Search results for: traffic surveillance system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18576

Search results for: traffic surveillance system

18276 Emergency Management and Patient Transportation of Road Traffic Accident Victims Admitted to the District General Hospital, Matale, Sri Lanka

Authors: Asanka U. K. Godamunne

Abstract:

Road traffic accidents (RTA) are a leading cause of death globally as well as in Sri Lanka and results in a large proportion of disability especially among young people. Ninety-percent of world’s road traffic deaths occur in low- and middle-income countries. The gross disparities in injury outcomes relate to immediate post-crash and hospital management. Emergency management, methods of patient transportation following road traffic accidents and safety measures are important factors to reduce mortality and morbidity. Studies in this area are limited in Sri Lanka. The main objective of this research was to assess the emergency management and proper method of transportation of road traffic accident victims. This offers the best way to explore the ways to reduce the mortality and morbidity and raise the public awareness. This study was conducted as a descriptive cross-sectional study. All the consecutive road traffic accident victims admitted to surgical wards at District General Hospital, Matale, Sri Lanka, over a period of three months were included in the study. Data from 387 victims were analyzed. The majority were in the 20-30 year age group. Seventy six percent of the patients were males. Motorcycles and trishaws were most affected. First-aid was given to only 2% of patients and it was given by non-medical persons. A significant proportion of patients (75%) were transported to the hospital by trishaws and only 1% transported by ambulance. About 86% of the patients were seated while transport and 14% were flat. Limbs and head were the most affected areas of the body. As per this study, immediate post-crash management and patient transportation were not satisfactory. There is a need to strengthen certain road safety laws and make sure people follow them.

Keywords: emergency management, patient transportation, road traffic accident victims, Sri Lanka

Procedia PDF Downloads 245
18275 Effects of Non-Motorized Vehicles on a Selected Intersection in Dhaka City for Non Lane Based Heterogeneous Traffic Using VISSIM 5.3

Authors: A. C. Dey, H. M. Ahsan

Abstract:

Heterogeneous traffic composed of both motorized and non-motorized vehicles that are a common feature of urban Bangladeshi roads. Popular non-motorized vehicles include rickshaws, rickshaw-van, and bicycle. These modes performed an important role in moving people and goods in the absence of a dependable mass transport system. However, rickshaws play a major role in meeting the demand for door-to-door public transport services to the city dwellers. But there is no separate lane for non-motorized vehicles in this city. Non-motorized vehicles generally occupy the outermost or curb-side lanes, however, at intersections non-motorized vehicles get mixed with the motorized vehicles. That’s why the conventional models fail to analyze the situation completely. Microscopic traffic simulation software VISSIM 5.3, itself a lane base software but default behavioral parameters [such as driving behavior, lateral distances, overtaking tendency, CCO=0.4m, CC1=1.5s] are modified for calibrating a model to analyze the effects of non-motorized traffic at an intersection (Mirpur-10) in a non-lane based mixed traffic condition. It is seen from field data that NMV occupies an average 20% of the total number of vehicles almost all the link roads. Due to the large share of non-motorized vehicles, capacity significantly drop. After analyzing simulation raw data, significant variation is noticed. Such as the average vehicular speed is reduced by 25% and the number of vehicles decreased by 30% only for the presence of NMV. Also the variation of lateral occupancy and queue delay time increase by 2.37% and 33.75% respectively. Thus results clearly show the negative effects of non-motorized vehicles on capacity at an intersection. So special management technics or restriction of NMV at major intersections may be an effective solution to improve this existing critical condition.

Keywords: lateral occupancy, non lane based intersection, nmv, queue delay time, VISSIM 5.3

Procedia PDF Downloads 155
18274 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 97
18273 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control

Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi

Abstract:

Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.

Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM

Procedia PDF Downloads 231
18272 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition

Procedia PDF Downloads 188
18271 Injury Characteristics and Outcome of Road Traffic Accident among Victims at Adult Emergency Department of Tikur Anbesa Specialized Hospital, Addis Ababa, Ethiopia

Authors: Mohammed Seid, Aklilu Azazh, Fikre Enquselassie, Engida Yisma

Abstract:

Background: Road traffic injuries are the eighth leading cause of death globally, and the leading cause of death for young people. More than a million people die each year on the world’s roads, and the risk of dying as a result of a road traffic injury is highest in the Africa. Methods: A prospective hospital-based study was undertaken to assess injury characteristics and outcome of road traffic accident among victims at Adult Emergency Department of Tikur Anbesa specialized hospital, Addis Ababa, Ethiopia. A structured pre-tested questionnaire was used to gather the required data. The collected data were analyzed using SPSS version 16.0. Results: A total of 230 road traffic accident victims were studied. The majority of the study subjects were men 165 (71.7%) and the male/female ratio was 2.6:1. The victims’ ages ranged from 14 to 80 years with the mean and standard deviations of 32.15 and ± 14.38 years respectively. Daily laborers (95 (41.3%)) and students (28 (12.2%)) were the majority of road traffic accident victims. Long-distance travelling Minibus (16.5%) was responsible for the majority of road traffic crash followed by followed by Taxi (14.8%) and pedestrians (62.6%) accounted for the majority of road traffic accident. Head (50.4%) and musculoskeletal (extremities) (47.0%) were the most common body region injured. Fractures (78.0%) and open wounds (56.5%) were the most common type of injuries sustained. Treatment of fracture was the most common procedure performed in 57.7 % of the victims. The overall length of hospital stay (LOS) ranged from 1 day to 61 days with mean (± standard deviation) of 7.12 ± 10.5 days and the mortality rate was 7.4 %. A significant higher proportion of victims aged 14-55 years were had less likelihood of death compared to those victims aged more than 55 years of age [Adjusted OR = 0.1 (95% CI: 0.01, 0.82)]. Conclusions: This study showed diverse injury characteristics and high morbidity and mortality among the victims attending Adult Emergency Department of Tikur Anbesa specialized hospital, Addis Ababa, Ethiopia. The findings reflect that road traffic accident is a major public health problem. Urgent road traffic accident preventive measures and prompt treatment of the victims are warranted in order to reduce morbidity and mortality among the victims.

Keywords: road traffic accident, injury characteristics, outcome, Tikur Anbesa specialized hospital, Addis Ababa, Ethiopia

Procedia PDF Downloads 383
18270 Monitoring System for Electronic Procurement Systems

Authors: Abdulah Fajar

Abstract:

Electronic Procurement System has been implemented at government institution in Indonesia. This system has been developed centrally at Institution of National Procurement Policy (LKPP) and implemented autonomously at either local or national government institution. The lack of competency at many institution on Information Technology Management arise several major problems. The main concern of LKPP to local administrator is assured that the system is running normally and always be able to serve the needs of its users. Monitoring system has been identified as the one of solution to prevent the problems appeared. Monitoring system is developed using Simple Network Management Protocol (SNMP) and implemented at LKPP. There are two modules; Main Dashboard and Local Agent. Main Dashboard is intended for LKPP and Local Agent is intended to implement at local autonomous e-procurement system (LPSE). There are several resources that must be monitored such as computation, memory and network traffic. Agile paradigm is applied to this project to assure user and system requirement is met. The length of project is the one of reason why agile paradigm has been chosen. The system has been successfully delivered to LKPP.

Keywords: procurement system, SNMP, LKPP, LPSE

Procedia PDF Downloads 427
18269 Measured versus Default Interstate Traffic Data in New Mexico, USA

Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder

Abstract:

This study investigates how the site specific traffic data differs from the Mechanistic Empirical Pavement Design Software default values. Two Weigh-in-Motion (WIM) stations were installed in Interstate-40 (I-40) and Interstate-25 (I-25) to developed site specific data. A computer program named WIM Data Analysis Software (WIMDAS) was developed using Microsoft C-Sharp (.Net) for quality checking and processing of raw WIM data. A complete year data from November 2013 to October 2014 was analyzed using the developed WIM Data Analysis Program. After that, the vehicle class distribution, directional distribution, lane distribution, monthly adjustment factor, hourly distribution, axle load spectra, average number of axle per vehicle, axle spacing, lateral wander distribution, and wheelbase distribution were calculated. Then a comparative study was done between measured data and AASHTOWare default values. It was found that the measured general traffic inputs for I-40 and I-25 significantly differ from the default values.

