Search results for: real estate prediction
4001 Behavioral Experiments of Small Societies in Social Media: Facebook Expressions of Anchored Relationships
Authors: Nuran Öze
Abstract:
Communities and societies have been changing towards computer mediated communication. This paper explores online and offline identities and how relationships are formed and negotiated within internet environments which offer opportunities for people who know each other offline and move into relationships online. The expectations and norms of behavior within everyday life cause people to be embodied self. According to the age categories of Turkish Cypriots, their measurements of attitudes in Facebook will be investigated. Face-to-face field research and semi-structured interview methods are used in the study. Face-to-face interview has been done with Turkish Cypriots who are using Facebook already. According to the study, in constructing a linkage between real and virtual identities mostly affected from societal relations serves as a societal grooming tool for Turkish Cypriots.Keywords: facebook, identity, social media, virtual reality
Procedia PDF Downloads 3024000 Hybrid Multipath Congestion Control
Authors: Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che, Hong Jiang
Abstract:
Multiple Path Transmission Control Protocols (MPTCPs) allow flows to explore path diversity to improve the throughput, reliability and network resource utilization. However, the existing solutions may discourage users to adopt the solutions in the face of multipath scenario where different paths are charged based on different pricing structures, e.g., WiFi vs cellular connections, widely available for mobile phones. In this paper, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to incentivize users to use multiple paths with different pricing structures. In the meantime, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP solutions. Extensive real Linux implementation results verify that H-MPTCP can indeed achieve the design objectives.Keywords: network, TCP, WiFi, cellular, congestion control
Procedia PDF Downloads 7183999 The Internet of Things in Luxury Hotels: Generating Customized Multisensory Guest Experiences
Authors: Jean-Eric Pelet, Erhard Lick, Basma Taieb
Abstract:
Purpose This research bridges the gap between sensory marketing and the use of the Internet of Things (IoT) in luxury hotels. We investigated how stimulating guests’ senses through IoT devices influenced their emotions, affective experiences, eudaimonism (well-being), and, ultimately, guest behavior. We examined potential moderating effects of gender. Design/methodology/approach We adopted a mixed method approach, combining qualitative research (semi-structured interviews) to explore hotel managers’ perspectives on the potential use of IoT in luxury hotels and quantitative research (surveying hotel guests; n=357). Findings The results showed that while the senses of smell, hearing, and sight had an impact on guests’ emotions, the senses of touch, hearing, and sight impacted guests’ affective experiences. The senses of smell and taste influenced guests’ eudaimonism. The sense of smell had a greater effect on eudaimonism and behavioral intentions among women compared to men. Originality IoT can be applied in creating customized multi-sensory hotel experiences. For example, hotels may offer unique and diverse ambiences in their rooms and suites to improve guest experiences. Research limitations/implications This study concentrated on luxury hotels located in Europe. Further research may explore the generalizability of the findings (e.g., in other cultures, comparison between high-end and low-end hotels). Practical implications Context awareness and hyper-personalization, through intensive and continuous data collection (hyper-connectivity) and real time processing, are key trends in the service industry. Therefore, big data plays a crucial role in the collection of information since it allows hoteliers to retrieve, analyze, and visualize data to provide personalized services in real time. Together with their guests, hotels may co-create customized sensory experiences. For instance, if the hotel knows about the guest’s music preferences based on social media as well as their age and gender, etc. and considers the temperature and size (standard, suite, etc.) of the guest room, this may determine the playlist of the concierge-tablet made available in the guest room. Furthermore, one may record the guest’s voice to use it for voice command purposes once the guest arrives at the hotel. Based on our finding that the sense of smell has a greater impact on eudaimonism and behavioral intentions among women than men, hotels may deploy subtler scents with lower intensities, or even different scents, for female guests in comparison to male guests.Keywords: affective experience, emotional value, eudaimonism, hospitality industry, Internet of Things, sensory marketing
Procedia PDF Downloads 573998 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: artificial intelligence and office, NLP, deep learning, text classification
