled excitation of cortex; disturbed 50 million of world’s population. About 25 percent of patients subjected to adverse effects from antiepileptic drugs (AEDs) such as depression, nausea, tremors, gastrointestinal symptoms, osteoporosis, dizziness, weight change, drowsiness, fatigue are commonly observed indications; therefore, new drugs are required to cure epilepsy. GABA is principle inhibitory neurotransmitter, control excitation of the brain. Mutation or dysfunction of GABA receptor is one of the primary causes of epilepsy, which is confirmed from many acquired models of epilepsy like traumatic brain injury, kindling, and status epilepticus models of epilepsy. GABA receptor has 3 distinct types such as GABA (A), GABA (B), GABA(C).GABA (A) receptor has 20 different subunits, α1β2γ2 subunits composition of GABA (A) receptor is the most used combination of subunits for screening of compounds against epilepsy. We expressed α1β2γ2s subunits of GABA (A) Receptor in Xenopus leavis oocytes and examined the enhancement potential of 4-Hydroxybenzoic acid compound on GABA (A) receptor via two-electrode voltage clamp current recording technique. Bamboo shoots are the young, tender offspring of bamboo, which are usually harvested after a cultivating period of 2 weeks. Proteins, acids, fat, starch, carbohydrate, fatty acid, vitamin, dietary fiber, and minerals are the major constituent found systematically in bamboo shoots. These shoots reported to have anticancer, antiviral, antibacterial activity, also possess antioxidant properties due to the presence of phenolic compounds. Student t-test analysis suggested that 4- hydroxybenzoic acid positively allosteric GABA (A) receptor, increased normalized current amplitude to 1.0304±0.0464(p value 0.032) compared with vehicle. 4-Hydrobenzoic acid, a compound from Dendrocalamus Asper bamboo shoot gives new insights for future studies on bamboo shoots with motivation for extraction of more compounds to investigate their effects on human and rodents against epilepsy, insomnia, and anxiety.

Keywords: α1β2γ2S, antiepileptic, bamboo shoots, epilepsy GABA (A) receptor, two-microelectrode voltage clamp, xenopus laevis oocytes

Procedia PDF Downloads 405
4112 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 160
4111 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 141
4110 The Efficacy of Thymbra spicata Ethanolic Extract and its Main Component Carvacrol on In vitro Model of Metabolically-Associated Dysfunctions

Authors: Farah Diab, Mohamad Khalil, Francesca Storace, Francesca Baldini, Piero Portincasaa, Giulio Lupidi, Laura Vergani

Abstract:

Thymbra spicata is a thyme-like plant belonging to the Lamiaceae family that shows a global distribution, especially in the eastern Mediterranean region. Leaves of T. spicata contain large amounts of phenols such as phenolic acids (rosmarinic acid), phenolic monoterpenes (carvacrol), and flavonoids. In Lebanon, T. spicata is currently used as a culinary herb in salad and infusion, as well as for traditional medicinal purposes. Carvacrol (5-isopropyl-2-methyl phenol), the most abundant polyphenol in the organic extract and essential oils, has a great array of pharmacological properties. In fact, carvacrol is largely employed as a food additive and neutraceutical agent. Our aim is to investigate the beneficial effects of T. spicata ethanolic extract (TE) and its main component, carvacrol, using in vitro models of hepatic steatosis and endothelial dysfunction. As a further point, we focused on investigating if and how the binding of carvacrol to albumin, the physiological transporter for drugs in the blood, might be altered by the presence of high levels of fatty acids (FAs), thus impairing the carvacrol bio-distribution in vivo. For that reason, hepatic FaO cells treated with exogenous FAs such as oleate and palmitate mimic hepatosteatosis; endothelial HECV cells exposed to hydrogen peroxide are a model of endothelial dysfunction. In these models, we measured lipid accumulation, free radical production, lipoperoxidation, and nitric oxide release before and after treatment with carvacrol. The carvacrol binding to albumin with/without high levels of long-chain FAs was assessed by absorption and emission spectroscopies. Our findings show that both TE and carvacrol (i) counteracted lipid accumulation in hepatocytes by decreasing the intracellular and extracellular lipid contents in steatotic FaO cells; (ii) decreased oxidative stress in endothelial cells by significantly reducing lipoperoxidation and free radical production, as well as, attenuating the nitric oxide release; (ii) high levels of circulating FAs reduced the binding of carvacrol to albumin. The beneficial effects of TE and carvacrol on both hepatic and endothelial cells point to a nutraceutical potential. However, high levels of circulating FAs, such as those occurring in metabolic disorders, might hinder the carvacrol transport, bio-distribution, and pharmacodynamics.