Keywords: AASHTOWare, traffic, weigh-in-motion, axle load distribution

Procedia PDF Downloads 343
18268 Development of Pothole Management Method Using Automated Equipment with Multi-Beam Sensor

Authors: Sungho Kim, Jaechoul Shin, Yujin Baek, Nakseok Kim, Kyungnam Kim, Shinhaeng Jo

Abstract:

The climate change and increase in heavy traffic have been accelerating damages that cause the problems such as pothole on asphalt pavement. Pothole causes traffic accidents, vehicle damages, road casualties and traffic congestion. A quick and efficient maintenance method is needed because pothole is caused by stripping and accelerates pavement distress. In this study, we propose a rapid and systematic pothole management by developing a pothole automated repairing equipment including a volume measurement system of pothole. Three kinds of cold mix asphalt mixture were investigated to select repair materials. The materials were evaluated for satisfaction with quality standard and applicability to automated equipment. The volume measurement system of potholes was composed of multi-sensor that are combined with laser sensor and ultrasonic sensor and installed in front and side of the automated repair equipment. An algorithm was proposed to calculate the amount of repair material according to the measured pothole volume, and the system for releasing the correct amount of material was developed. Field test results showed that the loss of repair material amount could be reduced from approximately 20% to 6% per one point of pothole. Pothole rapid automated repair equipment will contribute to improvement on quality and efficient and economical maintenance by not only reducing materials and resources but also calculating appropriate materials. Through field application, it is possible to improve the accuracy of pothole volume measurement, to correct the calculation of material amount, and to manage the pothole data of roads, thereby enabling more efficient pavement maintenance management. Acknowledgment: The author would like to thank the MOLIT(Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.

Keywords: automated equipment, management, multi-beam sensor, pothole

Procedia PDF Downloads 223
18267 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity

Authors: Chiao-Yi Chen, Dung-Ying Lin

Abstract:

With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.

Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization

Procedia PDF Downloads 19
18266 Objectifying Media and Preadolescents' Media Internalization: A Developmental Perspective

Authors: Ann Rousseau, Steven Eggermont

Abstract:

The current study sought to explain pre-adolescents’ differential susceptibility to the internalization of mediated appearance ideals, using a three-wave panel survey of preadolescent girls and boys (N = 973, Mage = 11.14). Based on the premises of objectification theory and sexual script theory, we proposed a double role for pubertal timing and cross-sex interactions in preadolescents’ media internalization. More specifically, we expected pubertal timing and cross-sex interactions to (a) trigger higher levels of media internalization, directly and indirectly via body surveillance, and (b) positively moderate the relationship between objectifying media exposure and girls’ and boys’ media internalization. A first cross-lagged model tested whether the pubertal timing and cross-sex interactions could trigger preadolescents media internalization and body surveillance. Structural equation analysis indicated that pubertal timing (Wave1) positively predicted body surveillance and media internalization (both Wave3). Cross-sex involvement (Wave1) was positively linked to media internalization (Wave2), but body surveillance (Wave2) was not associated with cross-sex interactions. Results also showed a reciprocal interaction between media internalization (Wave 2 and 3) and body surveillance (Wave2 and 3). Multiple group analysis showed that the observed relationships did not vary by gender. A second moderated moderation model examined whether (a) the relationship between objectifying media exposure (television and magazines, both Wave1) and media internalization (Wave3) depended on pubertal timing (Wave1), and (b) the two-way interaction between objectifying media exposure (Wave1) and pubertal timing (Wave1) varied depending on cross-sex interactions (Wave1). Results revealed that cross-sex interactions functioned as a buffer against media internalization. For preadolescents who had fewer cross-sex interactions, early puberty (relative to peers) positively moderated the relationship between magazine exposure and the internalization of mediated appearance ideals. No significant relationships were found for television. Again, no gender difference could be observed. The present study suggests a double role for pubertal timing and cross-sex interactions in preadolescents media internalization, and indicate that early developers with few cross-sex experiences are particularly vulnerable for media internalization. Additionally, the current findings suggest that there is relative gender equity in magazines’ ability to cultivate media internalization among preadolescents.

