Search results for: extrusion processing
553 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method
Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru
Abstract:
Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).Keywords: electrochemical remediation, pollution, total petroleum hydrocarbons, soil contamination
Procedia PDF Downloads 240552 Food Foam Characterization: Rheology, Texture and Microstructure Studies
Authors: Rutuja Upadhyay, Anurag Mehra
Abstract:
Solid food foams/cellular foods are colloidal systems which impart structure, texture and mouthfeel to many food products such as bread, cakes, ice-cream, meringues, etc. Their heterogeneous morphology makes the quantification of structure/mechanical relationships complex. The porous structure of solid food foams is highly influenced by the processing conditions, ingredient composition, and their interactions. Sensory perceptions of food foams are dependent on bubble size, shape, orientation, quantity and distribution and determines the texture of foamed foods. The state and structure of the solid matrix control the deformation behavior of the food, such as elasticity/plasticity or fracture, which in turn has an effect on the force-deformation curves. The obvious step in obtaining the relationship between the mechanical properties and the porous structure is to quantify them simultaneously. Here, we attempt to research food foams such as bread dough, baked bread and steamed rice cakes to determine the link between ingredients and the corresponding effect of each of them on the rheology, microstructure, bubble size and texture of the final product. Dynamic rheometry (SAOS), confocal laser scanning microscopy, flatbed scanning, image analysis and texture profile analysis (TPA) has been used to characterize the foods studied. In all the above systems, there was a common observation that when the mean bubble diameter is smaller, the product becomes harder as evidenced by the increase in storage and loss modulus (G′, G″), whereas when the mean bubble diameter is large the product is softer with decrease in moduli values (G′, G″). Also, the bubble size distribution affects texture of foods. It was found that bread doughs with hydrocolloids (xanthan gum, alginate) aid a more uniform bubble size distribution. Bread baking experiments were done to study the rheological changes and mechanisms involved in the structural transition of dough to crumb. Steamed rice cakes with xanthan gum (XG) addition at 0.1% concentration resulted in lower hardness with a narrower pore size distribution and larger mean pore diameter. Thus, control of bubble size could be an important parameter defining final food texture.Keywords: food foams, rheology, microstructure, texture
Procedia PDF Downloads 334551 Advances in Health Risk Assessment of Mycotoxins in Africa
Authors: Wilfred A. Abiaa, Chibundu N. Ezekiel, Benedikt Warth, Michael Sulyok, Paul C. Turner, Rudolf Krska, Paul F. Moundipa
Abstract:
Mycotoxins are a wide range of toxic secondary metabolites of fungi that contaminate various food commodities worldwide especially in sub-Saharan Africa (SSA). Such contamination seriously compromises food safety and quality posing a serious problem for human health as well as to trade and the economy. Their concentrations depend on various factors, such as the commodity itself, climatic conditions, storage conditions, seasonal variances, and processing methods. When humans consume foods contaminated by mycotoxins, they exert toxic effects to their health through various modes of actions. Rural populations in sub-Saharan Africa, are exposed to dietary mycotoxins, but it is supposed that exposure levels and health risks associated with mycotoxins between SSA countries may vary. Dietary exposures and health risk assessment studies have been limited by lack of equipment for the proper assessment of the associated health implications on consumer populations when they eat contaminated agricultural products. As such, mycotoxin research is premature in several SSA nations with product evaluation for mycotoxin loads below/above legislative limits being inadequate. Few nations have health risk assessment reports mainly based on direct quantification of the toxins in foods ('external exposure') and linking food levels with data from food frequency questionnaires. Nonetheless, the assessment of the exposure and health risk to mycotoxins requires more than the traditional approaches. Only a fraction of the mycotoxins in contaminated foods reaches the blood stream and exert toxicity ('internal exposure'). Also, internal exposure is usually smaller than external exposure thus dependence on external exposure alone may induce confounders in risk assessment. Some studies from SSA earlier focused on biomarker analysis mainly on aflatoxins while a few recent studies have concentrated on the multi-biomarker analysis of exposures in urine providing probable associations between observed disease occurrences and dietary mycotoxins levels. As a result, new techniques that could assess the levels of exposures directly in body tissue or fluid, and possibly link them to the disease state of individuals became urgent.Keywords: mycotoxins, biomarkers, exposure assessment, health risk assessment, sub-Saharan Africa
Procedia PDF Downloads 574550 Economic Policy to Stimulate Industrial Development in Georgia
Authors: Gulnaz Erkomaishvili
Abstract:
The article analyzes the modern level of industrial production in Georgia, shows the export-import of industrial products and evaluates the results of the activities of institutions implementing industrial policy. The research showed us that the level of development of industry in the country and its export potential are quite low. The article concludes that in the modern phase of industrial development, the country should choose a model focused on technological development and maximum growth of export potential. Objectives. The aim of the research is to develop an economic policy that promotes the development of industry and to look for ways to implement it effectively. Methodologies This paper uses general and specific methods, in particular, analysis, synthesis, induction, deduction, scientific abstraction, comparative and statistical methods, as well as experts’ evaluation. In-depth interviews with experts were conducted to determine quantitative and qualitative indicators; Publications of the National Statistics Office of Georgia are used to determine the regularity between analytical and statistical estimations. Also, theoretical and applied research of international organizations and scientist-economists