Search results for: machine failures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3304

Search results for: machine failures

34 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence

Authors: Gus Calderon, Richard McCreight, Tammy Schwartz

Abstract:

Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.

Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.

Procedia PDF Downloads 108
33 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment

Authors: Iryna P. Dzieciuch, Michael D. Putman

Abstract:

Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.

Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin

Procedia PDF Downloads 161
32 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 191
31 Extension of Moral Agency to Artificial Agents

Authors: Sofia Quaglia, Carmine Di Martino, Brendan Tierney

Abstract:

Artificial Intelligence (A.I.) constitutes various aspects of modern life, from the Machine Learning algorithms predicting the stocks on Wall streets to the killing of belligerents and innocents alike on the battlefield. Moreover, the end goal is to create autonomous A.I.; this means that the presence of humans in the decision-making process will be absent. The question comes naturally: when an A.I. does something wrong when its behavior is harmful to the community and its actions go against the law, which is to be held responsible? This research’s subject matter in A.I. and Robot Ethics focuses mainly on Robot Rights and its ultimate objective is to answer the questions: (i) What is the function of rights? (ii) Who is a right holder, what is personhood and the requirements needed to be a moral agent (therefore, accountable for responsibility)? (iii) Can an A.I. be a moral agent? (ontological requirements) and finally (iv) if it ought to be one (ethical implications). With the direction to answer this question, this research project was done via a collaboration between the School of Computer Science in the Technical University of Dublin that oversaw the technical aspects of this work, as well as the Department of Philosophy in the University of Milan, who supervised the philosophical framework and argumentation of the project. Firstly, it was found that all rights are positive and based on consensus; they change with time based on circumstances. Their function is to protect the social fabric and avoid dangerous situations. The same goes for the requirements considered necessary to be a moral agent: those are not absolute; in fact, they are constantly redesigned. Hence, the next logical step was to identify what requirements are regarded as fundamental in real-world judicial systems, comparing them to that of ones used in philosophy. Autonomy, free will, intentionality, consciousness and responsibility were identified as the requirements to be considered a moral agent. The work went on to build a symmetrical system between personhood and A.I. to enable the emergence of the ontological differences between the two. Each requirement is introduced, explained in the most relevant theories of contemporary philosophy, and observed in its manifestation in A.I. Finally, after completing the philosophical and technical analysis, conclusions were drawn. As underlined in the research questions, there are two issues regarding the assignment of moral agency to artificial agent: the first being that all the ontological requirements must be present and secondly being present or not, whether an A.I. ought to be considered as an artificial moral agent. From an ontological point of view, it is very hard to prove that an A.I. could be autonomous, free, intentional, conscious, and responsible. The philosophical accounts are often very theoretical and inconclusive, making it difficult to fully detect these requirements on an experimental level of demonstration. However, from an ethical point of view it makes sense to consider some A.I. as artificial moral agents, hence responsible for their own actions. When considering artificial agents as responsible, there can be applied already existing norms in our judicial system such as removing them from society, and re-educating them, in order to re-introduced them to society. This is in line with how the highest profile correctional facilities ought to work. Noticeably, this is a provisional conclusion and research must continue further. Nevertheless, the strength of the presented argument lies in its immediate applicability to real world scenarios. To refer to the aforementioned incidents, involving the murderer of innocents, when this thesis is applied it is possible to hold an A.I. accountable and responsible for its actions. This infers removing it from society by virtue of its un-usability, re-programming it and, only when properly functioning, re-introducing it successfully

Keywords: artificial agency, correctional system, ethics, natural agency, responsibility

Procedia PDF Downloads 188
30 Learning from Dendrites: Improving the Point Neuron Model

Authors: Alexander Vandesompele, Joni Dambre

Abstract:

The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.

Keywords: dendritic computation, spiking neural networks, point neuron model

Procedia PDF Downloads 133
29 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects

Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha

Abstract:

The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).