Keywords: carvacrol, endothelial dysfunction, fatty acids, non-alcoholic fatty liver diseases, serum albumin

Procedia PDF Downloads 192
4109 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0

Authors: Harris Niavis, Dimitra Politaki

Abstract:

The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.

Keywords: blockchain, data quality, industry4.0, product quality

Procedia PDF Downloads 189
4108 Construction and Analysis of Samurai Sudoku

Authors: A. Danbaba

Abstract:

Samurai Sudoku consists of five Sudoku square designs each having nine treatments in each row (column or sub-block) only once such the five Sudoku designs overlaps. Two or more Samurai designs can be joint together to give an extended Samurai design. In addition, two Samurai designs, each containing five Sudoku square designs, are mutually orthogonal (Graeco). If we superimpose two Samurai designs and obtained a pair of Latin and Greek letters in each row (column or sub-block) of the five Sudoku designs only once, then we have Graeco Samurai design. In this paper, simple method of constructing Samurai designs and mutually orthogonal Samurai design are proposed. In addition, linear models and methods of data analysis for the designs are proposed.

Keywords: samurai design, graeco samurai design, sudoku design, row or column swap

Procedia PDF Downloads 268
4107 The Influence of the Concentration and Temperature on the Rheological Behavior of Carbonyl-Methylcellulose

Authors: Mohamed Rabhi, Kouider Halim Benrahou

Abstract:

The rheological properties of the carbonyl-methylcellulose (CMC), of different concentrations (25000, 50000, 60000, 80000 and 100000 ppm) and different temperatures were studied. We found that the rheological behavior of all CMC solutions presents a pseudo-plastic behavior, it follows the model of Ostwald-de Waele. The objective of this work is the modeling of flow by the CMC Cross model. The Cross model gives us the variation of the viscosity according to the shear rate. This model allowed us to adjust more clearly the rheological characteristics of CMC solutions. A comparison between the Cross model and the model of Ostwald was made. Cross the model fitting parameters were determined by a numerical simulation to make an approach between the experimental curve and those given by the two models. Our study has shown that the model of Cross, describes well the flow of "CMC" for low concentrations.

Keywords: CMC, rheological modeling, Ostwald model, cross model, viscosity

Procedia PDF Downloads 405
4106 Design, Implementation and Evaluation of Health and Social Justice Trainings in Nigeria

Authors: Juliet Sorensen, Anna Maitland

Abstract:

Introduction: Characterized by lack of water and sanitation, food insecurity, and low access to hospitals and clinics, informal urban settlements in Lagos, Nigeria have very poor health outcomes. With little education and a general inability to demand basic rights, these communities are often disempowered and isolated from understanding, claiming, or owning their health needs. Utilizing community-based participatory research characterized by interdisciplinary, cross-cultural partnerships, evidence-based assessments, and both primary and secondary source research, a holistic health education and advocacy program was developed in Lagos to address health barriers for targeted communities. This includes a first of its kind guide formulated to teach community-based health educators how to transmit health information to low-literacy Nigerian audiences while supporting behavior change models and social support mechanisms. This paper discusses the interdisciplinary contributions to developing a health education program while also looking at the need for greater beneficiary ownership and implementation of health justice and access. Methods: In March 2016, an interdisciplinary group of medical, legal, and business graduate students and faculty from Northwestern University conduced a Health Needs Assessment (HNA) in Lagos with a partner and a local non-governmental organization. The HNA revealed that members of informal urban communities in Lagos were lacking basic health literacy, but desired to remedy this lacuna. Further, the HNA revealed that even where the government mandates specific services, many vulnerable populations are unable to access these services. The HNA concluded that a program focused on education, advocacy, and organizing around anatomy, maternal and sexual health, infectious disease and malaria, HIV/AIDS, emergency care, and water and sanitation would respond to stated needs while also building capacity in communities to address health barriers. Results: Based on the HNA, including both primary and secondary source research on integrated health education approaches and behavior change models and responsive, adaptive material development, a holistic program was developed for the Lagos partners and first implemented in November 2016. This program trained community-nominated health educators in adult, low-literacy, knowledge exchange approaches, utilizing information identified by communities as a priority. After a second training in March 2017, these educators will teach community-based groups and will support and facilitate behavior change models and peer-support methods around basic issues like hand washing and disease transmission. They will be supported by community paralegals who will help ensure that newly trained community groups can act on education around access, such as receiving free vaccinations, maternal health care, and HIV/AIDS medicines. Materials will continue to be updated as needs and issues arise, with a focus on identifying best practices around health improvements that can be shared across these partner communities. Conclusion: These materials are the first of their kind, and address a void of health information and understanding pervasive in informal-urban Lagos communities. Initial feedback indicates high levels of commitment and interest, as well as investment by communities in these materials, largely because they are responsive, targeted, and build community capacity. This methodology is an important step in dignity-based health justice solutions, albeit in the process of refinement.