are used. Contributions Based on the identified challenges in the area of industry, recommendations for the implementation of an active industrial policy in short and long term periods were developed. In particular: the government's priority orientation of industrial development; paying special attention to the processing industry sectors that Georgia has the potential to produce; supporting the development of scientific fields; Determination of certain benefits for those investors who invest money in industrial production; State partnership with the private sector, manifested in the fight against bureaucracy, corruption and crime, creating favorable business conditions for entrepreneurs; Coordination between education - science - production should be implemented in the country. Much attention should be paid to basic scientific research, which does not require purely commercial returns in the short term, science should become a real productive force; Special importance should be given to the creation of an environment that will support the expansion of export-oriented production; Overcoming barriers to entry into export markets.Keywords: industry, sectoral structure of industry, exsport-import of industrial products, industrial policy
Procedia PDF Downloads 104549 Comparison of Monte Carlo Simulations and Experimental Results for the Measurement of Complex DNA Damage Induced by Ionizing Radiations of Different Quality
Authors: Ifigeneia V. Mavragani, Zacharenia Nikitaki, George Kalantzis, George Iliakis, Alexandros G. Georgakilas
Abstract:
Complex DNA damage consisting of a combination of DNA lesions, such as Double Strand Breaks (DSBs) and non-DSB base lesions occurring in a small volume is considered as one of the most important biological endpoints regarding ionizing radiation (IR) exposure. Strong theoretical (Monte Carlo simulations) and experimental evidence suggests an increment of the complexity of DNA damage and therefore repair resistance with increasing linear energy transfer (LET). Experimental detection of complex (clustered) DNA damage is often associated with technical deficiencies limiting its measurement, especially in cellular or tissue systems. Our groups have recently made significant improvements towards the identification of key parameters relating to the efficient detection of complex DSBs and non-DSBs in human cellular systems exposed to IR of varying quality (γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm). The induction and processing of DSB and non-DSB-oxidative clusters were measured using adaptations of immunofluorescence (γH2AX or 53PB1 foci staining as DSB probes and human repair enzymes OGG1 or APE1 as probes for oxidized purines and abasic sites respectively). In the current study, Relative Biological Effectiveness (RBE) values for DSB and non-DSB induction have been measured in different human normal (FEP18-11-T1) and cancerous cell lines (MCF7, HepG2, A549, MO59K/J). The experimental results are compared to simulation data obtained using a validated microdosimetric fast Monte Carlo DNA Damage Simulation code (MCDS). Moreover, this simulation approach is implemented in two realistic clinical cases, i.e. prostate cancer treatment using X-rays generated by a linear accelerator and a pediatric osteosarcoma case using a 200.6 MeV proton pencil beam. RBE values for complex DNA damage induction are calculated for the tumor areas. These results reveal a disparity between theory and experiment and underline the necessity for implementing highly precise and more efficient experimental and simulation approaches.Keywords: complex DNA damage, DNA damage simulation, protons, radiotherapy
Procedia PDF Downloads 325548 Influence of Settlements and Human Activities on Beetle Diversity and Assemblage Structure at Small Islands of the Kepulauan Seribu Marine National Park and Nearby Java
Authors: Shinta Holdsworth, Jan Axmacher, Darren J. Mann
Abstract:
Beetles represent the most diverse insect taxon, and they contribute significantly to a wide range of vital ecological functions. Examples include decomposition by bark beetles, nitrogen recycling and dung processing by dung beetles or pest control by predatory ground beetles. Nonetheless, research into the distribution patterns, species richness and functional diversity of beetles particularly from tropical regions remains extremely limited. In our research, we aim to investigate the distribution and diversity patterns of beetles and the roles they play in small tropical island ecosystems in the Kepulauan Seribu Marine National Park and on Java. Our research furthermore provides insights into the effects anthropogenic activities have on the assemblage composition and diversity of beetles on the small islands. We recorded a substantial number of highly abundant small island species, including a substantial number of unique small island species across the study area, highlighting these islands’ potential importance for the regional conservation of genetic resources. The highly varied patterns observed in relation to the use of different trapping types - pitfall traps and flight interception traps (FITs) - underscores the need for complementary trapping strategies that combine multiple methods for beetle community surveys in tropical islands. The significant impacts of human activities have on the small island beetle faunas were also highlighted in our research. More island beetle species encountered in settlement than forest areas shows clear trend of positive links between anthropogenic activities and the overall beetle species richness. However, undisturbed forests harboured a high number of unique species, also in comparison to disturbed forests. Finally, our study suggests that, with regards to different feeding guilds, the diversity of herbivorous beetles on islands is strongly affected by the different levels of forest cover encountered.Keywords: beetle diversity, forest disturbance, island biogeography, island settlement
Procedia PDF Downloads 220547 An Analysis System for Integrating High-Throughput Transcript Abundance Data with Metabolic Pathways in Green Algae
Authors: Han-Qin Zheng, Yi-Fan Chiang-Hsieh, Chia-Hung Chien, Wen-Chi Chang
Abstract:
As the most important non-vascular plants, algae have many research applications, including high species diversity, biofuel sources, adsorption of heavy metals and, following processing, health supplements. With the increasing availability of next-generation sequencing (NGS) data for algae genomes and transcriptomes, an integrated resource for retrieving gene expression data and metabolic pathway is essential for functional analysis and systems biology in algae. However, gene expression profiles and biological pathways are displayed separately in current resources, and making it impossible to search current databases directly to identify the cellular response mechanisms. Therefore, this work develops a novel AlgaePath database to retrieve gene expression profiles efficiently under various conditions in numerous metabolic pathways. AlgaePath, a web-based database, integrates gene information, biological pathways, and next-generation sequencing (NGS) datasets in Chlamydomonasreinhardtii and Neodesmus sp. UTEX 2219-4. Users can identify gene expression profiles and pathway information by using five query pages (i.e. Gene Search, Pathway Search, Differentially Expressed Genes (DEGs) Search, Gene Group Analysis, and Co-Expression Analysis). The gene expression data of 45 and 4 samples can be obtained directly on pathway maps in C. reinhardtii and Neodesmus sp. UTEX 2219-4, respectively. Genes that are differentially expressed between two conditions can be identified in Folds Search. Furthermore, the Gene Group Analysis of AlgaePath includes pathway enrichment analysis, and can easily compare the gene expression profiles of functionally related genes in a map. Finally, Co-Expression Analysis provides co-expressed transcripts of a target gene. The analysis results provide a valuable reference for designing further experiments and elucidating critical mechanisms from high-throughput data. More than an effective interface to clarify the transcript response mechanisms in different metabolic pathways under various conditions, AlgaePath is also a data mining system to identify critical mechanisms based on high-throughput sequencing.Keywords: next-generation sequencing (NGS), algae, transcriptome, metabolic pathway, co-expression
Procedia PDF Downloads 407546 Application Research of Stilbene Crystal for the Measurement of Accelerator Neutron Sources
Authors: Zhao Kuo, Chen Liang, Zhang Zhongbing, Ruan Jinlu. He Shiyi, Xu Mengxuan
Abstract:
Stilbene, C₁₄H₁₂, is well known as one of the most useful organic scintillators for pulse shape discrimination (PSD) technique for its good scintillation properties. An on-line acquisition system and an off-line acquisition system were developed with several CAMAC standard plug-ins, NIM plug-ins, neutron/γ discriminating plug-in named 2160A and a digital oscilloscope with high sampling rate respectively for which stilbene crystals and photomultiplier tube detectors (PMT) as detector for accelerator neutron sources measurement carried out in China Institute of Atomic Energy. Pulse amplitude spectrums and charge amplitude spectrums were real-time recorded after good neutron/γ discrimination whose best PSD figure-of-merits (FoMs) are 1.756 for D-D accelerator neutron source and 1.393 for D-T accelerator neutron source. The probability of neutron events in total events was 80%, and neutron detection efficiency was 5.21% for D-D accelerator neutron sources, which were 50% and 1.44% for D-T accelerator neutron sources after subtracting the background of scattering observed by the on-line acquisition system. Pulse waveform signals were acquired by the off-line acquisition system randomly while the on-line acquisition system working. The PSD FoMs obtained by the off-line acquisition system were 2.158 for D-D accelerator neutron sources and 1.802 for D-T accelerator neutron sources after waveform digitization off-line processing named charge integration method for just 1000 pulses. In addition, the probabilities of neutron events in total events obtained by the off-line acquisition system matched very well with the probabilities of the on-line acquisition system. The pulse information recorded by the off-line acquisition system could be repetitively used to adjust the parameters or methods of PSD research and obtain neutron charge amplitude spectrums or pulse amplitude spectrums after digital analysis with a limited number of pulses. The off-line acquisition system showed equivalent or better measurement effects compared with the online system with a limited number of pulses which indicated a feasible method based on stilbene crystals detectors for the measurement of prompt neutrons neutron sources like prompt accelerator neutron sources emit a number of neutrons in a short time.Keywords: stilbene crystal, accelerator neutron source, neutron / γ discrimination, figure-of-merits, CAMAC, waveform digitization
Procedia PDF Downloads 187545 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor
Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand
Procedia PDF Downloads 314544 An Adaptive Conversational AI Approach for Self-Learning
Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo
Abstract:
In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.Keywords: conversational AI, chatbot, dialog management, semantic analysis
Procedia PDF Downloads 136543 Model of Community Management for Sustainable Utilization
Authors: Luedech Girdwichai, Withaya Mekhum
Abstract:
This research intended to develop the model of community management for sustainable utilization by investigating on 2 groups of population, the family heads and the community management team. The population of the former group consisted of family heads from 511 families in 12 areas to complete the questionnaires which were returned at 479 sets. The latter group consisted of the community management team of 12 areas with 1 representative from each area to give the interview. The questionnaires for the family heads consisted of 2 main parts; general information such as occupations, etc. in the form of checklist. The second part dealt with the data on self reliance community development based on 4P Framework, i.e., People (human resource) development, Place (area) development, Product (economic and income source) development, and Plan (community plan) development in the form of rating scales. Data in the 1st part were calculated to find frequency and percentage while those in the 2nd part were analyzed to find arithmetic mean and SD. Data from the 2nd group of population or the community management team were derived from focus group to find factors influencing successful management together with the in depth interview which were analyzed by descriptive statistics. The results showed that 479 family heads reported that the aspect on the implementation of community plan to self reliance community activities based on Sufficient Economy Philosophy and the 4P was at the average of 3.28 or moderate level. When considering in details, it was found that the 1st aspect was on the area development with the mean of 3.71 or high level followed by human resource development with the mean of 3.44 or moderate level, then, economic and source of income development with the mean of 3.09 or moderate level. The last aspect was community plan development with the mean of 2.89. The results from the small group discussion revealed some factors and guidelines for successful community management as follows: 1) on the People (human resource) development aspect, there was a project to support and develop community leaders. 