Procedia PDF Downloads 2003997 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 1183996 Pakistan Nuclear Security: Threats from Non-State Actors
Authors: Jennifer Wright
Abstract:
The recent rise of powerful terrorist groups such as ISIS and Al-Qaeda brings up concerns about nuclear terrorism as well as a focus on nuclear security, specifically the physical security of nuclear weapons and fissile material storage sites in countries where powerful nonstate actors are present. Particularly because these non-state actors, who lack their own sovereign territory, cannot be ‘deterred’ in the traditional sense. In light of the current threat environment, it’s necessary to now rethink these strategies in the 21st century – a multipolar world with the presence of powerful non-state actors. As a country in the spotlight for its low ranking on the Nuclear Threat Initiative’s (NTI) Nuclear Security Index, Pakistan is a relevant example to explore the question of whether the presence of non-state actors poses a real risk to nuclear security today. It’s necessary to take a look at their nuclear security policies to determine if they’re robust enough to deal with political instability and violence in the country. After carrying out interviews with experts in May 2017 in Islamabad on nuclear security and nuclear terrorism, this paper aims to highlight findings by providing a Pakistan-centric view on the subject and give experts there a chance to counter criticism. Western media would have us fearful of nuclear security mechanisms in Pakistan after reports that areas such as cybersecurity and accounting and control of materials are weak, as well as sensitive nuclear material being transported in unmarked, unguarded vehicles. Also reported are cases where terrorist groups carried out targeted attacks against Pakistani military bases or secure sites where nuclear material is stored. One specific question asked of each interviewee in Islamabad was Do you feel the threat of nuclear terrorism calls into question the reliance on deterrence? Their responses will be elaborated on in the longer paper, but overall they demonstrate views that deterrence still serves a purpose for state-to-state security strategy, but not for a state in countering nonstate threats. If nuclear security is lax enough for these non-state actors to get their hands on either an intact nuclear weapon or enough military-grade fissile material to build a nuclear weapon, then what would stop them from launching a nuclear attack? As deterrence is a state-centric strategy, it doesn’t work to deter non-state actors from carrying out an attack on another state, as they lack their own territory, and as such, are not fearful of a reprisal attack. Deterrence will need to be addressed, and its relevance analyzed to determine its utility in the current security environment. The aim of this research is to demonstrate the real risk of nuclear terrorism by pointing to weaknesses in global nuclear security, particularly in Pakistan. The research also aims to provoke thought on the weaknesses of deterrence as a whole. Original thinking is needed as we attempt to adequately respond to the 21st century’s current threat environment.Keywords: deterrence, non-proliferation, nuclear security, nuclear terrorism
Procedia PDF Downloads 2263995 Computerized Adaptive Testing for Ipsative Tests with Multidimensional Pairwise-Comparison Items
Authors: Wen-Chung Wang, Xue-Lan Qiu
Abstract:
Ipsative tests have been widely used in vocational and career counseling (e.g., the Jackson Vocational Interest Survey). Pairwise-comparison items are a typical item format of ipsative tests. When the two statements in a pairwise-comparison item measure two different constructs, the item is referred to as a multidimensional pairwise-comparison (MPC) item. A typical MPC item would be: Which activity do you prefer? (A) playing with young children, or (B) working with tools and machines. These two statements aim at the constructs of social interest and investigative interest, respectively. Recently, new item response theory (IRT) models for ipsative tests with MPC items have been developed. Among them, the Rasch ipsative model (RIM) deserves special attention because it has good measurement properties, in which the log-odds of preferring statement A to statement B are defined as a competition between two parts: the sum of a person’s latent trait to which statement A is measuring and statement A’s utility, and the sum of a person’s latent trait to which statement B is measuring and statement B’s utility. The RIM has been extended to polytomous responses, such as preferring statement A strongly, preferring statement A, preferring statement B, and preferring statement B strongly. To promote the new initiatives, in this study we developed computerized adaptive testing algorithms for MFC items and evaluated their performance using simulations and two real tests. Both the RIM and its polytomous extension are multidimensional, which calls for multidimensional computerized adaptive testing (MCAT). A particular issue in MCAT for MPC items is the within-person