Keywords: community health educators, interdisciplinary and cross cultural partnerships, health justice and access, Nigeria

Procedia PDF Downloads 248
4105 Impact of Reclamation on the Water Exchange in Bohai Bay

Authors: Luyao Liu, Dekui Yuan, Xu Li

Abstract:

As one of the most important bays of China, the water exchange capacity of Bohai Bay can influence the economic development and urbanization of surrounding cities. However, the rapid reclamation has influenced the weak water exchange capacity of this semi-enclosed bay in recent years. This paper sets two hydrodynamic models of Bohai Bay with two shorelines before and after reclamation. The mean value and distribution of Turn-over Time, the distribution of residual current, and the feature of the tracer path are compared. After comparison, it is found that Bohai Bay keeps these characteristics; the spending time of water exchange in the northern is longer than southern, and inshore is longer than offshore. However, the mean water exchange time becomes longer after reclamation. In addition, the material spreading is blocked because of the inwardly extending shorelines, and the direction changed from along the shoreline to towards the center after reclamation.

Keywords: Bohai Bay, water exchange, reclamation, turn-over time

Procedia PDF Downloads 145
4104 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines

Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang

Abstract:

The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.

Keywords: biomass, geographic information system (GIS), remote sensing, renewable energy

Procedia PDF Downloads 481
4103 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 155
4102 Islamic Extremist Groups' Usage of Populism in Social Media to Radicalize Muslim Migrants in Europe

Authors: Muhammad Irfan

Abstract:

The rise of radicalization within Islam has spawned a new era of global terror. The battlefield Successes of ISIS and the Taliban are fuelled by an ideological war waged, largely and successfully, in the media arena. This research will examine how Islamic extremist groups are using media modalities and populist narratives to influence migrant Muslim populations in Europe towards extremism. In 2014, ISIS shocked the world in exporting horrifically graphic forms of violence on social media. Their Muslim support base was largely disgusted and reviled. In response, they reconfigured their narrative by introducing populist 'hooks', astutely portraying the Muslim populous as oppressed and exploited by unjust, corrupt autocratic regimes and Western power structures. Within this crucible of real and perceived oppression, hundreds of thousands of the most desperate, vulnerable and abused migrants left their homelands, risking their lives in the hope of finding peace, justice, and prosperity in Europe. Instead, many encountered social stigmatization, detention and/or discrimination for being illegal migrants, for lacking resources and for simply being Muslim. This research will examine how Islamic extremist groups are exploiting the disenfranchisement of these migrant populations and using populist messaging on social media to influence them towards violent extremism. ISIS, in particular, formulates specific encoded messages for newly-arriving Muslims in Europe, preying upon their vulnerability. Violence is posited, as a populist response, to the tyranny of European oppression. This research will analyze the factors and indicators which propel Muslim migrants along the spectrum from resilience to violence extremism. Expected outcomes are identification of factors which influence vulnerability towards violent extremism; an early-warning detection framework; predictive analysis models; and de-radicalization frameworks. This research will provide valuable tools (practical and policy level) for European governments, security stakeholders, communities, policy-makers, and educators; it is anticipated to contribute to a de-escalation of Islamic extremism globally.

Keywords: populism, radicalization, de-radicalization, social media, ISIS, Taliban, shariah, jihad, Islam, Europe, political communication, terrorism, migrants, refugees, extremism, global terror, predictive analysis, early warning detection, models, strategic communication, populist narratives, Islamic extremism

Procedia PDF Downloads 119