Search results for: musculoskeletal modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4140

Search results for: musculoskeletal modeling

870 Factor Influencing Pharmacist Engagement and Turnover Intention in Thai Community Pharmacist: A Structural Equation Modelling Approach

Authors: T. Nakpun, T. Kanjanarach, T. Kittisopee

Abstract:

Turnover of community pharmacist can affect continuity of patient care and most importantly the quality of care and also the costs of a pharmacy. It was hypothesized that organizational resources, job characteristics, and social supports had direct effect on pharmacist turnover intention, and indirect effect on pharmacist turnover intention via pharmacist engagement. This research aimed to study influencing factors on pharmacist engagement and pharmacist turnover intention by testing the proposed structural hypothesized model to explain the relationship among organizational resources, job characteristics, and social supports that effect on pharmacist turnover intention and pharmacist engagement in Thai community pharmacists. A cross sectional study design with self-administered questionnaire was conducted in 209 Thai community pharmacists. Data were analyzed using Structural Equation Modeling technique with analysis of a moment structures AMOS program. The final model showed that only organizational resources had significant negative direct effect on pharmacist turnover intention (β =-0.45). Job characteristics and social supports had significant positive relationship with pharmacist engagement (β = 0.44, and 0.55 respectively). Pharmacist engagement had significant negative relationship with pharmacist turnover intention (β = - 0.24). Thus, job characteristics and social supports had significant negative indirect effect on turnover intention via pharmacist engagement (β =-0.11 and -0.13, respectively). The model fit the data well (χ2/ degree of freedom (DF) = 2.12, the goodness of fit index (GFI)=0.89, comparative fit index (CFI) = 0.94 and root mean square error of approximation (RMSEA) = 0.07). This study can be concluded that organizational resources were the most important factor because it had direct effect on pharmacist turnover intention. Job characteristics and social supports were also help decrease pharmacist turnover intention via pharmacist engagement.

Keywords: community pharmacist, influencing factor, turnover intention, work engagement

Procedia PDF Downloads 207
869 Development of National Scale Hydropower Resource Assessment Scheme Using SWAT and Geospatial Techniques

Authors: Rowane May A. Fesalbon, Greyland C. Agno, Jodel L. Cuasay, Dindo A. Malonzo, Ma. Rosario Concepcion O. Ang

Abstract:

The Department of Energy of the Republic of the Philippines estimates that the country’s energy reserves for 2015 are dwindling– observed in the rotating power outages in several localities. To aid in the energy crisis, a national hydropower resource assessment scheme is developed. Hydropower is a resource that is derived from flowing water and difference in elevation. It is a renewable energy resource that is deemed abundant in the Philippines – being an archipelagic country that is rich in bodies of water and water resources. The objectives of this study is to develop a methodology for a national hydropower resource assessment using hydrologic modeling and geospatial techniques in order to generate resource maps for future reference and use of the government and other stakeholders. The methodology developed for this purpose is focused on two models – the implementation of the Soil and Water Assessment Tool (SWAT) for the river discharge and the use of geospatial techniques to analyze the topography and obtain the head, and generate the theoretical hydropower potential sites. The methodology is highly coupled with Geographic Information Systems to maximize the use of geodatabases and the spatial significance of the determined sites. The hydrologic model used in this workflow is SWAT integrated in the GIS software ArcGIS. The head is determined by a developed algorithm that utilizes a Synthetic Aperture Radar (SAR)-derived digital elevation model (DEM) which has a resolution of 10-meters. The initial results of the developed workflow indicate hydropower potential in the river reaches ranging from pico (less than 5 kW) to mini (1-3 MW) theoretical potential.

Keywords: ArcSWAT, renewable energy, hydrologic model, hydropower, GIS

Procedia PDF Downloads 313
868 Biophysical Modeling of Anisotropic Brain Tumor Growth

Authors: Mutaz Dwairy

Abstract:

Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.

Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment

Procedia PDF Downloads 50
867 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data

Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao

Abstract:

Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.

Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing

Procedia PDF Downloads 442
866 Mediation Role of Teachers’ Surface Acting and Deep Acting on the Relationship between Calling Orientation and Work Engagement

Authors: Yohannes Bisa Biramo

Abstract:

This study examined the meditational role of surface acting and deep acting on the relationship between calling orientation and work engagement of teachers in secondary schools of Wolaita Zone, Wolaita, Ethiopia. A predictive non-experimental correlational design was performed among 300 secondary school teachers. Stratified random sampling followed by a systematic random sampling technique was used as the basis for selecting samples from the target population. To analyze the data, Structural Equation Modeling (SEM) was used to test the association between the independent variables and the dependent variables. Furthermore, the goodness of fit of the study variables was tested using SEM to see and explain the path influence of the independent variable on the dependent variable. Confirmatory factor analysis (CFA) was conducted to test the validity of the scales in the study and to assess the measurement model fit indices. The analysis result revealed that calling was significantly and positively correlated with surface acting, deep acting and work engagement. Similarly, surface acting was significantly and positively correlated with deep acting and work engagement. And also, deep acting was significantly and positively correlated with work engagement. With respect to mediation analysis, the result revealed that surface acting mediated the relationship between calling and work engagement and also deep acting mediated the relationship between calling and work engagement. Besides, by using the model of the present study, the school leaders and practitioners can identify a core area to be considered in recruiting and letting teachers teach, in giving induction training for newly employed teachers and in performance appraisal.

Keywords: calling, surface acting, deep acting, work engagement, mediation, teachers

Procedia PDF Downloads 86
865 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 108
864 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model

Authors: Can Huang, Xiaoliang Wang, Qingquan Liu

Abstract:

Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.

Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH

Procedia PDF Downloads 64
863 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 55
862 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 207
861 A Project-Based Learning Approach in the Course of 'Engineering Skills' for Undergraduate Engineering Students

Authors: Armin Eilaghi, Ahmad Sedaghat, Hayder Abdurazzak, Fadi Alkhatib, Shiva Sadeghi, Martin Jaeger

Abstract:

A summary of experiences, recommendations, and lessons learnt in the application of PBL in the course of “Engineering Skills” in the School of Engineering at Australian College of Kuwait in Kuwait is presented. Four projects were introduced as part of the PBL course “Engineering Skills” to 24 students in School of Engineering. These students were grouped in 6 teams to develop their skills in 10 learning outcomes. The learning outcomes targeted skills such as drawing, design, modeling, manufacturing and analysis at a preliminary level; and also some life line learning and teamwork skills as these students were exposed for the first time to the PBL (project based learning). The students were assessed for 10 learning outcomes of the course and students’ feedback was collected using an anonymous survey at the end of the course. Analyzing the students’ feedbacks, it is observed that 67% of students preferred multiple smaller projects than a single big project because it provided them with more time and attention focus to improve their “soft skills” including project management, risk assessment, and failure analysis. Moreover, it is found that 63% of students preferred to work with different team members during the course to improve their professional communication skills. Among all, 62% of students believed that working with team members from other departments helped them to increase the innovative aspect of projects and improved their overall performance. However, 70% of students counted extra time needed to regenerate momentum with the new teams as the major challenge. Project based learning provided a suitable platform for introducing students to professional engineering practice and meeting the needs of students, employers and educators. It was found that students achieved their 10 learning outcomes and gained new skills developed in this PBL unit. This was reflected in their portfolios and assessment survey.

Keywords: project-based learning, engineering skills, undergraduate engineering, problem-based learning

Procedia PDF Downloads 168
860 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction

Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan

Abstract:

The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.

Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis

Procedia PDF Downloads 93
859 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm

Authors: Muhammad Umar Kiani, Muhammad Shahbaz

Abstract:

Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.

Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process

Procedia PDF Downloads 407
858 Modeling Factors Influencing Online Shopping Intention among Consumers in Nigeria: A Proposed Framework

Authors: Abubakar Mukhtar Yakasai, Muhammad Tahir Jan

Abstract:

Purpose: This paper is aimed at exploring factors influencing online shopping intention among the young consumers in Nigeria. Design/Methodology/approach: The paper adopted and extended Technology Acceptance Model (TAM) as the basis for literature review. Additionally, the paper proposed a framework with the inclusion of culture as a moderating factor of consumer online shopping intention among consumers in Nigeria. Findings: Despite high rate of internet penetration in Nigerian, as well as the rapid advancement of online shopping in the world, little attention was paid to this important revolution specifically among Nigeria’s consumers. Based on the review of extant literature, the TAM extended to include perceived risk and enjoyment (PR and PE) was discovered to be a better alternative framework for predicting Nigeria’s young consumers’ online shopping intention. The moderating effect of culture in the proposed model is shown to help immensely in ascertaining differences, if any, between various cultural groups among online shoppers in Nigeria. Originality/ value: The critical analysis of different factors will assist practitioners (like online retailers, e-marketing managers, website developers, etc.) by signifying which combinations of factors can best predict consumer online shopping behaviour in particular instances, thereby resulting in effective value delivery. Online shopping is a newly adopted technology in Nigeria, hence the paper will give a clear focus for effective e-marketing strategy. In addition, the proposed framework in this paper will guide future researchers by providing a tool for systematic evaluation and testing of real empirical situation of online shopping in Nigeria.