statement exposure (WPSE); that is, a respondent may keep seeing the same statement (e.g., my life is empty) for many times, which is certainly annoying. In this study, we implemented two methods to control the WPSE rate. In the first control method, items would be frozen when their statements had been administered more than a prespecified times. In the second control method, a random component was added to control the contribution of the information at different stages of MCAT. The second control method was found to outperform the first control method in our simulation studies. In addition, we investigated four item selection methods: (a) random selection (as a baseline), (b) maximum Fisher information method without WPSE control, (c) maximum Fisher information method with the first control method, and (d) maximum Fisher information method with the second control method. These four methods were applied to two real tests: one was a work survey with dichotomous MPC items and the other is a career interests survey with polytomous MPC items. There were three dependent variables: the bias and root mean square error across person measures, and measurement efficiency which was defined as the number of items needed to achieve the same degree of test reliability. Both applications indicated that the proposed MCAT algorithms were successful and there was no loss in measurement proficiency when the control methods were implemented, and among the four methods, the last method performed the best.Keywords: computerized adaptive testing, ipsative tests, item response theory, pairwise comparison
Procedia PDF Downloads 2463994 Design and Implementation of Bluetooth Controlled Autonomous Vehicle
Authors: Amanuel Berhanu Kesamo
Abstract:
This paper presents both circuit simulation and hardware implementation of a robot vehicle that can be either controlled manually via Bluetooth with video streaming or navigate autonomously to a target point by avoiding obstacles. In manual mode, the user controls the mobile robot using C# windows form interfaced via Bluetooth. The camera mounted on the robot is used to capture and send the real time video to the user. In autonomous mode, the robot plans the shortest path to the target point while avoiding obstacles along the way. Ultrasonic sensor is used for sensing the obstacle in its environment. An efficient path planning algorithm is implemented to navigate the robot along optimal route.Keywords: Arduino Uno, autonomous, Bluetooth module, path planning, remote controlled robot, ultra sonic sensor
Procedia PDF Downloads 1423993 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization
Procedia PDF Downloads 4183992 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport
Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky
Abstract:
Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system ‘well to wheel’.Keywords: bus, consumption energy, GHG, production, simulation, train
Procedia PDF Downloads 4433991 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms
Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan
Abstract:
This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.Keywords: binary classifier, CNN, spectrogram, instrument
Procedia PDF Downloads 783990 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2963989 Critical Realism as a Bridge between Critical Pedagogy and Queer Theory
Authors: Mike Seal
Abstract:
This paper explores the traditions of critical and queer pedagogy, its intersections, tensions and paradoxes. Critical pedagogy, with a materialist realist ontology, and queer theory, which is often post-modern, post-structural and anti-essential, may not seem compatible. Similarly, there are tensions between activist orientations, often enacted through essential sexual identities, and a queer approach that questions such identities and subjectivities. It will argue that critical realism gives us a bridge between critical and queer pedagogy in preserving a realist materialist ontology, where economic forces are real, and independent of consciousness and hermeneutic constructions of them. At the same time, it offers an epistemology that does not necessitate a binary view of the roles of the oppressed, liberator, or even oppressor. It accepts that our knowledge is contingent, partial and contestable, but has the potential, and enough validity, to demand action and potentially inform the actions of others.Keywords: critical pedagogy, queer pedagogy, critical realsim, heteronormativity
Procedia PDF Downloads 1913988 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation
Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieha
Abstract:
In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.Keywords: polynomial constitutive equation, solitary, stress solitary waves, nonlinear constitutive law
Procedia PDF Downloads 4973987 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment
Procedia PDF Downloads 2293986 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 323985 Fertilizer Procurement and Distribution in Nigeria: Assessing Policy against Implementation
Authors: Jacob Msughter Gwa, Rhys Williams