2) On the aspect of Place (area) development, there was a development on conservative tourism areas. 3) On the aspect of Product (economic and source of income) development, the community leaders promoted the setting of occupational group, saving group, and product processing group. 4) On the aspect of Plan (community plan) development, there was a prioritization through public hearing.Keywords: model of community management, sustainable utilization, family heads, community management team
Procedia PDF Downloads 340542 Navigating through Organizational Change: TAM-Based Manual for Digital Skills and Safety Transitions
Authors: Margarida Porfírio Tomás, Paula Pereira, José Palma Oliveira
Abstract:
Robotic grasping is advancing rapidly, but transferring techniques from rigid to deformable objects remains a challenge. Deformable and flexible items, such as food containers, demand nuanced handling due to their changing shapes. Bridging this gap is crucial for applications in food processing, surgical robotics, and household assistance. AGILEHAND, a Horizon project, focuses on developing advanced technologies for sorting, handling, and packaging soft and deformable products autonomously. These technologies serve as strategic tools to enhance flexibility, agility, and reconfigurability within the production and logistics systems of European manufacturing companies. Key components include intelligent detection, self-adaptive handling, efficient sorting, and agile, rapid reconfiguration. The overarching goal is to optimize work environments and equipment, ensuring both efficiency and safety. As new technologies emerge in the food industry, there will be some implications, such as labour force, safety problems and acceptance of the new technologies. To overcome these implications, AGILEHAND emphasizes the integration of social sciences and humanities, for example, the application of the Technology Acceptance Model (TAM). The project aims to create a change management manual, that will outline strategies for developing digital skills and managing health and safety transitions. It will also provide best practices and models for organizational change. Additionally, AGILEHAND will design effective training programs to enhance employee skills and knowledge. This information will be obtained through a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. The project will explore how organizations adapt during periods of change and identify factors influencing employee motivation and job satisfaction. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND).Keywords: change management, technology acceptance model, organizational change, health and safety
Procedia PDF Downloads 45541 Investigation of Poly P-Dioxanone as Promising Biodegradable Polymer for Short-Term Medical Application
Authors: Stefanie Ficht, Lukas Schübel, Magdalena Kleybolte, Markus Eblenkamp, Jana Steger, Dirk Wilhelm, Petra Mela
Abstract:
Although 3D printing as transformative technology has become of increasing interest in the medical field and the demand for biodegradable polymers has developed to a considerable extent, there are only a few additively manufactured, biodegradable implants on the market. Additionally, the sterilization of such implants and its side effects on degradation have still not been sufficiently studied. Within this work, thermosensitive poly p-dioxanone (PPDO) samples were printed with fused filament fabrication (FFF) and investigated. Subsequently, H₂O₂ plasma and gamma radiation were used as low-temperature sterilization techniques and compared among each other and the control group (no sterilization). In order to assess the effect of different sterilization on the degradation behavior of PPDO, the samples were immersed in phosphate-buffered solution (PBS) over 28 days, and surface morphology, thermal properties, molecular weight, inherent viscosity, and mechanical properties were examined at regular time intervals. The study demonstrates that PPDO was printed with great success and that thermal properties, molecular weight (Mw), and inherent viscosity (IV) were not significantly affected by the printing process itself. H₂O₂ plasma sterilization did not significantly harm the thermosensitive polymer, while gamma radiation lowered IV and Mw statistically significantly compared to the control group (p < 0.001). During immersion in PBS, a decrease in Mw and mechanical strength occurred for all samples. However, gamma sterilized samples were affected to a much higher extent compared to the two other sample groups both in final values and timeline. This was confirmed by scanning electron microscopy showing no changes of surface morphology of (non-sterilized) control samples, first microcracks appearing on plasma sterilized samples after two weeks while being present on gamma sterilized samples already immediately after radiation to then further deteriorate over immersion duration. To conclude, we demonstrated that FFF and H₂O₂ plasma sterilization are well suited for processing thermosensitive, biodegradable polymers used for the development of innovative short-term medical applications.Keywords: additive manufacturing, sterilization, biodegradable, thermosensitive, medical application
Procedia PDF Downloads 121540 The Regulation of Reputational Information in the Sharing Economy
Authors: Emre Bayamlıoğlu
Abstract:
This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy
Procedia PDF Downloads 465539 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 331538 Limos Lactobacillus Fermentum from Buffalo Milk Is Suitable for Potential Biotechnological Process Development
Authors: Sergio D’Ambrosioa, Azza Dobousa, Chiara Schiraldia, Donatella Ciminib
Abstract:
Probiotics are living microorganisms that give beneficial effects while consumed. Lactic acid bacteria and bifidobacteria are among the most representative strains assessed as probiotics and exploited as food supplements. Numerous studies demonstrated their potential as a therapeutic candidate for a variety of diseases (restoring gut flora, lowering cholesterol, immune response-enhancing, anti-inflammation and anti-oxidation activities). These beneficial actions are also due to biomolecules produced by probiotics, such as exopolysaccharides (EPSs), that demonstrate plenty of beneficial properties such as antimicrobial, antitumor, anti-biofilm, antiviral and immunomodulatory activities. Limosilactobacillus fermentum is a widely studied member of probiotics; however, few data are available on the development of fermentation and downstream processes for the production of viable biomasses for potential industrial applications. However, few data are available on the development of fermentation processes for the large-scale production of probiotics biomass for industrial applications and for purification processes of EPSs at an industrial scale. For this purpose, L. fermentum strain was isolated from buffalo milk and used as a test example for biotechnological process development. The strain was able to produce up to 109 CFU/mL on a (glucose-based) semi-defined medium deprived of animal-derived raw materials up to the pilot scale (150 L), demonstrating improved results compared to commonly used, although industrially not suitable, media-rich of casein and beef extract. Biomass concentration via microfiltration on hollow fibers, and subsequent spray-drying allowed to recover of about 5.7 × 1010CFU/gpowder of viable cells, indicating strain resistance to harsh processing conditions. Overall, these data demonstrate the possibility of obtaining and maintaining adequate levels of viable L. fermentum cells by using a simple approach that is potentially suitable for industrial development. A downstream EPS purification protocol based on ultrafiltration, precipitation and activated charcoal treatments showed a purity of the recovered polysaccharides of about 70-80%.Keywords: probiotics, fermentation, exopolysaccharides (EPSs), purification
Procedia PDF Downloads 82537 The Application of Sensory Integration Techniques in Science Teaching Students with Autism
Authors: Joanna Estkowska
Abstract:
The Sensory Integration Method is aimed primarily at children with learning disabilities. It can also be used as a complementary method in treatment of children with cerebral palsy, autistic, mentally handicapped, blind and deaf. Autism is holistic development disorder that manifests itself in the specific functioning of a child. The most characteristic are: disorders in communication, difficulties in social relations, rigid patterns of behavior and impairment in sensory processing. In addition to these disorders may occur abnormal intellectual development, attention deficit disorders, perceptual disorders and others. This study was focused on the application sensory integration techniques in science education of autistic students. The lack of proper sensory integration causes problems with complicated processes such as motor coordination, movement planning, visual or auditory perception, speech, writing, reading or counting. Good functioning and cooperation of proprioceptive, tactile and vestibular sense affect the child’s mastery of skills that require coordination of both sides of the body and synchronization of the cerebral hemispheres. These include, for example, all sports activities, precise manual skills such writing, as well as, reading and counting skills. All this takes place in stages. Achieving skills from the first stage determines the development of fitness from the next level. Any deficit in the scope of the first three stages can affect the development of new skills. This ultimately reflects on the achievements at school and in further professional and personal life. After careful analysis symptoms from the emotional and social spheres appear to be secondary to deficits of sensory integration. During our research, the students gained knowledge and skills in the classroom of experience by learning biology, chemistry and physics with application sensory integration techniques. Sensory integration therapy aims to teach the child an adequate response to stimuli coming to him from both the outside world and the body. Thanks to properly selected exercises, a child can improve perception and interpretation skills, motor skills, coordination of movements, attention and concentration or self-awareness, as well as social and emotional functioning.Keywords: autism spectrum disorder, science education, sensory integration, special educational needs
Procedia PDF Downloads 184536 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection
Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt
Abstract:
Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor
Procedia PDF Downloads 153535 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease
Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan
Abstract:
Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.
Procedia PDF Downloads 64534 A Multilingual Model in the Multicultural World
Authors: Marina Petrova
Abstract:
Language policy issues related to the preservation and development of the native languages of the Russian peoples and the state languages of the national republics are increasingly becoming the focus of recent attention of educators and parents, public and national figures. Is it legal to teach the national language or the mother tongue as the state language? Due to that dispute language phobia moods easily evolve into xenophobia among the population. However, a civilized, intelligent multicultural personality can only be formed if the country develops bilingualism and multilingualism, and languages as a political tool help to find ‘keys’ to sufficiently closed national communities both within a poly-ethnic state and in internal relations of multilingual countries. The purpose of this study is to design and theoretically substantiate an efficient model of language education in the innovatively developing Republic of Sakha. 800 participants from different educational institutions of Yakutia worked at developing a multilingual model of education. This investigation is of considerable practical importance because researchers could build a methodical system designed to create conditions for the formation of a cultural language personality and the development of the multilingual communicative competence of Yakut youth, necessary for communication in native, Russian and foreign languages. The selected methodology of humane-personal and competence approaches is reliable and valid. Researchers used a variety of sources of information, including access to related scientific fields (philosophy of education, sociology, humane and social pedagogy, psychology, effective psychotherapy, methods of teaching Russian, psycholinguistics, socio-cultural education, ethnoculturology, ethnopsychology). Of special note is the application of theoretical and empirical research methods, a combination of academic analysis of the problem and experienced training, positive results of experimental work, representative series, correct processing and statistical reliability of the obtained data. It ensures the validity of the investigation’s findings as well as their broad introduction into practice of life-long language education.Keywords: intercultural communication, language policy, multilingual and multicultural education, the Sakha Republic of Yakutia