Keywords: artificial intelligence, space traffic management, space situational awareness, space debris

Procedia PDF Downloads 258
28 A Multiple Freezing/Thawing Cycles Influence Internal Structure and Mechanical Properties of Achilles Tendon

Authors: Martyna Ekiert, Natalia Grzechnik, Joanna Karbowniczek, Urszula Stachewicz, Andrzej Mlyniec

Abstract:

Tendon grafting is a common procedure performed to treat tendon rupture. Before the surgical procedure, tissues intended for grafts (i.e., Achilles tendon) are stored in ultra-low temperatures for a long time and also may be subjected to unfavorable conditions, such as repetitive freezing (F) and thawing (T). Such storage protocols may highly influence the graft mechanical properties, decrease its functionality and thus increase the risk of complications during the transplant procedure. The literature reports on the influence of multiple F/T cycles on internal structure and mechanical properties of tendons stay inconclusive, confirming and denying the negative influence of multiple F/T at the same time. An inconsistent research methodology and lack of clear limit of F/T cycles, which disqualifies tissue for surgical graft purposes, encouraged us to investigate the issue of multiple F/T cycles by the mean of biomechanical tensile tests supported with Scanning Electron Microscope (SEM) imaging. The study was conducted on male bovine Achilles tendon-derived from the local abattoir. Fresh tendons were cleaned of excessive membranes and then sectioned to obtained fascicle bundles. Collected samples were randomly assigned to 6 groups subjected to 1, 2, 4, 6, 8 and 12 cycles of freezing-thawing (F/T), respectively. Each F/T cycle included deep freezing at -80°C temperature, followed by thawing at room temperature. After final thawing, thin slices of the side part of samples subjected to 1, 4, 8 and 12 F/T cycles were collected for SEM imaging. Then, the width and thickness of all samples were measured to calculate the cross-sectional area. Biomechanical tests were performed using the universal testing machine (model Instron 8872, INSTRON®, Norwood, Massachusetts, USA) using a load cell with a maximum capacity of 250 kN and standard atmospheric conditions. Both ends of each fascicle bundle were manually clamped in grasping clamps using abrasive paper and wet cellulose wadding swabs to prevent tissue slipping while clamping and testing. Samples were subjected to the testing procedure including pre-loading, pre-cycling, loading, holding and unloading steps to obtain stress-strain curves for representing tendon stretching and relaxation. The stiffness of AT fascicles bundle samples was evaluated in terms of modulus of elasticity (Young’s modulus), calculated from the slope of the linear region of stress-strain curves. SEM imaging was preceded by chemical sample preparation including 24hr fixation in 3% glutaraldehyde buffered with 0.1 M phosphate buffer, washing with 0.1 M phosphate buffer solution and dehydration in a graded ethanol solution. SEM images (Merlin Gemini II microscope, ZEISS®) were taken using 30 000x mag, which allowed measuring a diameter of collagen fibrils. The results confirm a decrease in fascicle bundles Young’s modulus as well as a decrease in the diameter of collagen fibrils. These results confirm the negative influence of multiple F/T cycles on the mechanical properties of tendon tissue.

Keywords: biomechanics, collagen, fascicle bundles, soft tissue

Procedia PDF Downloads 125
27 Computer-Integrated Surgery of the Human Brain, New Possibilities

Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto

Abstract:

The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.

Keywords: computational mechanics, peridynamics, finite element, biomechanics

Procedia PDF Downloads 80
26 Made on Land, Ends Up in the Water "I-Clare" Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam

Authors: Sabina Żołędowska, Tadeusz Ossowski, Robert Bogdanowicz, Jacek Ryl, Paweł Rostkowski, Michał Kruczkowski, Michał Sobaszek, Zofia Cebula, Grzegorz Skowierzak, Paweł Jakóbczyk, Lilit Hovhannisyan, Paweł Ślepski, Iwona Kaczmarczyk, Mattia Pierpaoli, Bartłomiej Dec, Dawid Nidzworski

Abstract:

The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx).