Abstract:
It is widely known that food security is a major concern in Sub-Saharan Africa. In many regions, including Nigeria, this is due to an agriculture-old problem of soil erosion beyond replacement levels. It seems that the use of fertilizer would be an immediate solution as it can boost agricultural productivity, and low agricultural productivity is attributed to the low use of fertilizers in Nigeria. The Government of Nigeria has been addressing the challenges of food shortage but with limited success. The utilisation of a practical and efficient subsidy programme in addressing this issue seems to be needed. However, the problem of procurement and distribution changes from one stage of subsidy to another. This paper looks at the difference between the ideal and the actual implementation of agricultural fertilizer policies in Nigeria, as it currently runs the risk of meeting required standards on paper but missing the desired real outcomes, and recognises the need to close the gap between the paper work and the realities on the ground.Keywords: agricultural productivity, fertilizer distribution, fertilizer procurement, Nigeria
Procedia PDF Downloads 3683984 Transient Analysis of Laminated Rubber Bearing Bridge during High Intensity Earthquake
Authors: N. M. Amin, W. N. A. W. Sulaiman
Abstract:
The effectiveness of the seismic response between 3D solid elements model and simplified beam elements model has been investigated. At present, the studies of the numerical modelling using 3D solid element are minimal due to numerical software constraint. The finite element analysis using 3D solid element was chosen to study displacement response of laminated rubber bearing (LRB) during high intensity Kobe earthquake. In this research a simply supported bridge (single span), fixed at support was analysed by using transient analysis subjected to real time history loading of Kobe earthquake.Keywords: laminated rubber bearing, solid element, simplified beam element, transient analysis
Procedia PDF Downloads 4293983 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations
Authors: Fuziyah Ishak, Siti Norazura Ahmad
Abstract:
Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.Keywords: accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations
Procedia PDF Downloads 4253982 A Collective Approach to Optimisation of Renewing Warranty Policy
Authors: Ming Luo
Abstract:
In this real world, a manufacturer may produce more than one product. The products produced by the same manufacturer may share the same type of parts, similar design, and be produced in the same factory, i.e. some common causes. From the perspective of warranty management, the frequencies of those products’ warranty claims may have statistical dependence caused by the common causes. Warranty policy optimisation in the existing research, majorly, has not considered such dependence, which may increase bias in decision making. In the market, renewing warranty policies are provided to some unrepairable products and consumer electronic products. This paper optimises the renewing warranty policy collectively in a multi-product scenario with a consideration of the dependence among the warranty claims of the products produced by the same manufacturer. The existence of the optimal solution is proved. Numerical examples are used to validate the applicability of the proposed methods.Keywords: mean-risk framework, modern portfolio theory, renewing warranty policy, warranty policy optimisation
Procedia PDF Downloads 2993981 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources
Authors: Jolly Puri, Shiv Prasad Yadav
Abstract:
Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.Keywords: multi-component DEA, fuzzy multi-component DEA, fuzzy resources, decision making units (DMUs)
Procedia PDF Downloads 4073980 Factors that Predict Pre-Service Teachers' Decision to Integrate E-Learning: A Structural Equation Modeling (SEM) Approach
Authors: Mohd Khairezan Rahmat
Abstract:
Since the impetus of becoming a develop country by the year 2020, the Malaysian government have been proactive in strengthening the integration of ICT into the national educational system. Teacher-education programs have the responsibility to prepare the nation future teachers by instilling in them the desire, confidence, and ability to fully utilized the potential of ICT into their instruction process. In an effort to fulfill this responsibility, teacher-education program are beginning to create alternatives means for preparing cutting-edge teachers. One of the alternatives is the student’s learning portal. In line with this mission, this study investigates the Faculty of Education, University Teknologi MARA (UiTM) pre-service teachers’ perception of usefulness, attitude, and ability toward the usage of the university learning portal, known as iLearn. The study also aimed to predict factors that might hinder the pre-service teachers’ decision to used iLearn as their platform in learning. The Structural Equation Modeling (SEM), was employed in analyzed the survey data. The suggested findings informed that pre-service teacher’s successful integration of the iLearn was highly influenced by their perception of usefulness of the system. The findings also suggested that the more familiar the pre-service teacher with the iLearn, the more possibility they will use the system. In light of similar study, the present findings hope to highlight the important to understand the user’s perception toward any proposed technology.Keywords: e-learning, prediction factors, pre-service teacher, structural equation modeling (SEM)
