Search results for: 2nd generation
82 Optimizing Heavy-Duty Green Hydrogen Refueling Stations: A Techno-Economic Analysis of Turbo-Expander Integration
Authors: Christelle Rabbat, Carole Vouebou, Sary Awad, Alan Jean-Marie
Abstract:
Hydrogen has been proven to be a viable alternative to standard fuels as it is easy to produce and only generates water vapour and zero carbon emissions. However, despite the hydrogen benefits, the widespread adoption of hydrogen fuel cell vehicles and internal combustion engine vehicles is impeded by several challenges. The lack of refueling infrastructures remains one of the main hindering factors due to the high costs associated with their design, construction, and operation. Besides, the lack of hydrogen vehicles on the road diminishes the economic viability of investing in refueling infrastructure. Simultaneously, the absence of accessible refueling stations discourages consumers from adopting hydrogen vehicles, perpetuating a cycle of limited market uptake. To address these challenges, the implementation of adequate policies incentivizing the use of hydrogen vehicles and the reduction of the investment and operation costs of hydrogen refueling stations (HRS) are essential to put both investors and customers at ease. Even though the transition to hydrogen cars has been rather slow, public transportation companies have shown a keen interest in this highly promising fuel. Besides, their hydrogen demand is easier to predict and regulate than personal vehicles. Due to the reduced complexity of designing a suitable hydrogen supply chain for public vehicles, this sub-sector could be a great starting point to facilitate the adoption of hydrogen vehicles. Consequently, this study will focus on designing a chain of on-site green HRS for the public transportation network in Nantes Metropole leveraging the latest relevant technological advances aiming to reduce the costs while ensuring reliability, safety, and ease of access. To reduce the cost of HRS and encourage their widespread adoption, a network of 7 H35-T40 HRS has been designed, replacing the conventional J-T valves with turbo-expanders. Each station in the network has a daily capacity of 1,920 kg. Thus, the HRS network can produce up to 12.5 tH2 per day. The detailed cost analysis has revealed a CAPEX per station of 16.6 M euros leading to a network CAPEX of 116.2 M euros. The proposed station siting prioritized Nantes metropole’s 5 bus depots and included 2 city-centre locations. Thanks to the turbo-expander technology, the cooling capacity of the proposed HRS is 19% lower than that of a conventional station equipped with J-T valves, resulting in significant CAPEX savings estimated at 708,560 € per station, thus nearly 5 million euros for the whole HRS network. Besides, the turbo-expander power generation ranges from 7.7 to 112 kW. Thus, the power produced can be used within the station or sold as electricity to the main grid, which would, in turn, maximize the station’s profit. Despite the substantial initial investment required, the environmental benefits, cost savings, and energy efficiencies realized through the transition to hydrogen fuel cell buses and the deployment of HRS equipped with turbo-expanders offer considerable advantages for both TAN and Nantes Metropole. These initiatives underscore their enduring commitment to fostering green mobility and combatting climate change in the long term.Keywords: green hydrogen, refueling stations, turbo-expander, heavy-duty vehicles
Procedia PDF Downloads 5681 From Intuitive to Constructive Audit Risk Assessment: A Complementary Approach to CAATTs Adoption
Authors: Alon Cohen, Jeffrey Kantor, Shalom Levy
Abstract:
The use of the audit risk model in auditing has faced limitations and difficulties, leading auditors to rely on a conceptual level of its application. The qualitative approach to assessing risks has resulted in different risk assessments, affecting the quality of audits and decision-making on the adoption of CAATTs. This study aims to investigate risk factors impacting the implementation of the audit risk model and propose a complementary risk-based instrument (KRIs) to form substance risk judgments and mitigate against heightened risk of material misstatement (RMM). The study addresses the question of how risk factors impact the implementation of the audit risk model, improve risk judgments, and aid in the adoption of CAATTs. The study uses a three-stage scale development procedure involving a pretest and subsequent study with two independent samples. The pretest involves an exploratory factor analysis, while the subsequent study employs confirmatory factor analysis for construct validation. Additionally, the authors test the ability of the KRIs to predict audit efforts needed to mitigate against heightened RMM. Data was collected through two independent samples involving 767 participants. The collected data was analyzed using exploratory factor analysis and confirmatory factor analysis to assess scale validity and construct validation. The suggested KRIs, comprising two risk components and seventeen risk items, are found to have high predictive power in determining audit efforts needed to reduce RMM. The study validates the suggested KRIs as an effective instrument for risk assessment and decision-making on the adoption of CAATTs. This study contributes to the existing literature by implementing a holistic approach to risk assessment and providing a quantitative expression of assessed risks. It bridges the gap between intuitive risk evaluation and the theoretical domain, clarifying the mechanism of risk assessments. It also helps improve the uniformity and quality of risk assessments, aiding audit standard-setters in issuing updated guidelines on CAATT adoption. A few limitations and recommendations for future research should be mentioned. First, the process of developing the scale was conducted in the Israeli auditing market, which follows the International Standards on Auditing (ISAs). Although ISAs are adopted in European countries, for greater generalization, future studies could focus on other countries that adopt additional or local auditing standards. Second, this study revealed risk factors that have a material impact on the assessed risk. However, there could be additional risk factors that influence the assessment of the RMM. Therefore, future research could investigate other risk segments, such as operational and financial risks, to bring a broader generalizability to our results. Third, although the sample size in this study fits acceptable scale development procedures and enables drawing conclusions from the body of research, future research may develop standardized measures based on larger samples to reduce the generation of equivocal results and suggest an extended risk model.Keywords: audit risk model, audit efforts, CAATTs adoption, key risk indicators, sustainability
Procedia PDF Downloads 7780 Influence of Cryo-Grinding on Antioxidant Activity and Amount of Free Phenolic Acids, Rutin and Tyrosol in Whole Grain Buckwheat and Pumpkin Seed Cake
Authors: B. Voucko, M. Benkovic, N. Cukelj, S. Drakula, D. Novotni, S. Balbino, D. Curic
Abstract:
Oxidative stress is considered as one of the causes leading to metabolic disorders in humans. Therefore, the ability of antioxidants to inhibit free radical production is their primary role in the human organism. Antioxidants originating from cereals, especially flavonoids and polyphenols, are mostly bound and indigestible. Micronization damages the cell wall which consecutively results in bioactive material to be more accessible in vivo. In order to ensure complete fragmentation, micronization is often combined with high temperatures (e.g., for bran 200°C) which can lead to degradation of bioactive compounds. The innovative non-thermal technology of cryo-milling is an ultra-fine micronization method that uses liquid nitrogen (LN2) at a temperature of 195°C to freeze and cool the sample during milling. Freezing at such low temperatures causes the material to become brittle which ensures the generation of fine particles while preserving the bioactive content of the material. The aim of this research was to determine if production of ultra-fine material with cryo-milling will result in the augmentation of available bioactive compounds of buckwheat and pumpkin seed cake. For that reason, buckwheat and pumpkin seed cake were ground in a ball mill (CryoMill, Retch, Germany) with and without the use of LN2 for 8 minutes, in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm) at an oscillation frequency of 30 Hz. The cryo-milled samples were cooled with LN2 for 2 minutes prior to milling, followed by the first cycle of milling (4 minutes), intermediary cooling (2 minutes), and finally the second cycle of milling (further 4 minutes). A continuous process of milling was applied to the samples ground without freezing with LN2. Particle size distribution was determined using the Scirocco 2000 dry dispersion unit (Malvern Instruments, UK). Antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test and ferric reducing antioxidant power (FRAP) assay, while the total phenol content was determined using the Folin Ciocalteu method, using the ultraviolet-visible spectrophotometer (Specord 50 Plus, Germany). The content of the free phenolic acids, rutin in buckwheat, tyrosol in pumpkin seed cake, was determined with an HPLC-PDA method (Agilent 1200 series, Germany). Cryo-milling resulted in 11 times smaller size of buckwheat particles, and 3 times smaller size of pumpkin seed particles than milling without the use of LN2, but also, a lower uniformity of the particle size distribution. Lack of freezing during milling of pumpkin seed cake caused a formation of agglomerates due to its high-fat content (21 %). Cryo-milling caused augmentation of buckwheat flour antioxidant activity measured by DPPH test (23,9%) and an increase in available rutin content (14,5%). Also, it resulted in an augmentation of the total phenol content (36,9%) and available tyrosol content (12,5%) of pumpkin seed cake. Antioxidant activity measured with the FRAP test, as well as the content of phenolic acids remained unchanged independent of the milling process. The results of this study showed the potential of cryo-milling for complete raw material utilization in the food industry, as well as a tool for extraction of aimed bioactive components.Keywords: bioactive, ball-mill, buckwheat, cryo-milling, pumpkin seed cake