Procedia PDF Downloads 222533 Spectral Mapping of Hydrothermal Alteration Minerals for Geothermal Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Short Wave Infrared Data
Authors: Aliyu J. Abubakar, Mazlan Hashim, Amin B. Pour
Abstract:
Exploiting geothermal resources for either power, home heating, Spa, greenhouses, industrial or tourism requires an initial identification of suitable areas. This can be done cost-effectively using remote sensing satellite imagery which has synoptic capabilities of covering large areas in real time and by identifying possible areas of hydrothermal alteration and minerals related to Geothermal systems. Earth features and minerals are known to have unique diagnostic spectral reflectance characteristics that can be used to discriminate them. The focus of this paper is to investigate the applicability of mapping hydrothermal alteration in relation to geothermal systems (thermal springs) at Yankari Park Northeastern Nigeria, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data for resource exploration. The ASTER Short Wave Infrared (SWIR) bands are used to highlight and discriminate alteration areas by employing sophisticated digital image processing techniques including image transformations and spectral mapping methods. Field verifications are conducted at the Yankari Park using hand held Global Positioning System (GPS) monterra to identify locations of hydrothermal alteration and rock samples obtained at the vicinity and surrounding areas of the ‘Mawulgo’ and ‘Wikki’ thermal springs. X-Ray Diffraction (XRD) results of rock samples obtained from the field validated hydrothermal alteration by the presence of indicator minerals including; Dickite, Kaolinite, Hematite and Quart. The study indicated the applicability of mapping geothermal anomalies for resource exploration in unmapped sparsely vegetated savanna environment characterized by subtle surface manifestations such as thermal springs. The results could have implication for geothermal resource exploration especially at the prefeasibility stages by narrowing targets for comprehensive surveys and in unexplored savanna regions where expensive airborne surveys are unaffordable.Keywords: geothermal exploration, image enhancement, minerals, spectral mapping
Procedia PDF Downloads 363532 Web-Based Tools to Increase Public Understanding of Nuclear Technology and Food Irradiation
Authors: Denise Levy, Anna Lucia C. H. Villavicencio
Abstract:
Food irradiation is a processing and preservation technique to eliminate insects and parasites and reduce disease-causing microorganisms. Moreover, the process helps to inhibit sprouting and delay ripening, extending fresh fruits and vegetables shelf-life. Nevertheless, most Brazilian consumers seem to misunderstand the difference between irradiated food and radioactive food and the general public has major concerns about the negative health effects and environmental contamination. Society´s judgment and decision making are directly linked to perceived benefits and risks. The web-based project entitled ‘Scientific information about food irradiation: Internet as a tool to approach science and society’ was created by the Nuclear and Energetic Research Institute (IPEN), in order to offer an interdisciplinary approach to science education, integrating economic, ethical, social and political aspects of food irradiation. This project takes into account that, misinformation and unfounded preconceived ideas impact heavily on the acceptance of irradiated food and purchase intention by the Brazilian consumer. Taking advantage of the potential value of the Internet to enhance communication and education among general public, a research study was carried out regarding the possibilities and trends of Information and Communication Technologies among the Brazilian population. The content includes concepts, definitions and Frequently Asked Questions (FAQ) about processes, safety, advantages, limitations and the possibilities of food irradiation, including health issues, as well as its impacts on the environment. The project counts on eight self-instructional interactive web courses, situating scientific content in relevant social contexts in order to encourage self-learning and further reflections. Communication is a must to improve public understanding of science. The use of information technology for quality scientific divulgation shall contribute greatly to provide information throughout the country, spreading information to as many people as possible, minimizing geographic distances and stimulating communication and development.Keywords: food irradiation, multimedia learning tools, nuclear science, society and education
Procedia PDF Downloads 248531 Extremophilic Amylases of Mycelial Fungi Strains Isolated in South Caucasus for Starch Processing
Authors: T. Urushadze, R. Khvedelidze, L. Kutateladze, M. Jobava, T. Burduli, T. Alexidze
Abstract:
There is an increasing interest in reliable, wasteless, ecologically friendly technologies. About 40% of enzymes produced all over the world are used for production of syrups with high concentration of glucose-fructose. One of such technologies complies obtaining fermentable sugar glucose from raw materials containing starch by means of amylases. In modern alcohol-producing factories this process is running in two steps, involving two enzymes of different origin: bacterial α-amylase and fungal glucoamylase, as generally fungal amylases are less thermostable as compared to bacterial amylases. Selection of stable and operable at 700С and higher temperatures enzyme preparation with both α- and glucoamylase activities will allow conducting this process in one step. S. Durmishidze Institute of Biochemistry and Biotechnology owns unique collection of mycelial fungi, isolated from different ecological niches of Caucasus. As a result of screening our collection 39 strains poducing amylases were revealed. Most of them belong to the genus Aspergillus. Optimum temperatures of