Keywords: waste water treatement, RVC, electrocatalysis, paracetamol

Procedia PDF Downloads 88
25 A Computational Investigation of Potential Drugs for Cholesterol Regulation to Treat Alzheimer’s Disease

Authors: Marina Passero, Tianhua Zhai, Zuyi (Jacky) Huang

Abstract:

Alzheimer’s disease has become a major public health issue, as indicated by the increasing populations of Americans living with Alzheimer’s disease. After decades of extensive research in Alzheimer’s disease, only seven drugs have been approved by Food and Drug Administration (FDA) to treat Alzheimer’s disease. Five of these drugs were designed to treat the dementia symptoms, and only two drugs (i.e., Aducanumab and Lecanemab) target the progression of Alzheimer’s disease, especially the accumulation of amyloid-b plaques. However, controversial comments were raised for the accelerated approvals of either Aducanumab or Lecanemab, especially with concerns on safety and side effects of these two drugs. There is still an urgent need for further drug discovery to target the biological processes involved in the progression of Alzheimer’s disease. Excessive cholesterol has been found to accumulate in the brain of those with Alzheimer’s disease. Cholesterol can be synthesized in both the blood and the brain, but the majority of biosynthesis in the adult brain takes place in astrocytes and is then transported to the neurons via ApoE. The blood brain barrier separates cholesterol metabolism in the brain from the rest of the body. Various proteins contribute to the metabolism of cholesterol in the brain, which offer potential targets for Alzheimer’s treatment. In the astrocytes, SREBP cleavage-activating protein (SCAP) binds to Sterol Regulatory Element-binding Protein 2 (SREBP2) in order to transport the complex from the endoplasmic reticulum to the Golgi apparatus. Cholesterol is secreted out of the astrocytes by ATP-Binding Cassette A1 (ABCA1) transporter. Lipoprotein receptors such as triggering receptor expressed on myeloid cells 2 (TREM2) internalize cholesterol into the microglia, while lipoprotein receptors such as Low-density lipoprotein receptor-related protein 1 (LRP1) internalize cholesterol into the neuron. Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1) converts excess cholesterol to 24S-hydroxycholesterol (24S-OHC). Cholesterol has been approved for its direct effect on the production of amyloid-beta and tau proteins. The addition of cholesterol to the brain promotes the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), secretase, and amyloid precursor protein (APP), which all aid in amyloid-beta production. The reduction of cholesterol esters in the brain have been found to reduce phosphorylated tau levels in mice. In this work, a computational pipeline was developed to identify the protein targets involved in cholesterol regulation in brain and further to identify chemical compounds as the inhibitors of a selected protein target. Since extensive evidence shows the strong correlation between brain cholesterol regulation and Alzheimer’s disease, a detailed literature review on genes or pathways related to the brain cholesterol synthesis and regulation was first conducted in this work. An interaction network was then built for those genes so that the top gene targets were identified. The involvement of these genes in Alzheimer’s disease progression was discussed, which was followed by the investigation of existing clinical trials for those targets. A ligand-protein docking program was finally developed to screen 1.5 million chemical compounds for the selected protein target. A machine learning program was developed to evaluate and predict the binding interaction between chemical compounds and the protein target. The results from this work pave the way for further drug discovery to regulate brain cholesterol to combat Alzheimer’s disease.

Keywords: Alzheimer’s disease, drug discovery, ligand-protein docking, gene-network analysis, cholesterol regulation

Procedia PDF Downloads 74
24 Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains

Authors: Jing Jin

Abstract:

The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape.