Procedia PDF Downloads 13079 Metabolic Changes during Reprogramming of Wheat and Triticale Microspores
Authors: Natalia Hordynska, Magdalena Szechynska-Hebda, Miroslaw Sobczak, Elzbieta Rozanska, Joanna Troczynska, Zofia Banaszak, Maria Wedzony
Abstract:
Albinism is a common problem encountered in wheat and triticale breeding programs, which require in vitro culture steps e.g. generation of doubled haploids via androgenesis process. Genetic factor is a major determinant of albinism, however, environmental conditions such as temperature and media composition influence the frequency of albino plant formation. Cold incubation of wheat and triticale spikes induced a switch from gametophytic to sporophytic development. Further, androgenic structures formed from anthers of the genotypes susceptible to androgenesis or treated with cold stress, had a pool of structurally primitive plastids, with small starch granules or swollen thylakoids. High temperature was a factor inducing andro-genesis of wheat and triticale, but at the same time, it was a factor favoring the formation of albino plants. In genotypes susceptible to albinism or after heat stress conditions, cells formed from anthers were vacuolated, and plastids were eliminated. Partial or complete loss of chlorophyll pigments and incomplete differentiation of chloroplast membranes result in formation of tissues or whole plant unable to perform photosynthesis. Indeed, susceptibility to the andro-genesis process was associated with an increase of total concentration of photosynthetic pigments in anthers, spikes and regenerated plants. The proper balance of the synthesis of various pigments, was the starting point for their proper incorporation into photosynthetic membranes. In contrast, genotypes resistant to the androgenesis process and those treated with heat, contained 100 times lower content of photosynthetic pigments. In particular, the synthesis of violaxanthin, zeaxanthin, lutein and chlorophyll b was limited. Furthermore, deregulation of starch and lipids synthesis, which led to the formation of very complex starch granules and an increased number of oleosomes, respectively, correlated with the reduction of the efficiency of androgenesis. The content of other sugars varied depending on the genotype and the type of stress. The highest content of various sugars was found for genotypes susceptible to andro-genesis, and highly reduced for genotypes resistant to androgenesis. The most important sugars seem to be glucose and fructose. They are involved in sugar sensing and signaling pathways, which affect the expression of various genes and regulate plant development. Sucrose, on the other hand, seems to have minor effect at each stage of the androgenesis. The sugar metabolism was related to metabolic activity of microspores. The genotypes susceptible to androgenesis process had much faster mitochondrium- and chloroplast-dependent energy conversion and higher heat production by tissues. Thus, the effectiveness of metabolic processes, their balance and the flexibility under the stress was a factor determining the direction of microspore development, and in the later stages of the androgenesis process, a factor supporting the induction of androgenic structures, chloroplast formation and the regeneration of green plants. The work was financed by Ministry of Agriculture and Rural Development within Program: ‘Biological Progress in Plant Production’, project no HOR.hn.802.15.2018.Keywords: androgenesis, chloroplast, metabolism, temperature stress
Procedia PDF Downloads 26078 Development and Implementation of An "Electric Island" Monitoring Infrastructure for Promoting Energy Efficiency in Schools
Authors: Vladislav Grigorovitch, Marina Grigorovitch, David Pearlmutter, Erez Gal
Abstract:
The concept of “electric island” is involved with achieving the balance between the self-power generation ability of each educational institution and energy consumption demand. Photo-Voltaic (PV) solar system installed on the roofs of educational buildings is a common way to absorb the available solar energy and generate electricity for self-consumption and even for returning to the grid. The main objective of this research is to develop and implement an “electric island” monitoring infrastructure for promoting energy efficiency in educational buildings. A microscale monitoring methodology will be developed to provide a platform to estimate energy consumption performance classified by rooms and subspaces rather than the more common macroscale monitoring of the whole building. The monitoring platform will be established on the experimental sites, enabling an estimation and further analysis of the variety of environmental and physical conditions. For each building, separate measurement configurations will be applied taking into account the specific requirements, restrictions, location and infrastructure issues. The direct results of the measurements will be analyzed to provide deeper understanding of the impact of environmental conditions and sustainability construction standards, not only on the energy demand of public building, but also on the energy consumption habits of the children that study in those schools and the educational and administrative staff that is responsible for providing the thermal comfort conditions and healthy studying atmosphere for the children. A monitoring methodology being developed in this research is providing online access to real-time data of Interferential Therapy (IFTs) from any mobile phone or computer by simply browsing the dedicated website, providing powerful tools for policy makers for better decision making while developing PV production infrastructure to achieve “electric islands” in educational buildings. A detailed measurement configuration was technically designed based on the specific conditions and restriction of each of the pilot buildings. A monitoring and analysis methodology includes a large variety of environmental parameters inside and outside the schools to investigate the impact of environmental conditions both on the energy performance of the school and educational abilities of the children. Indoor measurements are mandatory to acquire the energy consumption data, temperature, humidity, carbon dioxide and other air quality conditions in different parts of the building. In addition to that, we aim to study the awareness of the users to the energy consideration and thus the impact on their energy consumption habits. The monitoring of outdoor conditions is vital for proper design of the off-grid energy supply system and validation of its sufficient capacity. The suggested outcomes of this research include: 1. both experimental sites are designed to have PV production and storage capabilities; 2. Developing an online information feedback platform. The platform will provide consumer dedicated information to academic researchers, municipality officials and educational staff and students; 3. Designing an environmental work path for educational staff regarding optimal conditions and efficient hours for operating air conditioning, natural ventilation, closing of blinds, etc.Keywords: sustainability, electric island, IOT, smart building
Procedia PDF Downloads 17977 Bio-Inspired Information Complexity Management: From Ant Colony to Construction Firm
Authors: Hamza Saeed, Khurram Iqbal Ahmad Khan
Abstract:
Effective information management is crucial for any construction project and its success. Primary areas of information generation are either the construction site or the design office. There are different types of information required at different stages of construction involving various stakeholders creating complexity. There is a need for effective management of information flows to reduce uncertainty creating complexity. Nature provides a unique perspective in terms of dealing with complexity, in particular, information complexity. System dynamics methodology provides tools and techniques to address complexity. It involves modeling and simulation techniques that help address complexity. Nature has been dealing with complex systems since its creation 4.5 billion years ago. It has perfected its system by evolution, resilience towards sudden changes, and extinction of unadaptable and outdated species that are no longer fit for the environment. Nature has been accommodating the changing factors and handling complexity forever. Humans have started to look at their natural counterparts for inspiration and solutions for their problems. This brings forth the possibility of using a biomimetics approach to improve the management practices used in the construction sector. Ants inhabit different habitats. Cataglyphis and Pogonomyrmex live in deserts, Leafcutter ants reside in rainforests, and Pharaoh ants are native to urban developments of tropical areas. Detailed studies have been done on fifty species out of fourteen thousand discovered. They provide the opportunity to study the interactions in diverse environments to generate collective behavior. Animals evolve to better adapt to their environment. The collective behavior of ants emerges from feedback through interactions among individuals, based on a combination of three basic factors: The patchiness of resources in time and space, operating cost, environmental stability, and the threat of rupture. If resources appear in patches through time and space, the response is accelerating and non-linear, and if resources are scattered, the response follows a linear pattern. If the acquisition of energy through food is faster than energy spent to get it, the default is to continue with an activity unless it is halted for some reason. If the energy spent is rather higher than getting it, the default changes to stay put unless activated. Finally, if the environment is stable and the threat of rupture is low, the activation and amplification rate is slow but steady. Otherwise, it is fast and sporadic. To further study the effects and to eliminate the environmental bias, the behavior of four different ant species were studied, namely Red Harvester ants (Pogonomyrmex Barbatus), Argentine ants (Linepithema Humile), Turtle ants (Cephalotes Goniodontus), Leafcutter ants (Genus: Atta). This study aims to improve the information system in the construction sector by providing a guideline inspired by nature with a systems-thinking approach, using system dynamics as a tool. Identified factors and their interdependencies were analyzed in the form of a causal loop diagram (CLD), and construction industry professionals were interviewed based on the developed CLD, which was validated with significance response. These factors and interdependencies in the natural system corresponds with the man-made systems, providing a guideline for effective use and flow of information.Keywords: biomimetics, complex systems, construction management, information management, system dynamics