action of selected amylases from three producers were estableshed to be within the range 67-80°C. A. niger B-6 showed higher α-amylase activity at 67°C, and glucoamylase activity at 62°C, A. niger 6-12 showed higher α-amylase activity at 72°C, and glucoamylase activity at 65°C, Aspergillus niger p8-3 showed higher activities at 82°C and 70°C, for α-amylase and glucoamylase activities, respectively. Exhaustive hydrolysis process of starch solutions of different concentrations (3, 5, 15, and 30 %) with cultural liquid and technical preparation of Aspergillus niger p8-3 enzyme was studied. In case of low concentrations exhaustive hydrolysis of starch lasts 40–60 minutes, in case of high concentrations hydrolysis takes longer time. 98, 6% yield of glucose can be reached at incubation during 12 hours with enzyme cultural liquid and 8 hours incubation with technical preparation of the enzyme at gradual increase of temperature from 50°C to 82°C during the first 20 minutes and further decrease of temperature to 70°C. Temperature setting for high yield of glucose and high hydrolysis (pasteurizing), optimal for activity of these strains is the prerequisite to be able to carry out hydrolysis of starch to glucose in one step, and consequently, using one strain, what will be economically justified.Keywords: amylase, glucose hydrolisis, stability, starch
Procedia PDF Downloads 350530 Effects of Mild Heat Treatment on the Physical and Microbial Quality of Salak Apricot Cultivar
Authors: Bengi Hakguder Taze, Sevcan Unluturk
Abstract:
Şalak apricot (Prunus armeniaca L., cv. Şalak) is a specific variety grown in Igdir, Turkey. The fruit has distinctive properties distinguish it from other cultivars, such as its unique size, color, taste and higher water content. Drying is the widely used method for preservation of apricots. However, fresh consumption is preferred for Şalak apricot instead of drying due to its low dry matter content. Higher amounts of water in the structure and climacteric nature make the fruit sensitive against rapid quality loss during storage. Hence, alternative processing methods need to be introduced to extend the shelf life of the fresh produce. Mild heat (MH) treatment is of great interest as it can reduce the microbial load and inhibit enzymatic activities. Therefore, the aim of this study was to evaluate the impact of mild heat treatment on the natural microflora found on Şalak apricot surfaces and some physical quality parameters of the fruit, such as color and firmness. For this purpose, apricot samples were treated at different temperatures between 40 and 60 ℃ for different periods ranging between 10 to 60 min using a temperature controlled water bath. Natural flora on the fruit surfaces was examined using standard plating technique both before and after the treatment. Moreover, any changes in color and firmness of the fruit samples were also monitored. It was found that control samples were initially containing 7.5 ± 0.32 log CFU/g of total aerobic plate count (TAPC), 5.8±0.31 log CFU/g of yeast and mold count (YMC), and 5.17 ± 0.22 log CFU/g of coliforms. The highest log reductions in TAPC and YMC were observed as 3.87-log and 5.8-log after the treatments at 60 ℃ and 50 ℃, respectively. Nevertheless, the fruit lost its characteristic aroma at temperatures above 50 ℃. Furthermore, great color changes (ΔE ˃ 6) were observed and firmness of the apricot samples was reduced at these conditions. On the other hand, MH treatment at 41 ℃ for 10 min resulted in 1.6-log and 0.91-log reductions in TAPC and YMC, respectively, with slightly noticeable changes in color (ΔE ˂ 3). In conclusion, application of temperatures higher than 50 ℃ caused undesirable changes in physical quality of Şalak apricots. Although higher microbial reductions were achieved at those temperatures, temperatures between 40 and 50°C should be further investigated considering the fruit quality parameters. Another strategy may be the use of high temperatures for short time periods not exceeding 1-5 min. Besides all, MH treatment with UV-C light irradiation can be also considered as a hurdle strategy for better inactivation results.Keywords: color, firmness, mild heat, natural flora, physical quality, şalak apricot
Procedia PDF Downloads 137529 Robotic Solution for Nuclear Facility Safety and Monitoring System
Authors: Altab Hossain, Shakerul Islam, Golamur R. Khan, Abu Zafar M. Salahuddin
Abstract:
An effective identification of breakdowns is of premier importance for the safe and reliable operation of Nuclear Power Plants (NPP) and its associated facilities. A great number of monitoring and diagnosis methodologies are applied and used worldwide in areas such as industry, automobiles, hospitals, and power plant to detect and reduce human disasters. The potential consequences of several hazardous activities may harm the society using nuclear and its associated facilities. Hence, one of the most popular and effective methods to ensure safety and monitor the entire nuclear facility and imply risk-free operation without human interference during the hazardous situation is using a robot. Therefore, in this study, an advanced autonomous robot has been designed and developed that can monitor several parameters in the NPP to ensure the safety and do some risky job in case of nuclear disaster. The robot consisted of autonomous track following unit, data processing and transmitting unit can follow a straight line and take turn as the bank greater than 90 degrees. The developed robot can analyze various parameters such as temperature, altitude, radiation, obstacle, humidity, detecting fire, measuring distance, ultrasonic scan and taking the heat of any particular object. It has an ability to broadcast live stream and can record the document to its own server memory. There is a separate control unit constructed with a baseboard which processes the recorded data and a transmitter which transmits the processed data. To make the robot user-friendly, the code is developed such a way that a user can control any of robotic arm as per types of work. To control at any place and without the track, there is an advanced code has been developed to take manual overwrite. Through this process, administrator who has logged in permission to Dynamic Host Client Protocol (DHCP) can make the handover of the control of the robot. In this process, this robot is provided maximum nuclear security from being hacked. Not only NPP, this robot can be used to maximize the real-time monitoring system of any nuclear facility as well as nuclear material transportation and decomposition system.Keywords: nuclear power plant, radiation, dynamic host client protocol, nuclear security