Procedia PDF Downloads 3393979 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.Keywords: pattern recognition, global terrorism database, Manhattan distance, k-means clustering, terrorism data analysis
Procedia PDF Downloads 3863978 Analyzing the Empirical Link between Islamic Finance and Growth of Real Output: A Time Series Application to Pakistan
Authors: Nazima Ellahi, Danish Ramzan
Abstract:
There is a growing trend among development economists regarding the importance of financial sector for economic development and growth activities. The development thus introduced, helps to promote welfare effects and poverty alleviation. This study is an attempt to find the nature of link between Islamic banking financing and development of output growth for Pakistan. Time series data set has been utilized for a time period ranging from 1990 to 2010. Following the Phillip Perron (PP) and Augmented Dicky Fuller (ADF) test of unit root this study applied Ordinary Least Squares (OLS) method of estimation and found encouraging results in favor of promoting the Islamic banking practices in Pakistan.Keywords: Islamic finance, poverty alleviation, economic growth, finance, commerce
Procedia PDF Downloads 3453977 Engineering Optimization Using Two-Stage Differential Evolution
Authors: K. Y. Tseng, C. Y. Wu
Abstract:
This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies.Keywords: differential evolution, Truss structure optimization, optimal chiller loading, modified binary differential evolution
Procedia PDF Downloads 1683976 The Effects of a Hippotherapy Simulator in Children with Cerebral Palsy: A Pilot Study
Authors: Canan Gunay Yazici, Zubeyir Sarı, Devrim Tarakci
Abstract:
Background: Hippotherapy considered as global techniques used in rehabilitation of children with cerebral palsy as it improved gait pattern, balance, postural control, balance and gross motor skills development but it encounters some problems (such as the excess of the cost of horses' care, nutrition, housing). Hippotherapy simulator is being developed in recent years to overcome these problems. These devices aim to create the effects of hippotherapy made with a real horse on patients by simulating the movements of a real horse. Objectives: To evaluate the efficacy of hippotherapy simulator on gross motor functions, sitting postural control and dynamic balance of children with cerebral palsy (CP). Methods: Fourteen children with CP, aged 6–15 years, seven with a diagnosis of spastic hemiplegia, five of diplegia, two of triplegia, Gross Motor Function Classification System level I-III. The Horse Riding Simulator (HRS), including four-speed program (warm-up, level 1-2-3), was used for hippotherapy simulator. Firstly, each child received Neurodevelopmental Therapy (NDT; 45min twice weekly eight weeks). Subsequently, the same children completed HRS+NDT (30min and 15min respectively, twice weekly eight weeks). Children were assessed pre-treatment, at the end of 8th and 16th week. Gross motor function, sitting postural control, dynamic sitting and standing balance were evaluated by Gross Motor Function Measure-88 (GMFM-88, Dimension B, D, E and Total Score), Trunk Impairment Scale (TIS), Pedalo® Sensamove Balance Test and Pediatric Balance Scale (PBS) respectively. Unit of Scientific Research Project of Marmara University supported our study. Results: All measured variables were a significant increase compared to baseline values after both intervention (NDT and HRS+NDT), except for dynamic sitting balance evaluated by Pedalo®. Especially HRS+NDT, increase in the measured variables was considerably higher than NDT. After NDT, the Total scores of GMFM-88 (mean baseline 62,2 ± 23,5; mean NDT: 66,6 ± 22,2; p < 0,05), TIS (10,4 ± 3,4; 12,1 ± 3; p < 0,05), PBS (37,4 ± 14,6; 39,6 ± 12,9; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 92,3 ± 5,2; p > 0,05) and Pedalo® standing balance points (80,2 ± 10,8; 82,5 ± 11,5; p < 0,05) increased by 7,1%, 2%, 3,9%, 5,2% and 6 % respectively. After HRS+NDT treatment, the total scores of GMFM-88 (mean baseline: 62,2 ± 23,5; mean HRS+NDT: 71,6 ± 21,4; p < 0,05), TIS (10,4 ± 3,4; 15,6 ± 2,9; p < 0,05), PBS (37,4 ± 14,6; 42,5 ± 12; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 93,8 ± 3,7; p > 0,05) and standing balance points (80,2 ± 10,8; 86,2 ± 5,6; p < 0,05) increased by 15,2%, 6%, 7,3%, 6,4%, and 11,9%, respectively, compared to the initial values. Conclusion: Neurodevelopmental therapy provided significant improvements in gross motor functions, sitting postural control, sitting and standing balance of children with CP. When the hippotherapy simulator added to the treatment program, it was observed that these functions were further developed (especially with gross motor functions and dynamic balance). As a result, this pilot study showed that the hippotherapy simulator could be a useful alternative to neurodevelopmental therapy for the improvement of gross motor function, sitting postural control and dynamic balance of children with CP.Keywords: balance, cerebral palsy, hippotherapy, rehabilitation