Keywords: cross-sex interactions, media effects, objectification theory, pubertal timing

Procedia PDF Downloads 329
18265 Characteristics of Speed Dispersion in Urban Expressway

Authors: Fujian Wang, Shubin Ruan, Meiwei Dai

Abstract:

Speed dispersion has tight relation to traffic safety. In this paper, several kinds of indicating parameters (the standard speed deviation, the coefficient of variation, the deviation of V85 and V15, the mean speed deviations, and the difference between adjacent car speeds) are applied to investigate the characteristics of speed dispersion, where V85 and V15 are 85th and 15th percentile speed, respectively. Their relationships are into full investigations and the results show that: there exists a positive relation (linear) between mean speed and the deviation of V85 and V15; while a negative relation (quadratic) between traffic flow and standard speed deviation. The mean speed deviation grows exponentially with mean speed while the absolute speed deviation between adjacent cars grows linearly with the headway. The results provide some basic information for traffic management.

Keywords: headway, indicating parameters, speed dispersion, urban expressway

Procedia PDF Downloads 353
18264 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 169
18263 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 117
18262 Analysis and Evaluation of the Public Responses to Traffic Congestion Pricing Schemes in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Traffic congestion pricing in urban streets is one of the most suitable options for solving the traffic problems and environment pollutions in the cities of the country. Unlike its acceptable outcomes, there are problems concerning the necessity to pay by the mass. Regarding the fact that public response in order to succeed in this strategy is so influential, studying their response and behavior to get the feedback and improve the strategies is of great importance. In this study, a questionnaire was used to examine the public reactions to the traffic congestion pricing schemes at the center of Tehran metropolis and the factors involved in people’s decision making in accepting or rejecting the congestion pricing schemes were assessed based on the data obtained from the questionnaire as well as the international experiences. Then, by analyzing and comparing the schemes, guidelines to reduce public objections to them are discussed. The results of reviewing and evaluating the public reactions show that all the pros and cons must be considered to guarantee the success of these projects. Consequently, with targeted public education and consciousness-raising advertisements, prior to initiating a scheme and ensuring the mechanism of the implementation after the start of the project, the initial opposition is reduced and, with the gradual emergence of the real and tangible benefits of its implementation, users’ satisfaction will increase.

Keywords: demand management, international experiences, traffic congestion pricing, public acceptance, public reactions, public objection

Procedia PDF Downloads 243
18261 Pattern the Location and Area of Earth-Dumping Stations from Vehicle GPS Data in Taiwan

Authors: Chun-Yuan Chen, Ming-Chang Li, Xiu-Hui Wen, Yi-Ching Tu

Abstract:

The objective of this study explores GPS (Global Positioning System) applied to trace construction vehicles such as trucks or cranes, help to pattern the earth-dumping stations of traffic construction in Taiwan. Traffic construction in this research is defined as the engineering of high-speed railways, expressways, and which that distance more than kilometers. Audit the location and check the compliance with regulations of earth-dumping stations is one of important tasks in Taiwan EPA. Basically, the earth-dumping station was known as one source of particulate matter from air pollution during construction process. Due to GPS data can be analyzed quickly and be used conveniently, this study tried to find out dumping stations by modeling vehicles tracks from GPS data during work cycle of construction. The GPS data updated from 13 vehicles related to an expressway construction in central Taiwan. The GPS footprints were retrieved to Keyhole Markup Language (KML) files so that can pattern the tracks of trucks by computer applications, the data was collected about eight months- from Feb. to Oct. in 2017. The results of GPS footprints identified dumping station and outlined the areas of earthwork had been passed to the Taiwan EPA for on-site inspection. Taiwan EPA had issued advice comments to the agency which was in charge of the construction to prevent the air pollution. According to the result of this study compared to the commonly methods in inspecting environment by manual collection, the GPS with KML patterning and modeling method can consumes less time. On the other hand, through monitoring the GPS data from construction vehicles could be useful for administration to development and implementation of strategies in environmental management.