Keywords: information distortion, information quality, supply chain configuration, UK aerospace industry

Procedia PDF Downloads 64
23 Large-Scale Simulations of Turbulence Using Discontinuous Spectral Element Method

Authors: A. Peyvan, D. Li, J. Komperda, F. Mashayek

Abstract:

Turbulence can be observed in a variety fluid motions in nature and industrial applications. Recent investment in high-speed aircraft and propulsion systems has revitalized fundamental research on turbulent flows. In these systems, capturing chaotic fluid structures with different length and time scales is accomplished through the Direct Numerical Simulation (DNS) approach since it accurately simulates flows down to smallest dissipative scales, i.e., Kolmogorov’s scales. The discontinuous spectral element method (DSEM) is a high-order technique that uses spectral functions for approximating the solution. The DSEM code has been developed by our research group over the course of more than two decades. Recently, the code has been improved to run large cases in the order of billions of solution points. Running big simulations requires a considerable amount of RAM. Therefore, the DSEM code must be highly parallelized and able to start on multiple computational nodes on an HPC cluster with distributed memory. However, some pre-processing procedures, such as determining global element information, creating a global face list, and assigning global partitioning and element connection information of the domain for communication, must be done sequentially with a single processing core. A separate code has been written to perform the pre-processing procedures on a local machine. It stores the minimum amount of information that is required for the DSEM code to start in parallel, extracted from the mesh file, into text files (pre-files). It packs integer type information with a Stream Binary format in pre-files that are portable between machines. The files are generated to ensure fast read performance on different file-systems, such as Lustre and General Parallel File System (GPFS). A new subroutine has been added to the DSEM code to read the startup files using parallel MPI I/O, for Lustre, in a way that each MPI rank acquires its information from the file in parallel. In case of GPFS, in each computational node, a single MPI rank reads data from the file, which is specifically generated for the computational node, and send them to other ranks on the node using point to point non-blocking MPI communication. This way, communication takes place locally on each node and signals do not cross the switches of the cluster. The read subroutine has been tested on Argonne National Laboratory’s Mira (GPFS), National Center for Supercomputing Application’s Blue Waters (Lustre), San Diego Supercomputer Center’s Comet (Lustre), and UIC’s Extreme (Lustre). The tests showed that one file per node is suited for GPFS and parallel MPI I/O is the best choice for Lustre file system. The DSEM code relies on heavily optimized linear algebra operation such as matrix-matrix and matrix-vector products for calculation of the solution in every time-step. For this, the code can either make use of its matrix math library, BLAS, Intel MKL, or ATLAS. This fact and the discontinuous nature of the method makes the DSEM code run efficiently in parallel. The results of weak scaling tests performed on Blue Waters showed a scalable and efficient performance of the code in parallel computing.

Keywords: computational fluid dynamics, direct numerical simulation, spectral element, turbulent flow

Procedia PDF Downloads 133
22 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems

Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana

Abstract:

Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.

Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP

Procedia PDF Downloads 198
21 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 82
20 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
19 Braille Lab: A New Design Approach for Social Entrepreneurship and Innovation in Assistive Tools for the Visually Impaired

Authors: Claudio Loconsole, Daniele Leonardis, Antonio Brunetti, Gianpaolo Francesco Trotta, Nicholas Caporusso, Vitoantonio Bevilacqua

Abstract:

Unfortunately, many people still do not have access to communication, with specific regard to reading and writing. Among them, people who are blind or visually impaired, have several difficulties in getting access to the world, compared to the sighted. Indeed, despite technology advancement and cost reduction, nowadays assistive devices are still expensive such as Braille-based input/output systems which enable reading and writing texts (e.g., personal notes, documents). As a consequence, assistive technology affordability is fundamental in supporting the visually impaired in communication, learning, and social inclusion. This, in turn, has serious consequences in terms of equal access to opportunities, freedom of expression, and actual and independent participation to a society designed for the sighted. Moreover, the visually impaired experience difficulties in recognizing objects and interacting with devices in any activities of daily living. It is not a case that Braille indications are commonly reported only on medicine boxes and elevator keypads. Several software applications for the automatic translation of written text into speech (e.g., Text-To-Speech - TTS) enable reading pieces of documents. However, apart from simple tasks, in many circumstances TTS software is not suitable for understanding very complicated pieces of text requiring to dwell more on specific portions (e.g., mathematical formulas or Greek text). In addition, the experience of reading\writing text is completely different both in terms of engagement, and from an educational perspective. Statistics on the employment rate of blind people show that learning to read and write provides the visually impaired with up to 80% more opportunities of finding a job. Especially in higher educational levels, where the ability to digest very complex text is key, accessibility and availability of Braille plays a fundamental role in reducing drop-out rate of the visually impaired, thus affecting the effectiveness of the constitutional right to get access to education. In this context, the Braille Lab project aims at overcoming these social needs by including affordability in designing and developing assistive tools for visually impaired people. In detail, our awarded project focuses on a technology innovation of the operation principle of existing assistive tools for the visually impaired leaving the Human-Machine Interface unchanged. This can result in a significant reduction of the production costs and consequently of tool selling prices, thus representing an important opportunity for social entrepreneurship. The first two assistive tools designed within the Braille Lab project following the proposed approach aims to provide the possibility to personally print documents and handouts and to read texts written in Braille using refreshable Braille display, respectively. The former, named ‘Braille Cartridge’, represents an alternative solution for printing in Braille and consists in the realization of an electronic-controlled dispenser printing (cartridge) which can be integrated within traditional ink-jet printers, in order to leverage the efficiency and cost of the device mechanical structure which are already being used. The latter, named ‘Braille Cursor’, is an innovative Braille display featuring a substantial technology innovation by means of a unique cursor virtualizing Braille cells, thus limiting the number of active pins needed for Braille characters.

Keywords: Human rights, social challenges and technology innovations, visually impaired, affordability, assistive tools

Procedia PDF Downloads 273
18 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
17 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 96
16 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China

Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding

Abstract:

The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.

Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2

Procedia PDF Downloads 313
15 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies

Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda

Abstract:

Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.

Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation

Procedia PDF Downloads 32
14 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 91
13 Sinhala Sign Language to Grammatically Correct Sentences using NLP

Authors: Anjalika Fernando, Banuka Athuraliya

Abstract:

This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired community

Keywords: Sinhala sign language, sign Language, NLP, LSTM, NMT

Procedia PDF Downloads 104
12 Artificial Intelligence Impact on the Australian Government Public Sector

Authors: Jessica Ho

Abstract:

AI has helped government, businesses and industries transform the way they do things. AI is used in automating tasks to improve decision-making and efficiency. AI is embedded in sensors and used in automation to help save time and eliminate human errors in repetitive tasks. Today, we saw the growth in AI using the collection of vast amounts of data to forecast with greater accuracy, inform decision-making, adapt to changing market conditions and offer more personalised service based on consumer habits and preferences. Government around the world share the opportunity to leverage these disruptive technologies to improve productivity while reducing costs. In addition, these intelligent solutions can also help streamline government processes to deliver more seamless and intuitive user experiences for employees and citizens. This is a critical challenge for NSW Government as we are unable to determine the risk that is brought by the unprecedented pace of adoption of AI solutions in government. Government agencies must ensure that their use of AI complies with relevant laws and regulatory requirements, including those related to data privacy and security. Furthermore, there will always be ethical concerns surrounding the use of AI, such as the potential for bias, intellectual property rights and its impact on job security. Within NSW’s public sector, agencies are already testing AI for crowd control, infrastructure management, fraud compliance, public safety, transport, and police surveillance. Citizens are also attracted to the ease of use and accessibility of AI solutions without requiring specialised technical skills. This increased accessibility also comes with balancing a higher risk and exposure to the health and safety of citizens. On the other side, public agencies struggle with keeping up with this pace while minimising risks, but the low entry cost and open-source nature of generative AI led to a rapid increase in the development of AI powered apps organically – “There is an AI for That” in Government. Other challenges include the fact that there appeared to be no legislative provisions that expressly authorise the NSW Government to use an AI to make decision. On the global stage, there were too many actors in the regulatory space, and a sovereign response is needed to minimise multiplicity and regulatory burden. Therefore, traditional corporate risk and governance framework and regulation and legislation frameworks will need to be evaluated for AI unique challenges due to their rapidly evolving nature, ethical considerations, and heightened regulatory scrutiny impacting the safety of consumers and increased risks for Government. Creating an effective, efficient NSW Government’s governance regime, adapted to the range of different approaches to the applications of AI, is not a mere matter of overcoming technical challenges. Technologies have a wide range of social effects on our surroundings and behaviours. There is compelling evidence to show that Australia's sustained social and economic advancement depends on AI's ability to spur economic growth, boost productivity, and address a wide range of societal and political issues. AI may also inflict significant damage. If such harm is not addressed, the public's confidence in this kind of innovation will be weakened. This paper suggests several AI regulatory approaches for consideration that is forward-looking and agile while simultaneously fostering innovation and human rights. The anticipated outcome is to ensure that NSW Government matches the rising levels of innovation in AI technologies with the appropriate and balanced innovation in AI governance.