Procedia PDF Downloads 209528 Detecting Tomato Flowers in Greenhouses Using Computer Vision
Authors: Dor Oppenheim, Yael Edan, Guy Shani
Abstract:
This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.Keywords: agricultural engineering, image processing, computer vision, flower detection
Procedia PDF Downloads 329527 Waste Management Option for Bioplastics Alongside Conventional Plastics
Authors: Dan Akesson, Gauthaman Kuzhanthaivelu, Martin Bohlen, Sunil K. Ramamoorthy
Abstract:
Bioplastics can be defined as polymers derived partly or completely from biomass. Bioplastics can be biodegradable such as polylactic acid (PLA) and polyhydroxyalkonoates (PHA); or non-biodegradable (biobased polyethylene (bio-PE), polypropylene (bio-PP), polyethylene terephthalate (bio-PET)). The usage of such bioplastics is expected to increase in the future due to new found interest in sustainable materials. At the same time, these plastics become a new type of waste in the recycling stream. Most countries do not have separate bioplastics collection for it to be recycled or composted. After a brief introduction of bioplastics such as PLA in the UK, these plastics are once again replaced by conventional plastics by many establishments due to lack of commercial composting. Recycling companies fear the contamination of conventional plastic in the recycling stream and they said they would have to invest in expensive new equipment to separate bioplastics and recycle it separately. This project studies what happens when bioplastics contaminate conventional plastics. Three commonly used conventional plastics were selected for this study: polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In order to simulate contamination, two biopolymers, either polyhydroxyalkanoate (PHA) or thermoplastic starch (TPS) were blended with the conventional polymers. The amount of bioplastics in conventional plastics was either 1% or 5%. The blended plastics were processed again to see the effect of degradation. The results from contamination showed that the tensile strength and the modulus of PE was almost unaffected whereas the elongation is clearly reduced indicating the increase in brittleness of the plastic. Generally, it can be said that PP is slightly more sensitive to the contamination than PE. This can be explained by the fact that the melting point of PP is higher than for PE and as a consequence, the biopolymer will degrade more quickly. However, the reduction of the tensile properties for PP is relatively modest. Impact strength is generally a more sensitive test method towards contamination. Again, PE is relatively unaffected by the contamination but for PP there is a relatively large reduction of the impact properties already at 1% contamination. PET is polyester, and it is, by its very nature, more sensitive to degradation than PE and PP. PET also has a much higher melting point than PE and PP, and as a consequence, the biopolymer will quickly degrade at the processing temperature of PET. As for the tensile strength, PET can tolerate 1% contamination without any reduction of the tensile strength. However, when the impact strength is examined, it is clear that already at 1% contamination, there is a strong reduction of the properties. The thermal properties show the change in the crystallinity. The blends were also characterized by SEM. Biphasic morphology can be seen as the two polymers are not truly blendable which also contributes to reduced mechanical properties. The study shows that PE is relatively robust against contamination, while polypropylene (PP) is sensitive and polyethylene terephthalate (PET) can be quite sensitive towards contamination.Keywords: bioplastics, contamination, recycling, waste management
Procedia PDF Downloads 225526 Inverterless Grid Compatible Micro Turbine Generator
Authors: S. Ozeri, D. Shmilovitz
Abstract:
Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.Keywords: gas turbine, inverter, power multiplier, distributed generation
Procedia PDF Downloads 238525 Investigation of Dry-Blanching and Freezing Methods of Fruits
Authors: Epameinondas Xanthakis, Erik Kaunisto, Alain Le-Bail, Lilia Ahrné
Abstract:
Fruits and vegetables are characterized as perishable food matrices due to their short shelf life as several deterioration mechanisms are being involved. Prior to the common preservation methods like freezing or canning, fruits and vegetables are being blanched in order to inactivate deteriorative enzymes. Both conventional blanching pretreatments and conventional freezing methods hide drawbacks behind their beneficial impacts on the preservation of those matrices. Conventional blanching methods may require longer processing times, leaching of minerals and nutrients due to the contact with the warm water which in turn leads to effluent production with large BOD. An important issue of freezing technologies is the size of the formed ice crystals which is also critical for the final quality of the frozen food as it can cause irreversible damage to the cellular structure and subsequently to degrade the texture and the colour of the product. Herein, the developed microwave blanching methodology and the results regarding quality aspects and enzyme inactivation will be presented. Moreover, heat transfer phenomena, mass balance, temperature distribution, and enzyme inactivation (such as Pectin Methyl Esterase and Ascorbic Acid Oxidase) of our microwave blanching approach will be evaluated based on measurements and computer modelling. The present work is part of the COLDμWAVE project which aims to the development of an innovative environmentally sustainable process for blanching and freezing of fruits and vegetables with improved textural and nutritional quality. In this context, COLDµWAVE will develop tailored equipment for MW blanching of vegetables that has very high energy efficiency and no water consumption. Furthermore, the next steps of this project regarding the development of innovative pathways in MW assisted freezing to improve the quality of frozen vegetables, by exploring in depth previous results acquired by the authors, will be presented. The application of MW assisted freezing process on fruits and vegetables it is expected to lead to improved quality characteristics compared to the conventional freezing. Acknowledgments: COLDμWAVE has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grand agreement No 660067.Keywords: blanching, freezing, fruits, microwave blanching, microwave
Procedia PDF Downloads 267524 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 93