Keywords: automatic management, earth-dumping station, environmental management, Global Positioning System (GPS), particulate matter, traffic construction

Procedia PDF Downloads 164
18260 Rethinking the Value of Pancreatic Cyst CEA Levels from Endoscopic Ultrasound Fine-Needle Aspiration (EUS-FNA): A Longitudinal Analysis

Authors: Giselle Tran, Ralitza Parina, Phuong T. Nguyen

Abstract:

Background/Aims: Pancreatic cysts (PC) have recently become an increasingly common entity, often diagnosed as incidental findings on cross-sectional imaging. Clinically, management of the lesions is difficult because of uncertainties in their potential for malignant degeneration. Prior series have reported that carcinoembryonic antigen (CEA), a biomarker collected from cyst fluid aspiration, has a high diagnostic accuracy for discriminating between mucinous and non-mucinous lesions, at the patient’s initial presentation. To the author’s best knowledge, no prior studies have reported PC CEA levels obtained from endoscopic ultrasound fine-needle aspiration (EUS-FNA) over years of serial EUS surveillance imaging. Methods: We report a consecutive retrospective series of 624 patients who underwent EUS evaluation for a PC between 11/20/2009 and 11/13/2018. Of these patients, 401 patients had CEA values obtained at the point of entry. Of these, 157 patients had two or more CEA values obtained over the course of their EUS surveillance. Of the 157 patients (96 F, 61 M; mean age 68 [range, 62-76]), the mean interval of EUS follow-up was 29.7 months [3.5-128]. The mean number of EUS procedures was 3 [2-7]. To assess CEA value fluctuations, we defined an appreciable increase in CEA as "spikes" – two-times increase in CEA on a subsequent EUS-FNA of the same cyst, with the second CEA value being greater than 1000 ng/mL. Using this definition, cysts with a spike in CEA were compared to those without a spike in a bivariate analysis to determine if a CEA spike is associated with poorer outcomes and the presence of high-risk features. Results: Of the 157 patients analyzed, 29 had a spike in CEA. Of these 29 patients, 5 had a cyst with size increase >0.5cm (p=0.93); 2 had a large cyst, >3cm (p=0.77); 1 had a cyst that developed a new solid component (p=0.03); 7 had a cyst with a solid component at any time during surveillance (p=0.08); 21 had a complex cyst (p=0.34); 4 had a cyst categorized as "Statistically Higher Risk" based on molecular analysis (p=0.11); and 0 underwent surgical resection (p=0.28). Conclusion: With serial EUS imaging in the surveillance of PC, an increase in CEA level defined as a spike did not predict poorer outcomes. Most notably, a spike in CEA did not correlate with the number of patients sent to surgery or patients with an appreciable increase in cyst size. A spike in CEA did not correlate with the development of a solid nodule within the PC nor progression on molecular analysis. Future studies should focus on the selected use of CEA analysis when patients undergo EUS surveillance evaluation for PCs.

Keywords: carcinoembryonic antigen (CEA), endoscopic ultrasound (EUS), fine-needle aspiration (FNA), pancreatic cyst, spike

Procedia PDF Downloads 142
18259 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni

Abstract:

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.

Keywords: automation, human factors, air traffic controller, MINIMA, OOTL (Out-Of-The-Loop), EEG (Electroencephalography), HMI (Human Machine Interface)

Procedia PDF Downloads 383
18258 Design and Realization of Computer Network Security Perception Control System

Authors: El Miloudi Djelloul

Abstract:

Based on analysis on applications by perception control technology in computer network security status and security protection measures, from the angles of network physical environment and network software system environmental security, this paper provides network security system perception control solution using Internet of Things (IOT), telecom and other perception technologies. Security Perception Control System is in the computer network environment, utilizing Radio Frequency Identification (RFID) of IOT and telecom integration technology to carry out integration design for systems. In the network physical security environment, RFID temperature, humidity, gas and perception technologies are used to do surveillance on environmental data, dynamic perception technology is used for network system security environment, user-defined security parameters, security log are used for quick data analysis, extends control on I/O interface, by development of API and AT command, Computer Network Security Perception Control based on Internet and GSM/GPRS is achieved, which enables users to carry out interactive perception and control for network security environment by WEB, E-MAIL as well as PDA, mobile phone short message and Internet. In the system testing, through middle ware server, security information data perception in real time with deviation of 3-5% was achieved; it proves the feasibility of Computer Network Security Perception Control System.