Procedia PDF Downloads 1423975 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition
Procedia PDF Downloads 1883974 Simulation-Based Diversity Management in Human-Robot Collaborative Scenarios
Authors: Titanilla Komenda, Viktorio Malisa
Abstract:
In this paper, the influence of diversity-related factors on the design of collaborative scenarios is analysed. Based on the evaluation, a framework for simulating human-robot-collaboration is presented that considers both human factors as well as the overall system performance. The implementation of the model is shown on a real-life scenario from industry and validated in terms of traceability, safety and physical limitations. By comparing scenarios that consider diversity with those only meeting system performance, an overall understanding of individually adapted human-robot-collaborative workspaces is reached. A diversity-related guideline for human-robot-collaborations provides a summary of the research and aids in optimizing future applications. Finally, limitations and future amendments of the model are discussed.Keywords: diversity, human-machine system, human-robot collaboration, simulation
Procedia PDF Downloads 3043973 The Temporal Implications of Spatial Prospects
Authors: Zhuo Job Chen, Kevin Nute
Abstract:
The work reported examines potential linkages between spatial and temporal prospects, and more specifically, between variations in the spatial depth and foreground obstruction of window views, and observers’ sense of connection to the future. It was found that external views from indoor spaces were strongly associated with a sense of the future, that partially obstructing such a view with foreground objects significantly reduced its association with the future, and replacing it with a pictorial representation of the same scene (with no real actual depth) removed most of its temporal association. A lesser change in the spatial depth of the view, however, had no apparent effect on association with the future. While the role of spatial depth has still to be confirmed, the results suggest that spatial prospects directly affect temporal ones. The word “prospect” typifies the overlapping of the spatial and temporal in most human languages. It originated in classical times as a purely spatial term, but in the 16th century took on the additional temporal implication of an imagined view ahead, of the future. The psychological notion of prospection, then, has its distant origins in a spatial analogue. While it is not yet proven that space directly structures our processing of time at a physiological level, it is generally agreed that it commonly does so conceptually. The mental representation of possible futures has been a central part of human survival as a species (Boyer, 2008; Suddendorf & Corballis, 2007). A sense of the future seems critical not only practically, but also psychologically. It has been suggested, for example, that lack of a positive image of the future may be an important contributing cause of depression (Beck, 1974; Seligman, 2016). Most people in the developed world now spend more than 90% of their lives indoors. So any direct link between external views and temporal prospects could have important implications for both human well-being and building design. We found that the ability to see what lies in front of us spatially was strongly associated with a sense of what lies ahead temporally. Partial obstruction of a view was found to significantly reduce that sense connection to the future. Replacing a view with a flat pictorial representation of the same scene removed almost all of its connection with the future, but changing the spatial depth of a real view appeared to have no significant effect. While foreground obstructions were found to reduce subjects’ sense of connection to the future, they increased their sense of refuge and security. Consistent with Prospect and Refuge theory, an ideal environment, then, would seem to be one in which we can “see without being seen” (Lorenz, 1952), specifically one that conceals us frontally from others, without restricting our own view. It is suggested that these optimal conditions might be translated architecturally as screens, the apertures of which are large enough for a building occupant to see through unobstructed from close by, but small enough to conceal them from the view of someone looking from a distance outside.Keywords: foreground obstructions, prospection, spatial depth, window views
Procedia PDF Downloads 1233972 Real Time Multi Person Action Recognition Using Pose Estimates
Authors: Aishrith Rao
Abstract:
Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks
Procedia PDF Downloads 141