Keywords: artificial inteligence, machine learning, rules, governance, government

Procedia PDF Downloads 70
11 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems

Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger

Abstract:

Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.

Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems

Procedia PDF Downloads 193
10 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator

Authors: Victoria L. Chester, Usha Kuruganti

Abstract:

The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.

Keywords: EMG, forestry, human factors, wrist biomechanics

Procedia PDF Downloads 145
9 Human Bone Marrow Stem Cell Behavior on 3D Printed Scaffolds as Trabecular Bone Grafts

Authors: Zeynep Busra Velioglu, Deniz Pulat, Beril Demirbakan, Burak Ozcan, Ece Bayrak, Cevat Erisken

Abstract:

Bone tissue has the ability to perform a wide array of functions including providing posture, load-bearing capacity, protection for the internal organs, initiating hematopoiesis, and maintaining the homeostasis of key electrolytes via calcium/phosphate ion storage. The most common cause for bone defects is extensive trauma and subsequent infection. Bone tissue has the self-healing capability without a scar tissue formation for the majority of the injuries. However, some may result with delayed union or fracture non-union. Such cases include reconstruction of large bone defects or cases of compromised regenerative process as a result of avascular necrosis and osteoporosis. Several surgical methods exist to treat bone defects, including Ilizarov method, Masquelete technique, growth factor stimulation, and bone replacement. Unfortunately, these are technically demanding and come with noteworthy disadvantages such as lengthy treatment duration, adverse effects on the patient’s psychology, repeated surgical procedures, and often long hospitalization times. These limitations associated with surgical techniques make bone substitutes an attractive alternative. Here, it was hypothesized that a 3D printed scaffold will mimic trabecular bone in terms of biomechanical properties and that such scaffolds will support cell attachment and survival. To test this hypothesis, this study aimed at fabricating poly(lactic acid), PLA, structures using 3D printing technology for trabecular bone defects, characterizing the scaffolds and comparing with bovine trabecular bone. Capacity of scaffolds on human bone marrow stem cell (hBMSC) attachment and survival was also evaluated. Cubes with a volume of 1 cm³ having pore sizes of 0.50, 1.00 and 1.25 mm were printed. The scaffolds/grafts were characterized in terms of porosity, contact angle, compressive mechanical properties as well cell response. Porosities of the 3D printed scaffolds were calculated based on apparent densities. For contact angles, 50 µl distilled water was dropped over the surface of scaffolds, and contact angles were measured using ‘Image J’ software. Mechanical characterization under compression was performed on scaffolds and native trabecular bone (bovine, 15 months) specimens using a universal testing machine at a rate of 0.5mm/min. hBMSCs were seeded onto the 3D printed scaffolds. After 3 days of incubation with fully supplemented Dulbecco’s modified Eagle’s medium, the cells were fixed using 2% formaldehyde and glutaraldehyde mixture. The specimens were then imaged under scanning electron microscopy. Cell proliferation was determined by using EZQuant dsDNA Quantitation kit. Fluorescence was measured using microplate reader Spectramax M2 at the excitation and emission wavelengths of 485nm and 535nm, respectively. Findings suggested that porosity of scaffolds with pore dimensions of 0.5mm, 1.0mm and 1.25mm were not affected by pore size, while contact angle and compressive modulus decreased with increasing pore size. Biomechanical characterization of trabecular bone yielded higher modulus values as compared to scaffolds with all pore sizes studied. Cells attached and survived in all surfaces, demonstrating higher proliferation on scaffolds with 1.25mm pores as compared with those of 1mm. Collectively, given lower mechanical properties of scaffolds as compared to native bone, and biocompatibility of the scaffolds, the 3D printed PLA scaffolds of this study appear as candidate substitutes for bone repair and regeneration.