Keywords: computer network, perception control system security strategy, Radio Frequency Identification (RFID)

Procedia PDF Downloads 446
18257 Preparedness and Control of Mosquito-Borne Diseases: Experiences from Northwestern Italy

Authors: Federica Verna, Alessandra Pautasso, Maria Caramelli, Cristiana Maurella, Walter Mignone, Cristina Casalone

Abstract:

Mosquito-Borne Diseases (MBDs) are dangerously increasing in prevalence, geographical distribution and severity, representing an emerging threat for both humans and animals. Interaction between multiple disciplines is needed for an effective early warning, surveillance and control of MBDs, according to the One Health concept. This work reports the integrated surveillance system enforced by IZSPLV in Piedmont, Liguria and Valle d’Aosta regions (Northwestern Italy) in order to control MDBs spread. Veterinary services and local human health authority are involved in an information network, to connect the surveillance of human clinical cases with entomological surveillance and veterinary monitoring in order to implement control measures in case of outbreak. A systematic entomological surveillance is carried out during the vector season using mosquitoes traps located in sites selected according to risk factors. Collected mosquitoes are counted, identified to species level by morphological standard classification keys and pooled by collection site, date and species with a maximum of 100 individuals. Pools are analyzed, after RNA extraction, by Real Time RT-PCR distinctive for West Nile Virus (WNV) Lineage 1 and Lineage 2, Real Time RT-PCR USUTU virus (USUV) and a traditional flavivirus End-point RT-PCR. Positive pools are sequenced and the related sequences employed to perform a basic local alignment search tool (BLAST) in the GenBank library. Positive samples are sent to the National Reference Centre for Animal Exotic Diseases (CESME, Teramo) for confirmation. With particular reference to WNV, after the confirmation, as provided by national legislation, control measures involving both local veterinary and human health services are activated: equine sera are randomly sampled within a 4 km radius from the positive collection sites and tested with ELISA kit and WNV NAT screening of blood donors is introduced. This surveillance network allowed to detect since 2011 USUV circulation in this area of Italy. WNV was detected in Piedmont and Liguria for the first time in 2014 in mosquitoes. During the 2015 vector season, we observed the expansion of its activity in Piedmont. The virus was detected in almost all Provinces both in mosquitoes (6 pools) and animals (19 equine sera, 4 birds). No blood bag tested resulted infected. The first neuroinvasive human case occurred too. Competent authorities should be aware of a potentially increased risk of MBDs activity during the 2016 vector season. This work shows that this surveillance network allowed to early detect the presence of MBDs in humans and animals, and provided useful information to public authorities, in order to apply control measures. Finally, an additional value of our diagnostic protocol is the ability to detect all viruses belonging to the Flaviviridae family, considering the emergence caused by other Flaviviruses in humans such as the recent Zika virus infection in South America. Italy has climatic and environmental features conducive to Zika virus transmission, the competent vector and many travellers from Brazil reported every year.

Keywords: integrated surveillance, mosquito borne disease, West Nile virus, Zika virus

Procedia PDF Downloads 361
18256 Identifying and Quantifying Factors Affecting Traffic Crash Severity under Heterogeneous Traffic Flow

Authors: Praveen Vayalamkuzhi, Veeraragavan Amirthalingam

Abstract:

Studies on safety on highways are becoming the need of the hour as over 400 lives are lost every day in India due to road crashes. In order to evaluate the factors that lead to different levels of crash severity, it is necessary to investigate the level of safety of highways and their relation to crashes. In the present study, an attempt is made to identify the factors that contribute to road crashes and to quantify their effect on the severity of road crashes. The study was carried out on a four-lane divided rural highway in India. The variables considered in the analysis includes components of horizontal alignment of highway, viz., straight or curve section; time of day, driveway density, presence of median; median opening; gradient; operating speed; and annual average daily traffic. These variables were considered after a preliminary analysis. The major complexities in the study are the heterogeneous traffic and the speed variation between different classes of vehicles along the highway. To quantify the impact of each of these factors, statistical analyses were carried out using Logit model and also negative binomial regression. The output from the statistical models proved that the variables viz., horizontal components of the highway alignment; driveway density; time of day; operating speed as well as annual average daily traffic show significant relation with the severity of crashes viz., fatal as well as injury crashes. Further, the annual average daily traffic has significant effect on the severity compared to other variables. The contribution of highway horizontal components on crash severity is also significant. Logit models can predict crashes better than the negative binomial regression models. The results of the study will help the transport planners to look into these aspects at the planning stage itself in the case of highways operated under heterogeneous traffic flow condition.

Keywords: geometric design, heterogeneous traffic, road crash, statistical analysis, level of safety

Procedia PDF Downloads 302
18255 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 169
18254 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 26
18253 A Longitudinal Survey Study of Izmir Commuter Rail System (IZBAN)

Authors: Samet Sen, Yalcin Alver

Abstract:

Before Izmir Commuter Rail System (IZBAN), most of the respondents along the railway were making their trips by city buses, minibuses or private cars. After IZBAN was put into service, some people changed their previous trip behaviors and they started travelling by IZBAN. Therefore a big travel demand in IZBAN occurred. In this study, the characteristics of passengers and their trip behaviors are found out based on the longitudinal data conducted via two wave trip surveys. Just after one year from IZBAN's opening, the first wave of the surveys was carried out among 539 passengers at six stations during morning peak hours between 07.00 am-09.30 am. The second wave was carried out among 669 passengers at the same six stations two years after the first wave during the same morning peak hours. As a result of this study, the respondents' socio-economic specifications, the distribution of trips by region, the impact of IZBAN on transport modes, the changes in travel time and travel cost and satisfaction data were obtained. These data enabled to compare two waves and explain the changes in socio-economic factors and trip behaviors. In both waves, 10 % of the respondents stopped driving their own cars and they started to take IZBAN. This is an important development in solving traffic problems. More public transportation means less traffic congestion.

Keywords: commuter rail system, comparative study, longitudinal survey, public transportation

Procedia PDF Downloads 434
18252 A Passive Digital Video Authentication Technique Using Wavelet Based Optical Flow Variation Thresholding

Authors: R. S. Remya, U. S. Sethulekshmi

Abstract:

Detecting the authenticity of a video is an important issue in digital forensics as Video is used as a silent evidence in court such as in child pornography, movie piracy cases, insurance claims, cases involving scientific fraud, traffic monitoring etc. The biggest threat to video data is the availability of modern open video editing tools which enable easy editing of videos without leaving any trace of tampering. In this paper, we propose an efficient passive method for inter-frame video tampering detection, its type and location by estimating the optical flow of wavelet features of adjacent frames and thresholding the variation in the estimated feature. The performance of the algorithm is compared with the z-score thresholding and achieved an efficiency above 95% on all the tested databases. The proposed method works well for videos with dynamic (forensics) as well as static (surveillance) background.

Keywords: discrete wavelet transform, optical flow, optical flow variation, video tampering

Procedia PDF Downloads 359
18251 Distribution of Traffic Volume at Fuel Station during Peak Hour Period on Arterial Road

Authors: Surachai Ampawasuvan, Supornchai Utainarumol

Abstract:

Most of fuel station’ customers, who drive on the major arterial road wants to use the stations to fill fuel to their vehicle during their journey to destinations. According to the survey of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, or questionnaires, it was found that most users prefer to use fuel stations on holiday rather than on working day. They also prefer to use fuel stations in the morning rather than in the evening. When comparing the ratio of the distribution pattern of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, there is no significant difference. However, when comparing the ratio of peak hour (peak hour rate) of the results from questionnaires at 13 to 14 percent with the results obtained by using the methods of the Institute of Transportation Engineering (ITE), it is found that the value is similar. However, it is different from a survey by video camera and automatic traffic counting at 6 to 7 percent of about half. So, this study suggests that in order to forecast trip generation of vehicle using fuel stations on major arterial road which is mostly characterized by Though Traffic, it is recommended to use the value of half of peak hour rate, which would make the forecast for trips generation to be more precise and accurate and compatible to surrounding environment.