Procedia PDF Downloads 13776 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools
Authors: M. Radunovic
Abstract:
Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management
Procedia PDF Downloads 10975 Predicting Career Adaptability and Optimism among University Students in Turkey: The Role of Personal Growth Initiative and Socio-Demographic Variables
Authors: Yagmur Soylu, Emir Ozeren, Erol Esen, Digdem M. Siyez, Ozlem Belkis, Ezgi Burc, Gülce Demirgurz
Abstract:
The aim of the study is to determine the predictive power of personal growth initiative, socio-demographic variables (such as sex, grade, and working condition) on career adaptability and optimism of bachelor students in Dokuz Eylul University in Turkey. According to career construction theory, career adaptability is viewed as a psychosocial construct, which refers to an individual’s resources for dealing with current and expected tasks, transitions and traumas in their occupational roles. Career optimism is defined as positive results for future career development of individuals in the expectation that it will achieve or to put the emphasis on the positive aspects of the event and feel comfortable about the career planning process. Personal Growth Initiative (PGI) is defined as being proactive about one’s personal development. Additionally, personal growth is defined as the active and intentional engagement in the process of personal. A study conducted on college students revealed that individuals with high self-development orientation make more effort to discover the requirements of the profession and workspaces than individuals with low levels of personal development orientation. University life is a period that social relations and the importance of academic activities are increased, the students make efforts to progress through their career paths and it is also an environment that offers opportunities to students for their self-realization. For these reasons, personal growth initiative is potentially an important variable which has a key role for an individual during the transition phase from university to the working life. Based on the review of the literature, it is expected that individual’s personal growth initiative, sex, grade, and working condition would significantly predict one’s career adaptability. In the relevant literature, it can be seen that there are relatively few studies available on the career adaptability and optimism of university students. Most of the existing studies have been carried out with limited respondents. In this study, the authors aim to conduct a comprehensive research with a large representative sample of bachelor students in Dokuz Eylul University, Izmir, Turkey. By now, personal growth initiative and career development constructs have been predominantly discussed in western contexts where individualistic tendencies are likely to be seen. Thus, the examination of the same relationship within the context of Turkey where collectivistic cultural characteristics can be more observed is expected to offer valuable insights and provide an important contribution to the literature. The participants in this study were comprised of 1500 undergraduate students being included from thirteen faculties in Dokuz Eylul University. Stratified and random sampling methods were adopted for the selection of the participants. The Personal Growth Initiative Scale-II and Career Futures Inventory were used as the major measurement tools. In data analysis stage, several statistical analysis concerning the regression analysis, one-way ANOVA and t-test will be conducted to reveal the relationships of the constructs under investigation. At the end of this project, we will be able to determine the level of career adaptability and optimism of university students at varying degrees so that a fertile ground is likely to be created to carry out several intervention techniques to make a contribution to an emergence of a healthier and more productive youth generation in psycho-social sense.Keywords: career optimism, career adaptability, personal growth initiative, university students
Procedia PDF Downloads 42174 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells
Authors: Salvatore Brischetto, Domenico Cesare
Abstract:
Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach
Procedia PDF Downloads 6773 The Use of Modern Technologies and Computers in the Archaeological Surveys of Sistan in Eastern Iran
Authors: Mahyar MehrAfarin
Abstract:
The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.Keywords: Iran, sistan, archaeological surveys, computer use, modern technologies
Procedia PDF Downloads 7972 Food Processing Technology and Packaging: A Case Study of Indian Cashew-Nut Industry
Authors: Parashram Jakappa Patil
Abstract:
India is the global leader in world cashew business and cashew-nut industry is one of the important food processing industries in world. However India is the largest producer, processor, exporter and importer eschew in the world. India is providing cashew to the rest of the world. India is meeting world demand of cashew. India has a tremendous potential of cashew production and export to other countries. Every year India earns more than 2000 cores rupees through cashew trade. Cashew industry is one of the important small scale industries in the country which is playing significant role in rural development. It is generating more than 400000 jobs at remote area and 95% cashew worker are women, it is giving income to poor cashew farmers, majority cashew processing units are small and cottage, it is helping to stop migration from young farmers for employment opportunities, it is motivation rural entrepreneurship development and it is also helping to environment protection etc. Hence India cashew business is very important agribusiness in India which has potential make inclusive development. World Bank and IMF recognized cashew-nut industry is one the important tool for poverty eradication at global level. It shows important of cashew business and its strong existence in India. In spite of such huge potential cashew processing industry is facing different problems such as lack of infrastructure ability, lack of supply of raw cashew, lack of availability of finance, collection of raw cashew, unavailability of warehouse, marketing of cashew kernels, lack of technical knowledge and especially processing technology and packaging of finished products. This industry has great prospects such as scope for more cashew cultivation and cashew production, employment generation, formation of cashew processing units, alcohols production from cashew apple, shield oil production, rural development, poverty elimination, development of social and economic backward class and environment protection etc. This industry has domestic as well as foreign market; India has tremendous potential in this regard. The cashew is a poor men’s crop but rich men’s food. The cashew is a source of income and livelihood for poor farmers. Cashew-nut industry may play very important role in the development of hilly region. The objectives of this paper are to identify problems of cashew processing and use of processing technology, problems of cashew kernel packaging, evolving of cashew processing technology over the year and its impact on final product and impact of good processing by adopting appropriate technology packaging on international trade of cashew-nut. The most important problem of cashew processing industry is that is processing and packaging. Bad processing reduce the quality of cashew kernel at large extent especially broken of cashew kernel which has very less price in market compare to whole cashew kernel and not eligible for export. On the other hand if there is no good packaging of cashew kernel will get moisture which destroy test of it. International trade of cashew-nut is depend of two things one is cashew processing and other is packaging. This study has strong relevance because cashew-nut industry is the labour oriented, where processing technology is not playing important role because 95% processing work is manual. Hence processing work was depending on physical performance of worker which makes presence of large workforce inevitable. There are many cashew processing units closed because they are not getting sufficient work force. However due to advancement in technology slowly this picture is changing and processing work get improve. Therefore it is interesting to explore all the aspects in context of cashew processing and packaging of cashew business.Keywords: cashew, processing technology, packaging, international trade, change
Procedia PDF Downloads 42271 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering
Authors: Emre Kara, Ali Kurşun, Halil Aykul
Abstract:
The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application
Procedia PDF Downloads 34070 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach
Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino
Abstract:
The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3 0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.