Keywords: 3D printing, biomechanics, bone repair, stem cell

Procedia PDF Downloads 172
8 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop

Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen

Abstract:

Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.

Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.

Procedia PDF Downloads 41
7 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg

Abstract:

Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis

Procedia PDF Downloads 339
6 Exploring Symptoms, Causes and Treatments of Feline Pruritus Using Thematic Analysis of Pet Owner Social Media Posts

Authors: Sitira Williams, Georgina Cherry, Andrea Wright, Kevin Wells, Taran Rai, Richard Brown, Travis Street, Alasdair Cook

Abstract:

Social media sources (50) were identified, keywords defined by veterinarians and organised into 6 topics known to be indicative of feline pruritus: body areas, behaviors, symptoms, diagnosis, and treatments. These were augmented using academic literature, a cat owner survey, synonyms, and Google Trends. The content was collected using a social intelligence solution, with keywords tagged and filtered. Data were aggregated and de-duplicated. SL content matching body areas, behaviors and symptoms were reviewed manually, and posts were marked relevant if: posted by a pet owner, identifying an itchy cat and not duplicated. A sub-set of 493 posts published from 2009-2022 was used for reflexive thematic analysis in NVIVO (Burlington, MA) to identify themes. Five themes were identified: allergy, pruritus, additional behaviors, unusual or undesirable behaviors, diagnosis, and treatment. Most (258) posts reported the cat was excessively licking, itching, and scratching. The majority were indoor cats and were less playful and friendly when itchy. Half of these posts did not indicate a known cause of pruritus. Bald spots and scabs (123) were reported, often causing swelling and fur loss, and 56 reported bumps, lumps, and dry patches. Other impacts on the cat’s quality of life were ear mites, cat self-trauma and stress. Seven posts reported their cats’ symptoms caused them ongoing anxiety and depression. Cats with food allergies to poultry (often chicken and beef) causing bald spots featured in 23 posts. Veterinarians advised switching to a raw food diet and/or changing their bowls. Some cats got worse after switching, leaving owners’ needs unmet. Allergic reactions to flea bites causing excessive itching, red spots, scabs, and fur loss were reported in 13 posts. Some (3) posts indicated allergic reactions to medication. Cats with seasonal and skin allergies, causing sneezing, scratching, headshaking, watery eyes, and nasal discharge, were reported 17 times. Eighty-five posts identified additional behaviors. Of these, 13 reported their cat’s burst pimple or insect bite. Common behaviors were headshaking, rubbing, pawing at their ears, and aggressively chewing. In some cases, bites or pimples triggered previously unseen itchiness, making the cat irritable. Twenty-four reported their cat had anxiety: overgrooming, itching, losing fur, hiding, freaking out, breathing quickly, sleeplessness, hissing and vocalising. Most reported these cats as having itchy skin, fleas, and bumps. Cats were commonly diagnosed with an ear infection, ringworm, acne, or kidney disease. Acne was diagnosed in cats with an allergy flare-up or overgrooming. Ear infections were diagnosed in itchy cats with mites or other parasites. Of the treatments mentioned, steroids were most frequently used, then anti-parasitics, including flea treatments and oral medication (steroids, antibiotics). Forty-six posts reported distress following poor outcomes after medication or additional vet consultations. SL provides veterinarians with unique insights. Verbatim comments highlight the detrimental effects of pruritus on pets and owner quality of life. This study demonstrates the need for veterinarians to communicate management and treatment options more effectively to relieve owner frustrations. Data analysis could be scaled up using machine learning for topic modeling.