Keywords: online shopping, perceived ease of use, perceived usefulness, perceived enjoyment, technology acceptance model, Nigeria

Procedia PDF Downloads 281
857 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model

Procedia PDF Downloads 150
856 Unified Theory of Acceptance and Use of Technology in Evaluating Voters' Intention Towards the Adoption of Electronic Forensic Election Audit System

Authors: Sijuade A. A., Oguntoye J. P., Awodoye O. O., Adedapo O. A., Wahab W. B., Okediran O. O., Omidiora E. O., Olabiyisi S. O.

Abstract:

Electronic voting systems have been introduced to improve the efficiency, accuracy, and transparency of the election process in many countries around the world, including Nigeria. However, concerns have been raised about the security and integrity of these systems. One way to address these concerns is through the implementation of electronic forensic election audit systems. This study aims to evaluate voters' intention to the adoption of electronic forensic election audit systems using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. In the study, the UTAUT model which is a widely used model in the field of information systems to explain the factors that influence individuals' intention to use a technology by integrating performance expectancy, effort expectancy, social influence, facilitating conditions, cost factor and privacy factor to voters’ behavioural intention was proposed. A total of 294 sample data were collected from a selected population of electorates who had at one time or the other participated in at least an electioneering process in Nigeria. The data was then analyzed statistically using Partial Least Square Structural Equation Modeling (PLS-SEM). The results obtained show that all variables have a significant effect on the electorates’ behavioral intention to adopt the development and implementation of an electronic forensic election audit system in Nigeria.

Keywords: election Audi, voters, UTAUT, performance expectancy, effort expectancy, social influence, facilitating condition social influence, facilitating conditions, cost factor, privacy factor, behavioural intention

Procedia PDF Downloads 74
855 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area

Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo

Abstract:

Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.

Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine

Procedia PDF Downloads 356
854 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 153
853 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle

Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu

Abstract:

Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.

Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle

Procedia PDF Downloads 147
852 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 132
851 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 111
850 PitMod: The Lorax Pit Lake Hydrodynamic and Water Quality Model

Authors: Silvano Salvador, Maryam Zarrinderakht, Alan Martin

Abstract:

Open pits, which are the result of mining, are filled by water over time until the water reaches the elevation of the local water table and generates mine pit lakes. There are several specific regulations about the water quality of pit lakes, and mining operations should keep the quality of groundwater above pre-defined standards. Therefore, an accurate, acceptable numerical model predicting pit lakes’ water balance and water quality is needed in advance of mine excavation. We carry on analyzing and developing the model introduced by Crusius, Dunbar, et al. (2002) for pit lakes. This model, called “PitMod”, simulates the physical and geochemical evolution of pit lakes over time scales ranging from a few months up to a century or more. Here, a lake is approximated as one-dimensional, horizontally averaged vertical layers. PitMod calculates the time-dependent vertical distribution of physical and geochemical pit lake properties, like temperature, salinity, conductivity, pH, trace metals, and dissolved oxygen, within each model layer. This model considers the effect of pit morphology, climate data, multiple surface and subsurface (groundwater) inflows/outflows, precipitation/evaporation, surface ice formation/melting, vertical mixing due to surface wind stress, convection, background turbulence and equilibrium geochemistry using PHREEQC and linking that to the geochemical reactions. PitMod, which is used and validated in over 50 mines projects since 2002, incorporates physical processes like those found in other lake models such as DYRESM (Imerito 2007). However, unlike DYRESM PitMod also includes geochemical processes, pit wall runoff, and other effects. In addition, PitMod is actively under development and can be customized as required for a particular site.