Procedia PDF Downloads 4169 Broad Host Range Bacteriophage Cocktail for Reduction of Staphylococcus aureus as Potential Therapy for Atopic Dermatitis
Authors: Tamar Lin, Nufar Buchshtab, Yifat Elharar, Julian Nicenboim, Rotem Edgar, Iddo Weiner, Lior Zelcbuch, Ariel Cohen, Sharon Kredo-Russo, Inbar Gahali-Sass, Naomi Zak, Sailaja Puttagunta, Merav Bassan
Abstract:
Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that is characterized by dry skin and flares of eczematous lesions and intense pruritus. Multiple lines of evidence suggest that AD is associated with increased colonization by Staphylococcus aureus, which contributes to disease pathogenesis through the release of virulence factors that affect both keratinocytes and immune cells, leading to disruption of the skin barrier and immune cell dysfunction. The aim of the current study is to develop a bacteriophage-based product that specifically targets S. aureus. Methods: For the discovery of phage, environmental samples were screened on 118 S. aureus strains isolated from skin samples, followed by multiple enrichment steps. Natural phages were isolated, subjected to Next-generation Sequencing (NGS), and analyzed using proprietary bioinformatics tools for undesirable genes (toxins, antibiotic resistance genes, lysogeny potential), taxonomic classification, and purity. Phage host range was determined by an efficiency of plating (EOP) value above 0.1 and the ability of the cocktail to completely lyse liquid bacterial culture under different growth conditions (e.g., temperature, bacterial stage). Results: Sequencing analysis demonstrated that the 118 S. aureus clinical strains were distributed across the phylogenetic tree of all available Refseq S. aureus (~10,750 strains). Screening environmental samples on the S. aureus isolates resulted in the isolation of 50 lytic phages from different genera, including Silviavirus, Kayvirus, Podoviridae, and a novel unidentified phage. NGS sequencing confirmed the absence of toxic elements in the phages’ genomes. The host range of the individual phages, as measured by the efficiency of plating (EOP), ranged between 41% (48/118) to 79% (93/118). Host range studies in liquid culture revealed that a subset of the phages can infect a broad range of S. aureus strains in different metabolic states, including stationary state. Combining the single-phage EOP results of selected phages resulted in a broad host range cocktail which infected 92% (109/118) of the strains. When tested in vitro in a liquid infection assay, clearance was achieved in 87% (103/118) of the strains, with no evidence of phage resistance throughout the study (24 hours). A S. aureus host was identified that can be used for the production of all the phages in the cocktail at high titers suitable for large-scale manufacturing. This host was validated for the absence of contaminating prophages using advanced NGS methods combined with multiple production cycles. The phages are produced under optimized scale-up conditions and are being used for the development of a topical formulation (BX005) that may be administered to subjects with atopic dermatitis. Conclusions: A cocktail of natural phages targeting S. aureus was effective in reducing bacterial burden across multiple assays. Phage products may offer safe and effective steroid-sparing options for atopic dermatitis.Keywords: atopic dermatitis, bacteriophage cocktail, host range, Staphylococcus aureus
Procedia PDF Downloads 15368 Implementation of a Web-Based Clinical Outcomes Monitoring and Reporting Platform across the Fortis Network
Authors: Narottam Puri, Bishnu Panigrahi, Narayan Pendse
Abstract:
Background: Clinical Outcomes are the globally agreed upon, evidence-based measurable changes in health or quality of life resulting from the patient care. Reporting of outcomes and its continuous monitoring provides an opportunity for both assessing and improving the quality of patient care. In 2012, International Consortium Of HealthCare Outcome Measurement (ICHOM) was founded which has defined global Standard Sets for measuring the outcome of various treatments. Method: Monitoring of Clinical Outcomes was identified as a pillar of Fortis’ core value of Patient Centricity. The project was started as an in-house developed Clinical Outcomes Reporting Portal by the Fortis Medical IT team. Standard sets of Outcome measurement developed by ICHOM were used. A pilot was run at Fortis Escorts Heart Institute from Aug’13 – Dec’13.Starting Jan’14, it was implemented across 11 hospitals of the group. The scope was hospital-wide and major clinical specialties: Cardiac Sciences, Orthopedics & Joint Replacement were covered. The internally developed portal had its limitations of report generation and also capturing of Patient related outcomes was restricted. A year later, the company provisioned for an ICHOM Certified Software product which could provide a platform for data capturing and reporting to ensure compliance with all ICHOM requirements. Post a year of the launch of the software; Fortis Healthcare has become the 1st Healthcare Provider in Asia to publish Clinical Outcomes data for the Coronary Artery Disease Standard Set comprising of Coronary Artery Bypass Graft and Percutaneous Coronary Interventions) in the public domain. (Jan 2016). Results: This project has helped in firmly establishing a culture of monitoring and reporting Clinical Outcomes across Fortis Hospitals. Given the diverse nature of the healthcare delivery model at Fortis Network, which comprises of hospitals of varying size and specialty-mix and practically covering the entire span of the country, standardization of data collection and reporting methodology is a huge achievement in itself. 95% case reporting was achieved with more than 90% data completion at the end of Phase 1 (March 2016). Post implementation the group now has one year of data from its own hospitals. This has helped identify the gaps and plan towards ways to bridge them and also establish internal benchmarks for continual improvement. Besides the value created for the group includes: 1. Entire Fortis community has been sensitized on the importance of Clinical Outcomes monitoring for patient centric care. Initial skepticism and cynicism has been countered by effective stakeholder engagement and automation of processes. 2. Measuring quality is the first step in improving quality. Data analysis has helped compare clinical results with best-in-class hospitals and identify improvement opportunities. 3. Clinical fraternity is extremely pleased to be part of this initiative and has taken ownership of the project. Conclusion: Fortis Healthcare is the pioneer in the monitoring of Clinical Outcomes. Implementation of ICHOM standards has helped Fortis Clinical Excellence Program in improving patient engagement and strengthening its commitment to its core value of Patient Centricity. Validation and certification of the Clinical Outcomes data by an ICHOM Certified Supplier adds confidence to its claim of being leaders in this space.Keywords: clinical outcomes, healthcare delivery, patient centricity, ICHOM
Procedia PDF Downloads 23667 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection
Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément
Abstract:
The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars
Procedia PDF Downloads 11766 Synthesis and Properties of Poly(N-(sulfophenyl)aniline) Nanoflowers and Poly(N-(sulfophenyl)aniline) Nanofibers/Titanium dioxide Nanoparticles by Solid Phase Mechanochemical and Their Application in Hybrid Solar Cell