Keywords: content analysis, feline, itch, pruritus, social media, thematic analysis, veterinary dermatology

Procedia PDF Downloads 191
5 Assessing the Utility of Unmanned Aerial Vehicle-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping

Authors: Qiaosi Li, Frankie Kwan Kit Wong, Tung Fung

Abstract:

Lightweight unmanned aerial vehicle (UAV) loading with novel sensors offers a low cost approach for data acquisition in complex environment. This study established a framework for applying UAV system in complex environment quick mapping and assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area Mai Po Inner Deep Bay Ramsar Site, Hong Kong. The study area was part of shallow bay with flat terrain and the major species including reedbed and four mangroves: Kandelia obovata, Aegiceras corniculatum, Acrostichum auerum and Acanthus ilicifolius. Other species involved in various graminaceous plants, tarbor, shrub and invasive species Mikania micrantha. In particular, invasive species climbed up to the mangrove canopy caused damage and morphology change which might increase species distinguishing difficulty. Hyperspectral images were acquired by Headwall Nano sensor with spectral range from 400nm to 1000nm and 0.06m spatial resolution image. A sequence of multi-view RGB images was captured with 0.02m spatial resolution and 75% overlap. Hyperspectral image was corrected for radiative and geometric distortion while high resolution RGB images were matched to generate maximum dense point clouds. Furtherly, a 5 cm grid digital surface model (DSM) was derived from dense point clouds. Multiple feature reduction methods were compared to identify the efficient method and to explore the significant spectral bands in distinguishing different species. Examined methods including stepwise discriminant analysis (DA), support vector machine (SVM) and minimum noise fraction (MNF) transformation. Subsequently, spectral subsets composed of the first 20 most importance bands extracted by SVM, DA and MNF, and multi-source subsets adding extra DSM to 20 spectrum bands were served as input in maximum likelihood classifier (MLC) and SVM classifier to compare the classification result. Classification results showed that feature reduction methods from best to worst are MNF transformation, DA and SVM. MNF transformation accuracy was even higher than all bands input result. Selected bands frequently laid along the green peak, red edge and near infrared. Additionally, DA found that chlorophyll absorption red band and yellow band were also important for species classification. In terms of 3D data, DSM enhanced the discriminant capacity among low plants, arbor and mangrove. Meanwhile, DSM largely reduced misclassification due to the shadow effect and morphological variation of inter-species. In respect to classifier, nonparametric SVM outperformed than MLC for high dimension and multi-source data in this study. SVM classifier tended to produce higher overall accuracy and reduce scattered patches although it costs more time than MLC. The best result was obtained by combining MNF components and DSM in SVM classifier. This study offered a precision species distribution survey solution for inaccessible wetland area with low cost of time and labour. In addition, findings relevant to the positive effect of DSM as well as spectral feature identification indicated that the utility of UAV-borne hyperspectral and photogrammetry deriving 3D data is promising in further research on wetland species such as bio-parameters modelling and biological invasion monitoring.

Keywords: digital surface model (DSM), feature reduction, hyperspectral, photogrammetric point cloud, species mapping, unmanned aerial vehicle (UAV)

Procedia PDF Downloads 257