Keywords: pit lakes, mining, modeling, hydrology

Procedia PDF Downloads 163
849 Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders

Authors: Annamária Käferné Rácz, Bence Jáger, Balázs Kövesdi, László Dunai

Abstract:

Due to the numerous advantages of steel corrugated web girders, its application field is growing for bridges as well as for buildings. The global stability behavior of such girders is significantly larger than those of conventional I-girders with flat web, thus the application of the structural steel material can be significantly reduced. Design codes and specifications do not provide clear and complete rules or recommendations for the determination of the lateral torsional buckling (LTB) resistance of corrugated web girders. Therefore, the authors made a thorough investigation regarding the LTB resistance of the corrugated web girders. Finite element (FE) simulations have been performed to develop new design formulas for the determination of the LTB resistance of trapezoidally corrugated web girders. FE model is developed considering geometrical and material nonlinear analysis using equivalent geometric imperfections (GMNI analysis). The equivalent geometric imperfections involve the initial geometric imperfections and residual stresses coming from rolling, welding and flame cutting. Imperfection sensitivity analysis was performed to determine the necessary magnitudes regarding only the first eigenmodes shape imperfections. By the help of the validated FE model, an extended parametric study is carried out to investigate the LTB resistance for different trapezoidal corrugation profiles. First, the critical moment of a specific girder was calculated by FE model. The critical moments from the FE calculations are compared to the previous analytical calculation proposals. Then, nonlinear analysis was carried out to determine the ultimate resistance. Due to the numerical investigations, new proposals are developed for the determination of the LTB resistance of trapezoidally corrugated web girders through a modification factor on the design method related to the conventional flat web girders.

Keywords: corrugated web, lateral torsional buckling, critical moment, FE modeling

Procedia PDF Downloads 286
848 Ebola Virus Glycoprotein Inhibitors from Natural Compounds: Computer-Aided Drug Design

Authors: Driss Cherqaoui, Nouhaila Ait Lahcen, Ismail Hdoufane, Mehdi Oubahmane, Wissal Liman, Christelle Delaite, Mohammed M. Alanazi

Abstract:

The Ebola virus is a highly contagious and deadly pathogen that causes Ebola virus disease. The Ebola virus glycoprotein (EBOV-GP) is a key factor in viral entry into host cells, making it a critical target for therapeutic intervention. Using a combination of computational approaches, this study focuses on the identification of natural compounds that could serve as potent inhibitors of EBOV-GP. The 3D structure of EBOV-GP was selected, with missing residues modeled, and this structure was minimized and equilibrated. Two large natural compound databases, COCONUT and NPASS, were chosen and filtered based on toxicity risks and Lipinski’s Rule of Five to ensure drug-likeness. Following this, a pharmacophore model, built from 22 reported active inhibitors, was employed to refine the selection of compounds with a focus on structural relevance to known Ebola inhibitors. The filtered compounds were subjected to virtual screening via molecular docking, which identified ten promising candidates (five from each database) with strong binding affinities to EBOV-GP. These compounds were then validated through molecular dynamics simulations to evaluate their binding stability and interactions with the target. The top three compounds from each database were further analyzed using ADMET profiling, confirming their favorable pharmacokinetic properties, stability, and safety. These results suggest that the selected compounds have the potential to inhibit EBOV-GP, offering new avenues for antiviral drug development against the Ebola virus.

Keywords: EBOV-GP, Ebola virus glycoprotein, high-throughput drug screening, molecular docking, molecular dynamics, natural compounds, pharmacophore modeling, virtual screening

Procedia PDF Downloads 24
847 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin

Authors: Goksel Ezgi Guzey, Bihrat Onoz

Abstract:

The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.

Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower

Procedia PDF Downloads 130
846 Solid State Fermentation Process Development for Trichoderma asperellum Using Inert Support in a Fixed Bed Fermenter

Authors: Mauricio Cruz, Andrés Díaz García, Martha Isabel Gómez, Juan Carlos Serrato Bermúdez

Abstract:

The disadvantages of using natural substrates in SSF processes have been well recognized and mainly are associated to gradual decomposition of the substrate, formation of agglomerates and decrease of porosity bed generating limitations in the mass and heat transfer. Additionally, in several cases, materials with a high agricultural value such as sour milk, beets, rice, beans and corn have been used. Thus, the use of economic inert supports (natural or synthetic) in combination with a nutrient suspension for the production of biocontrol microorganisms is a good alternative in SSF processes, but requires further studies in the fields of modeling and optimization. Therefore, the aim of this work is to compare the performance of two inert supports, a synthetic (polyurethane foam) and a natural one (rice husk), identifying the factors that have the major effects on the productivity of T. asperellum Th204 and the maximum specific growth rate in a PROPHYTA L05® fixed bed bioreactor. For this, the six factors C:N ratio, temperature, inoculation rate, bed height, air moisture content and airflow were evaluated using a fractional design. The factors C:N and air flow were identified as significant on the productivity (expressed as conidia/dry substrate•h). The polyurethane foam showed higher maximum specific growth rate (0.1631 h-1) and productivities of 3.89 x107 conidia/dry substrate•h compared to rice husk (2.83x106) and natural substrate based on rice (8.87x106) used as control. Finally, a quadratic model was generated and validated, obtaining productivities higher than 3.0x107 conidia/dry substrate•h with air flow at 0.9 m3/h and C:N ratio at 18.1.

Keywords: bioprocess, scale up, fractional design, C:N ratio, air flow

Procedia PDF Downloads 509
845 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling

Procedia PDF Downloads 126
844 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices

Authors: Amani Abdallah, Isam Shahrour

Abstract:

The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.

Keywords: distribution system, drinking water, refraction index, sensor, real-time

Procedia PDF Downloads 357
843 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 28
842 Structural Model on Organizational Climate, Leadership Behavior and Organizational Commitment: Work Engagement of Private Secondary School Teachers in Davao City

Authors: Genevaive Melendres

Abstract:

School administrators face the reality of teachers losing their engagement, or schools losing the teachers. This study is then conducted to identify a structural model that best predict work engagement of private secondary teachers in Davao City. Ninety-three teachers from four sectarian schools and 56 teachers from four non-sectarian schools were involved in the completion of four survey instruments namely Organizational Climate Questionnaire, Leader Behavior Descriptive Questionnaire, Organizational Commitment Scales, and Utrecht Work Engagement Scales. Data were analyzed using frequency distribution, mean, standardized deviation, t-test for independent sample, Pearson r, stepwise multiple regression analysis, and structural equation modeling. Results show that schools have high level of organizational climate dimensions; leaders oftentimes show work-oriented and people-oriented behavior; teachers have high normative commitment and they are very often engaged at their work. Teachers from non-sectarian schools have higher organizational commitment than those from sectarian schools. Organizational climate and leadership behavior are positively related to and predict work engagement whereas commitment did not show any relationship. This study underscores the relative effects of three variables on the work engagement of teachers. After testing network of relationships and evaluating several models, a best-fitting model was found between leadership behavior and work engagement. The noteworthy findings suggest that principals pay attention and consistently evaluate their behavior for this best predicts the work engagement of the teachers. The study provides value to administrators who take decisions and create conditions in which teachers derive fulfillment.

Keywords: leadership behavior, organizational climate, organizational commitment, private secondary school teachers, structural model on work engagement

Procedia PDF Downloads 275
841 Meanings and Concepts of Standardization in Systems Medicine

Authors: Imme Petersen, Wiebke Sick, Regine Kollek

Abstract:

In systems medicine, high-throughput technologies produce large amounts of data on different biological and pathological processes, including (disturbed) gene expressions, metabolic pathways and signaling. The large volume of data of different types, stored in separate databases and often located at different geographical sites have posed new challenges regarding data handling and processing. Tools based on bioinformatics have been developed to resolve the upcoming problems of systematizing, standardizing and integrating the various data. However, the heterogeneity of data gathered at different levels of biological complexity is still a major challenge in data analysis. To build multilayer disease modules, large and heterogeneous data of disease-related information (e.g., genotype, phenotype, environmental factors) are correlated. Therefore, a great deal of attention in systems medicine has been put on data standardization, primarily to retrieve and combine large, heterogeneous datasets into standardized and incorporated forms and structures. However, this data-centred concept of standardization in systems medicine is contrary to the debate in science and technology studies (STS) on standardization that rather emphasizes the dynamics, contexts and negotiations of standard operating procedures. Based on empirical work on research consortia that explore the molecular profile of diseases to establish systems medical approaches in the clinic in Germany, we trace how standardized data are processed and shaped by bioinformatics tools, how scientists using such data in research perceive such standard operating procedures and which consequences for knowledge production (e.g. modeling) arise from it. Hence, different concepts and meanings of standardization are explored to get a deeper insight into standard operating procedures not only in systems medicine, but also beyond.

Keywords: data, science and technology studies (STS), standardization, systems medicine

Procedia PDF Downloads 342