Authors: Mazaher Yarmohamadi-Vasel, Ali Reza Modarresi-Alama, Sahar Shabzendedara
Abstract:
Purpose/Objectives: The first purpose was synthesize Poly(N-(sulfophenyl)aniline) nanoflowers (PSANFLs) and Poly(N-(sulfophenyl)aniline) nanofibers/titanium dioxide nanoparticles ((PSANFs/TiO2NPs) by a solid-state mechano-chemical reaction and template-free method and use them in hybrid solar cell. Also, our second aim was to increase the solubility and the processability of conjugated nanomaterials in water through polar functionalized materials. poly[N-(4-sulfophenyl)aniline] is easily soluble in water because of the presence of polar groups of sulfonic acid in the polymer chain. Materials/Methods: Iron (III) chloride hexahydrate (FeCl3∙6H2O) were bought from Merck Millipore Company. Titanium oxide nanoparticles (TiO2, <20 nm, anatase) and Sodium diphenylamine-4-sulfonate (99%) were bought from Sigma-Aldrich Company. Titanium dioxide nanoparticles paste (PST-20T) was prepared from Sharifsolar Co. Conductive glasses coated with indium tin oxide (ITO) were bought from Xinyan Technology Co (China). For the first time we used the solid-state mechano-chemical reaction and template-free method to synthesize Poly(N-(sulfophenyl)aniline) nanoflowers. Moreover, for the first time we used the same technique to synthesize nanocomposite of Poly(N-(sulfophenyl)aniline) nanofibers and titanium dioxide nanoparticles (PSANFs/TiO2NPs) also for the first time this nanocomposite was synthesized. Examining the results of electrochemical calculations energy gap obtained by CV curves and UV–vis spectra demonstrate that PSANFs/TiO2NPs nanocomposite is a p-n type material that can be used in photovoltaic cells. Doctor blade method was used to creat films for three kinds of hybrid solar cells in terms of different patterns like ITO│TiO2NPs│Semiconductor sample│Al. In the following, hybrid photovoltaic cells in bilayer and bulk heterojunction structures were fabricated as ITO│TiO2NPs│PSANFLs│Al and ITO│TiO2NPs│PSANFs /TiO2NPs│Al, respectively. Fourier-transform infrared spectra, field emission scanning electron microscopy (FE-SEM), ultraviolet-visible spectra, cyclic voltammetry (CV) and electrical conductivity were the analysis that used to characterize the synthesized samples. Results and Conclusions: FE-SEM images clearly demonstrate that the morphology of the synthesized samples are nanostructured (nanoflowers and nanofibers). Electrochemical calculations of band gap from CV curves demonstrated that the forbidden band gap of the PSANFLs and PSANFs/TiO2NPs nanocomposite are 2.95 and 2.23 eV, respectively. I–V characteristics of hybrid solar cells and their power conversion efficiency (PCE) under 100 mWcm−2 irradiation (AM 1.5 global conditions) were measured that The PCE of the samples were 0.30 and 0.62%, respectively. At the end, all the results of solar cell analysis were discussed. To sum up, PSANFLs and PSANFLs/TiO2NPs were successfully synthesized by an affordable and straightforward mechanochemical reaction in solid-state under the green condition. The solubility and processability of the synthesized compounds have been improved compared to the previous work. We successfully fabricated hybrid photovoltaic cells of synthesized semiconductor nanostructured polymers and TiO2NPs as different architectures. We believe that the synthesized compounds can open inventive pathways for the development of other Poly(N-(sulfophenyl)aniline based hybrid materials (nanocomposites) proper for preparing new generation solar cells.Keywords: mechanochemical synthesis, PSANFLs, PSANFs/TiO2NPs, solar cell
Procedia PDF Downloads 6765 Particle Size Characteristics of Aerosol Jets Produced by a Low Powered E-Cigarette
Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida
Abstract:
Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry
Procedia PDF Downloads 4964 Prevalence of Antibiotic-Resistant Bacteria Isolated from Fresh Vegetables Retailed in Eastern Spain
Authors: Miguel García-Ferrús, Yolanda Domínguez, M Angeles Castillo, M Antonia Ferrús, Ana Jiménez-Belenguer
Abstract:
Antibiotic resistance is a growing public health concern worldwide, and it is now regarded as a critical issue within the "One Health" approach that affects human and animal health, agriculture, and environmental waste management. This concept focuses on the interconnected nature of human, animal and environmental health, and WHO highlights zoonotic diseases, food safety, and antimicrobial resistance as three particularly relevant areas for this framework. Fresh vegetables are garnering attention in the food chain due to the presence of pathogens and because they can act as a reservoir for Antibiotic Resistance Bacteria (ARB) and Antibiotic Resistance Genes (ARG). These fresh products are frequently consumed raw, thereby contributing to the spread and transmission of antibiotic resistance. Therefore, the aim of this research was to study the microbiological quality, the prevalence of ARB, and their role in the dissemination of ARG in fresh vegetables intended for human consumption. For this purpose, 102 samples of fresh vegetables (30 lettuce, 30 cabbage, 18 strawberries and 24 spinach) from different retail establishments in Valencia (Spain) have been analyzed to determine their microbiological quality and their role in spreading ARB and ARG. The samples were collected and examined according to standardized methods for total viable bacteria, coliforms, Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes and Salmonella spp. Isolation was made in culture media supplemented with antibiotics (cefotaxime and meropenem). A total of 239 strains resistant to beta-lactam antibiotics (Third-Generation Cephalosporins and Carbapenems) were isolated. Thirty Gram-negative isolates were selected and biochemically identified or partial sequencing of 16S rDNA. Their sensitivity to 12 antibiotic discs was determined using the Kirby-Bauer disc diffusion technique to different therapeutic groups. To determine the presence of ARG, PCR assays for the direct sample and selected isolate DNA were performed for main expanded spectrum beta-lactamase (ESBL)-, carbapenemase-encoding genes and plasmid-mediated quinolone resistance genes. From the total samples, 68% (24/24 spinach, 28/30 lettuce and 17/30 cabbage) showed total viable bacteria levels over the accepted standard 10(2)-10(5) cfu/g range; and 48% (24/24 spinach, 19/30 lettuce and 6/30) showed coliforms levels over the accepted standard 10(2)-10(4) cfu/g range. In 9 samples (3/24 spinach, 3/30 lettuce, 3/30 cabbage; 9/102 (9%)) E. coli levels were higher than the standard 10(3) cfu/g limit. Listeria monocytogenes, Salmonella and STEC have not been detected. Six different bacteria species were isolated from samples. Stenotrophomonas maltophilia (64%) was the prevalent species, followed by Acinetobacter pitii (14%) and Burkholderia cepacia (7%). All the isolates were resistant to at least one tested antibiotic, including meropenem (85%) and ceftazidime (46%). Of the total isolates, 86% were multidrug-resistant and 68% were ESBL productors. Results of PCR showed the presence of resistance genes to beta-lactams blaTEM (4%) and blaCMY-2 (4%), to carbapenemes blaOXA-48 (25%), blaVIM (7%), blaIMP (21%) and blaKPC (32%), and to quinolones QnrA (7%), QnrB (11%) and QnrS (18%). Thus, fresh vegetables harboring ARB and ARG constitute a potential risk to consumers. Further studies must be done to detect ARG and how they propagate in non-medical environments.Keywords: ESBL, β-lactams, resistances, fresh vegetables.
Procedia PDF Downloads 8763 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment
Authors: Iryna P. Dzieciuch, Michael D. Putman
Abstract:
Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin
Procedia PDF Downloads 16062 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves
Authors: Satya Narayan
Abstract:
India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.Keywords: geothermal resources, geophysical methods, exploration, exploitation
Procedia PDF Downloads 8561 The Legal and Regulatory Gaps of Blockchain-Enabled Energy Prosumerism
Authors: Karisma Karisma, Pardis Moslemzadeh Tehrani
Abstract:
This study aims to conduct a high-level strategic dialogue on the lack of consensus, consistency, and legal certainty regarding blockchain-based energy prosumerism so that appropriate institutional and governance structures can be put in place to address the inadequacies and gaps in the legal and regulatory framework. The drive to achieve national and global decarbonization targets is a driving force behind climate goals and policies under the Paris Agreement. In recent years, efforts to ‘demonopolize’ and ‘decentralize’ energy generation and distribution have driven the energy transition toward decentralized systems, invoking concepts such as ownership, sovereignty, and autonomy of RE sources. The emergence of individual and collective forms of prosumerism and the rapid diffusion of blockchain is expected to play a critical role in the decarbonization and democratization of energy systems. However, there is a ‘regulatory void’ relating to individual and collective forms of prosumerism that could prevent the rapid deployment of blockchain systems and potentially stagnate the operationalization of blockchain-enabled energy sharing and trading activities. The application of broad and facile regulatory fixes may be insufficient to address the major regulatory gaps. First, to the authors’ best knowledge, the concepts and elements circumjacent to individual and collective forms of prosumerism have not been adequately described in the legal frameworks of many countries. Second, there is a lack of legal certainty regarding the creation and adaptation of business models in a highly regulated and centralized energy system, which inhibits the emergence of prosumer-driven niche markets. There are also current and prospective challenges relating to the legal status of blockchain-based platforms for facilitating energy transactions, anticipated with the diffusion of blockchain technology. With the rise of prosumerism in the energy sector, the areas of (a) network charges, (b) energy market access, (c) incentive schemes, (d) taxes and levies, and (e) licensing requirements are still uncharted territories in many countries. The uncertainties emanating from this area pose a significant hurdle to the widespread adoption of blockchain technology, a complementary technology that offers added value and competitive advantages for energy systems. The authors undertake a conceptual and theoretical investigation to elucidate the lack of consensus, consistency, and legal certainty in the study of blockchain-based prosumerism. In addition, the authors set an exploratory tone to the discussion by taking an analytically eclectic approach that builds on multiple sources and theories to delve deeper into this topic. As an interdisciplinary study, this research accounts for the convergence of regulation, technology, and the energy sector. The study primarily adopts desk research, which examines regulatory frameworks and conceptual models for crucial policies at the international level to foster an all-inclusive discussion. With their reflections and insights into the interaction of blockchain and prosumerism in the energy sector, the authors do not aim to develop definitive regulatory models or instrument designs, but to contribute to the theoretical dialogue to navigate seminal issues and explore different nuances and pathways. Given the emergence of blockchain-based energy prosumerism, identifying the challenges, gaps and fragmentation of governance regimes is key to facilitating global regulatory transitions.Keywords: blockchain technology, energy sector, prosumer, legal and regulatory.
Procedia PDF Downloads 18160 Utilization of Informatics to Transform Clinical Data into a Simplified Reporting System to Examine the Analgesic Prescribing Practices of a Single Urban Hospital’s Emergency Department
Authors: Rubaiat S. Ahmed, Jemer Garrido, Sergey M. Motov
Abstract:
Clinical informatics (CI) enables the transformation of data into a systematic organization that improves the quality of care and the generation of positive health outcomes.Innovative technology through informatics that compiles accurate data on analgesic utilization in the emergency department can enhance pain management in this important clinical setting. We aim to establish a simplified reporting system through CI to examine and assess the analgesic prescribing practices in the EDthrough executing a U.S. federal grant project on opioid reduction initiatives. Queried data points of interest from a level-one trauma ED’s electronic medical records were used to create data sets and develop informational/visual reporting dashboards (on Microsoft Excel and Google Sheets) concerning analgesic usage across several pre-defined parameters and performance metrics using CI. The data was then qualitatively analyzed to evaluate ED analgesic prescribing trends by departmental clinicians and leadership. During a 12-month reporting period (Dec. 1, 2020 – Nov. 30, 2021) for the ongoing project, about 41% of all ED patient visits (N = 91,747) were for pain conditions, of which 81.6% received analgesics in the ED and at discharge (D/C). Of those treated with analgesics, 24.3% received opioids compared to 75.7% receiving opioid alternatives in the ED and at D/C, including non-pharmacological modalities. Demographics showed among patients receiving analgesics, 56.7% were aged between 18-64, 51.8% were male, 51.7% were white, and 66.2% had government funded health insurance. Ninety-one percent of all opioids prescribed were in the ED, with intravenous (IV) morphine, IV fentanyl, and morphine sulfate immediate release (MSIR) tablets accounting for 88.0% of ED dispensed opioids. With 9.3% of all opioids prescribed at D/C, MSIR was dispensed 72.1% of the time. Hydrocodone, oxycodone, and tramadol usage to only 10-15% of the time, and hydromorphone at 0%. Of opioid alternatives, non-steroidal anti-inflammatory drugs were utilized 60.3% of the time, 23.5% with local anesthetics and ultrasound-guided nerve blocks, and 7.9% with acetaminophen as the primary non-opioid drug categories prescribed by ED providers. Non-pharmacological analgesia included virtual reality and other modalities. An average of 18.5 ED opioid orders and 1.9 opioid D/C prescriptions per 102.4 daily ED patient visits was observed for the period. Compared to other specialties within our institution, 2.0% of opioid D/C prescriptions are given by ED providers, compared to the national average of 4.8%. Opioid alternatives accounted for 69.7% and 30.3% usage, versus 90.7% and 9.3% for opioids in the ED and D/C, respectively.There is a pressing need for concise, relevant, and reliable clinical data on analgesic utilization for ED providers and leadership to evaluate prescribing practices and make data-driven decisions. Basic computer software can be used to create effective visual reporting dashboards with indicators that convey relevant and timely information in an easy-to-digest manner. We accurately examined our ED's analgesic prescribing practices using CI through dashboard reporting. Such reporting tools can quickly identify key performance indicators and prioritize data to enhance pain management and promote safe prescribing practices in the emergency setting.Keywords: clinical informatics, dashboards, emergency department, health informatics, healthcare informatics, medical informatics, opioids, pain management, technology
Procedia PDF Downloads 14459 Use of computer and peripherals in the Archaeological Surveys of Sistan in Eastern Iran
Authors: Mahyar Mehrafarin, Reza Mehrafarin
Abstract:
The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.Keywords: archaeological surveys, computer use, iran, modern technologies, sistan
Procedia PDF Downloads 7858 Geotechnical Challenges for the Use of Sand-sludge Mixtures in Covers for the Rehabilitation of Acid-Generating Mine Sites
Authors: Mamert Mbonimpa, Ousseynou Kanteye, Élysée Tshibangu Ngabu, Rachid Amrou, Abdelkabir Maqsoud, Tikou Belem
Abstract:
The management of mine wastes (waste rocks and tailings) containing sulphide minerals such as pyrite and pyrrhotite represents the main environmental challenge for the mining industry. Indeed, acid mine drainage (AMD) can be generated when these wastes are exposed to water and air. AMD is characterized by low pH and high concentrations of heavy metals, which are toxic to plants, animals, and humans. It affects the quality of the ecosystem through water and soil pollution. Different techniques involving soil materials can be used to control AMD generation, including impermeable covers (compacted clays) and oxygen barriers. The latter group includes covers with capillary barrier effects (CCBE), a multilayered cover that include the moisture retention layer playing the role of an oxygen barrier. Once AMD is produced at a mine site, it must be treated so that the final effluent at the mine site complies with regulations and can be discharged into the environment. Active neutralization with lime is one of the treatment methods used. This treatment produces sludge that is usually stored in sedimentation ponds. Other sludge management alternatives have been examined in recent years, including sludge co-disposal with tailings or waste rocks, disposal in underground mine excavations, and storage in technical landfill sites. Considering the ability of AMD neutralization sludge to maintain an alkaline to neutral pH for decades or even centuries, due to the excess alkalinity induced by residual lime within the sludge, valorization of sludge in specific applications could be an interesting management option. If done efficiently, the reuse of sludge could free up storage ponds and thus reduce the environmental impact. It should be noted that mixtures of sludge and soils could potentially constitute usable materials in CCBE for the rehabilitation of acid-generating mine sites, while sludge alone is not suitable for this purpose. The high sludge water content (up to 300%), even after sedimentation, can, however, constitute a geotechnical challenge. Adding lime to the mixtures can reduce the water content and improve the geotechnical properties. The objective of this paper is to investigate the impact of the sludge content (30, 40 and 50%) in sand-sludge mixtures (SSM) on their hydrogeotechnical properties (compaction, shrinkage behaviour, saturated hydraulic conductivity, and water retention curve). The impact of lime addition (dosages from 2% to 6%) on the moisture content, dry density after compaction and saturated hydraulic conductivity of SSM was also investigated. Results showed that sludge adding to sand significantly improves the saturated hydraulic conductivity and water retention capacity, but the shrinkage increased with sludge content. The dry density after compaction of lime-treated SSM increases with the lime dosage but remains lower than the optimal dry density of the untreated mixtures. The saturated hydraulic conductivity of lime-treated SSM after 24 hours of cure decreases by 3 orders of magnitude. Considering the hydrogeotechnical properties obtained with these mixtures, it would be possible to design CCBE whose moisture retention layer is made of SSM. Physical laboratory models confirmed the performance of such CCBE.Keywords: mine waste, AMD neutralization sludge, sand-sludge mixture, hydrogeotechnical properties, mine site reclamation, CCBE
Procedia PDF Downloads 5357 Exploring Managerial Approaches towards Green Manufacturing: A Thematic Analysis
Authors: Hakimeh Masoudigavgani
Abstract:
Since manufacturing firms deplete non-renewable resources and pollute air, soil, and water in greatly unsustainable manner, industrial activities or production of products are considered to be a key contributor to adverse environmental impacts. Hence, management strategies and approaches that involve an effective supply chain decision process in a manufacturing sector could be extremely significant to the application of environmental initiatives. Green manufacturing (GM) is one of these strategies which minimises negative effects on the environment through reducing greenhouse gas emissions, waste, and the consumption of energy and natural resources. This paper aims to explore what greening methods and mechanisms could be applied in the manufacturing supply chain and what are the outcomes of adopting these methods in terms of abating environmental burdens? The study is an interpretive research with an exploratory approach, using thematic analysis by coding text, breaking down and grouping the content of collected literature into various themes and categories. It is found that green supply chain could be attained through execution of some pre-production strategies including green building, eco-design, and green procurement as well as a number of in-production and post-production strategies involving green manufacturing and green logistics. To achieve an effective GM, the pre-production strategies are suggested to be employed. This paper defines GM as (1) the analysis of the ecological impacts generated by practices, products, production processes, and operational functions, and (2) the implementation of greening methods to reduce damaging influences of them on the natural environment. Analysis means assessing, monitoring, and auditing of practices in order to measure and pinpoint their harmful impacts. Moreover, greening methods involved within GM (arranged in order from the least to the most level of environmental compliance and techniques) consist of: •product stewardship (e.g. less use of toxic, non-renewable, and hazardous materials in the manufacture of the product; and stewardship of the environmental problems with regard to the product in all production, use, and end-of-life stages); •process stewardship (e.g. controlling carbon emission, energy and resources usage, transportation method, and disposal; reengineering polluting processes; recycling waste materials generated in production); •lean and clean production practices (e.g. elimination of waste, materials replacement, materials reduction, resource-efficient consumption, energy-efficient usage, emission reduction, managerial assessment, waste re-use); •use of eco-industrial parks (e.g. a shared warehouse, shared logistics management system, energy co-generation plant, effluent treatment). However, the focus of this paper is only on methods related to the in-production phase and needs further research on both pre-production and post-production environmental innovations. The outlined methods in this investigation may possibly be taken into account by policy/decision makers. Additionally, the proposed future research direction and identified gaps can be filled by scholars and researchers. The paper compares and contrasts a variety of viewpoints and enhances the body of knowledge by building a definition for GM through synthesising literature and categorising the strategic concept of greening methods, drivers, barriers, and successful implementing tactics.Keywords: green manufacturing (GM), product stewardship, process stewardship, clean production, eco-industrial parks (EIPs)
Procedia PDF Downloads 58156 Improving the Utility of Social Media in Pharmacovigilance: A Mixed Methods Study
Authors: Amber Dhoot, Tarush Gupta, Andrea Gurr, William Jenkins, Sandro Pietrunti, Alexis Tang
Abstract:
Background: The COVID-19 pandemic has driven pharmacovigilance towards a new paradigm. Nowadays, more people than ever before are recognising and reporting adverse reactions from medications, treatments, and vaccines. In the modern era, with over 3.8 billion users, social media has become the most accessible medium for people to voice their opinions and so provides an opportunity to engage with more patient-centric and accessible pharmacovigilance. However, the pharmaceutical industry has been slow to incorporate social media into its modern pharmacovigilance strategy. This project aims to make social media a more effective tool in pharmacovigilance, and so reduce drug costs, improve drug safety and improve patient outcomes. This will be achieved by firstly uncovering and categorising the barriers facing the widespread adoption of social media in pharmacovigilance. Following this, the potential opportunities of social media will be explored. We will then propose realistic, practical recommendations to make social media a more effective tool for pharmacovigilance. Methodology: A comprehensive systematic literature review was conducted to produce a categorised summary of these barriers. This was followed by conducting 11 semi-structured interviews with pharmacovigilance experts to confirm the literature review findings whilst also exploring the unpublished and real-life challenges faced by those in the pharmaceutical industry. Finally, a survey of the general public (n = 112) ascertained public knowledge, perception, and opinion regarding the use of their social media data for pharmacovigilance purposes. This project stands out by offering perspectives from the public and pharmaceutical industry that fill the research gaps identified in the literature review. Results: Our results gave rise to several key analysis points. Firstly, inadequacies of current Natural Language Processing algorithms hinder effective pharmacovigilance data extraction from social media, and where data extraction is possible, there are significant questions over its quality. Social media also contains a variety of biases towards common drugs, mild adverse drug reactions, and the younger generation. Additionally, outdated regulations for social media pharmacovigilance do not align with new, modern General Data Protection Regulations (GDPR), creating ethical ambiguity about data privacy and level of access. This leads to an underlying mindset of avoidance within the pharmaceutical industry, as firms are disincentivised by the legal, financial, and reputational risks associated with breaking ambiguous regulations. Conclusion: Our project uncovered several barriers that prevent effective pharmacovigilance on social media. As such, social media should be used to complement traditional sources of pharmacovigilance rather than as a sole source of pharmacovigilance data. However, this project adds further value by proposing five practical recommendations that improve the effectiveness of social media pharmacovigilance. These include: prioritising health-orientated social media; improving technical capabilities through investment and strategic partnerships; setting clear regulatory guidelines using multi-stakeholder processes; creating an adverse drug reaction reporting interface inbuilt into social media platforms; and, finally, developing educational campaigns to raise awareness of the use of social media in pharmacovigilance. Implementation of these recommendations would speed up the efficient, ethical, and systematic adoption of social media in pharmacovigilance.Keywords: adverse drug reaction, drug safety, pharmacovigilance, social media
Procedia PDF Downloads 8155 'Sextually' Active: Teens, 'Sexting' and Gendered Double Standards in the Digital Age
Authors: Annalise Weckesser, Alex Wade, Clara Joergensen, Jerome Turner
Abstract:
Introduction: Digital mobile technologies afford Generation M a number of opportunities in terms of communication, creativity and connectivity in their social interactions. Yet these young people’s use of such technologies is often the source of moral panic with accordant social anxiety especially prevalent in media representations of teen ‘sexting,’ or the sending of sexually explicit images via smartphones. Thus far, most responses to youth sexting have largely been ineffective or unjust with adult authorities sometimes blaming victims of non-consensual sexting, using child pornography laws to paradoxically criminalise those they are designed to protect, and/or advising teenagers to simply abstain from the practice. Prevention strategies are further skewed, with sex education initiatives often targeted at girls, implying that they shoulder the responsibility of minimising the risks associated with sexting (e.g. revenge porn and sexual predation). Purpose of Study: Despite increasing public interest and concern about ‘teen sexting,’ there remains a dearth of research with young people regarding their experiences of navigating sex and relationships in the current digital media landscape. Furthermore, young people's views on sexting are rarely solicited in the policy and educational strategies aimed at them. To address this research-policy-education gap, an interdisciplinary team of four researchers (from anthropology, media, sociology and education) have undertaken a peer-to-peer research project to co-create a sexual health intervention. Methods: In the winter of 2015-2016, the research team conducted serial group interviews with four cohorts of students (aged 13 to 15) from a secondary school in the West Midlands, UK. To facilitate open dialogue, girls and boys were interviewed separately, and each group consisted of no more than four pupils. The team employed a range of participatory techniques to elicit young people’s views on sexting, its consequences, and its interventions. A final focus group session was conducted with all 14 male and female participants to explore developing a peer-to-peer ‘safe sexting’ education intervention. Findings: This presentation will highlight the ongoing, ‘old school’ sexual double standards at work within this new digital frontier. In the sharing of ‘nudes’ (teens’ preferred term to ‘sexting’) via social media apps (e.g. Snapchat and WhatsApp), girls felt sharing images was inherently risky and feared being blamed and ‘slut-shamed.’ In contrast, boys were seen to gain in social status if they accumulated nudes of female peers. Further, if boys had nudes of themselves shared without consent, they felt they were expected to simply ‘tough it out.’ The presentation will also explore what forms of supports teens desire to help them in their day-to-day navigation of these digitally mediated, heteronormative performances of teen femininity and masculinity expected of them. Conclusion: This is the first research project, within UK, conducted with rather than about teens and the phenomenon of sexting. It marks a timely and important contribution to the nascent, but growing body of knowledge on gender, sexual politics and the digital mobility of sexual images created by and circulated amongst young people.Keywords: teens, sexting, gender, sexual politics
Procedia PDF Downloads 23754 The Link Between Success Factors of Online Architectural Education and Students’ Demographics
Authors: Yusuf Berkay Metinal, Gulden Gumusburun Ayalp
Abstract:
Architectural education is characterized by its distinctive amalgamation of studio-based pedagogy and theoretical instruction. It offers students a comprehensive learning experience that blends practical skill development with critical inquiry and conceptual exploration. Design studios are central to this educational paradigm, which serve as dynamic hubs of creativity and innovation, providing students with immersive environments for experimentation and collaborative engagement. The physical presence and interactive dynamics inherent in studio-based learning underscore the indispensability of face-to-face instruction and interpersonal interaction in nurturing the next generation of architects. However, architectural education underwent a seismic transformation in response to the global COVID-19 pandemic, precipitating an abrupt transition from traditional, in-person instruction to online education modalities. While this shift introduced newfound flexibility in terms of temporal and spatial constraints, it also brought many challenges to the fore. Chief among these challenges was maintaining effective communication and fostering meaningful collaboration among students in virtual learning environments. Besides these challenges, lack of peer learning emerged as a vital issue of the educational experience, particularly crucial for novice students navigating the intricacies of architectural practice. Nevertheless, the pivot to online education also laid bare a discernible decline in educational efficacy, prompting inquiries regarding the enduring viability of online education in architectural pedagogy. Moreover, as educational institutions grappled with the exigencies of remote instruction, discernible disparities between different institutional contexts emerged. While state universities often contended with fiscal constraints that shaped their operational capacities, private institutions encountered challenges from a lack of institutional fortification and entrenched educational traditions. Acknowledging the multifaceted nature of these challenges, this study endeavored to undertake a comprehensive inquiry into the dynamics of online education within architectural pedagogy by interrogating variables such as class level and type of university; the research aimed to elucidate demographic critical success factors that underpin the effectiveness of online education initiatives. To this end, a meticulously constructed questionnaire was administered to architecture students from diverse academic institutions across Turkey, informed by an exhaustive review of extant literature and scholarly discourse. The resulting dataset, comprising responses from 232 participants, underwent rigorous statistical analysis, including independent samples t-test and one-way ANOVA, to discern patterns and correlations indicative of overarching trends and salient insights. In sum, the findings of this study serve as a scholarly compass for educators, policymakers, and stakeholders navigating the evolving landscapes of architectural education. By elucidating the intricate interplay of demographical factors that shape the efficacy of online education in architectural pedagogy, this research offers a scholarly foundation upon which to anchor informed decisions and strategic interventions to elevate the educational experience for future cohorts of aspiring architects.Keywords: architectural education, COVID-19, distance education, online education
Procedia PDF Downloads 4453 Poverty Reduction in European Cities: Local Governments’ Strategies and Programmes to Reduce Poverty; Interview Results from Austria
Authors: Melanie Schinnerl, Dorothea Greiling
Abstract:
In the context of the 2020 strategy, poverty and its fight returned to the center of national political efforts. This served as motivation for an Austrian research grant-funded project to focus on the under-researched local government level with the aim to identify municipal best-practice cases and to derive policy implications for Austria. Designing effective poverty reduction strategies is a complex challenge which calls for an integrated multi-actor in approach. Cities are increasingly confronted to combat poverty, even in rich EU-member states. By doing so cities face substantial demographic, cultural, economic and social challenges as well as changing welfare state regimes. Furthermore, there is a low willingness of (right-wing) governments to support the poor. Against this background, the research questions are: 1. How do local governments define poverty? 2. Who are the main risk groups and what are the most pressing problems when fighting urban poverty? 3. What is regarded as successful anti-poverty initiatives? 4. What is the underlying welfare state concept? To address the research questions a multi-method approach was chosen, consisting of a systematic literature analysis, a comprehensive document analysis, and expert interviews. For interpreting the data the project follows the qualitative-interpretive paradigm. Municipal approaches for reducing poverty are compared based on deductive, as well as inductive identified criteria. In addition to an intensive literature analysis, interviews (40) were conducted in Austria since the project started in March 2018. From the other countries, 14 responses have been collected, providing a first insight. Regarding the definition of poverty the EU SILC-definition as well as counting the persons who receive need-based minimum social benefits, the Austrian form of social welfare, are the predominant approaches in Austria. In addition to homeless people, single-parent families, un-skilled persons, long-term unemployed persons, migrants (first and second generation), refugees and families with at least 3 children were frequently mentioned. The most pressing challenges for Austrian cities are: expected reductions of social budgets, a great insecurity of the central government's social policy reform plans, the growing number of homeless people and a lack of affordable housing. Together with affordable housing, old-age poverty will gain more importance in the future. The Austrian best practice examples, suggested by interviewees, focused primarily on homeless, children and young people (till 25). Central government’s policy changes have already negative effects on programs for refugees and elderly unemployed. Social Housing in Vienna was frequently mentioned as an international best practice case, other growing cities can learn from. The results from Austria indicate a change towards the social investment state, which primarily focuses on children and labour market integration. The first insights from the other countries indicate that affordable housing and labor market integration are cross-cutting issues. Inherited poverty and old-age poverty seems to be more pressing outside Austria.Keywords: anti-poverty policies, European cities, empirical study, social investment
Procedia PDF Downloads 117