Keywords: peak rate, trips generation, fuel station, arterial road

Procedia PDF Downloads 408
18250 Influence of Driving Speed on Bearing Capacity Measurement of Intra-Urban Roads with the Traffic Speed Deflectometer(Tsd)

Authors: Pahirangan Sivapatham, Barbara Esser, Andreas Grimmel

Abstract:

In times of limited public funds and, in particular, an increased social, environmental awareness, as well as the limited availability of construction materials, sustainable and resource-saving pavement management system, is becoming more and more important. Therefore, the knowledge about the condition of the structural substances, particularly bearing capacity and its consideration while planning the maintenance measures of the subordinate network, i.e., state and municipal roads unavoidable. According to the experience, the recommended ride speed of the Traffic Speed Deflectometer (TSD) shall be higher than 40 km/h. Holding of this speed on the intra-urban roads is nearly not possible because of intersections and traffic lights as well as the speed limit. A sufficient background of experience for the evaluation of bearing capacity measurements with TSD in the range of lower speeds is not available yet. The aim of this study is to determine the possible lowest ride speed of the TSD while the bearing capacity measurement on the intra-urban roads. The manufacturer of the TSD used in this study states that the measurements can be conducted at a ride speed of higher than 5 km/h. It is well known that with decreasing ride speed, the viscous fractions in the response of the asphalt pavement increase. This must be taken into account when evaluating the bearing capacity data. In the scope of this study, several measurements were carried out at different speeds between 10 km/h and 60 km/h on the selected intra-urban roads with Pavement-Scanner of the University of Wuppertal, which is equipped with TSD. Pavement-Scanner is able to continuously determine the deflections of asphalt roads in flowing traffic at speeds of up to 80 km/h. The raw data is then aggregated to 10 m mean values so that, as a rule, a bearing capacity characteristic value can be determined for each 10 m road section. By means of analysing of obtained test results, the quality and validity of the determined data rate subject to the riding speed of TSD have been determined. Moreover, the data and pictures of the additional measuring systems of Pavement-Scanners such as High-Speed Road Monitor, Ground Penetration Radar and front cameras can be used to determine and eliminate irregularities in the pavement, which could influence the bearing capacity.

Keywords: bearing capacity measurement, traffic speed deflectometer, inter-urban roads, Pavement-Scanner, structural substance

Procedia PDF Downloads 237
18249 The Recording of Personal Data in the Spanish Criminal Justice System and Its Impact on the Right to Privacy

Authors: Deborah García-Magna

Abstract:

When a person goes through the criminal justice system, either as a suspect, arrested, prosecuted or convicted, certain personal data are recorded, and a wide range of persons and organizations may have access to it. The recording of data can have a great impact on the daily life of the person concerned during the period of time determined by the legislation. In addition, this registered information can refer to various aspects not strictly related directly to the alleged or actually committed infraction. In some areas, the Spanish legislation does not clearly determine the cancellation period of the registers nor what happens when they are cancelled since some of the files are not really erased and remain recorded, even if their consultation is no more allowed or it is stated that they should not be taken into account. Thus, access to the recorded data of arrested or convicted persons may reduce their possibilities of reintegration into society. In this research, some of the areas in which data recording has a special impact on the lives of affected persons are analyzed in a critical manner, taking into account Spanish legislation and jurisprudence, and the influence of the European Court of Human Rights, the Council of Europe and other supranational instruments. In particular, the analysis cover the scope of video-surveillance in public spaces, the police record, the recording of personal data for the purposes of police investigation (especially DNA and psychological profiles), the registry of administrative and minor offenses (especially as they are taken into account to impose aggravating circumstaces), criminal records (of adults, minors and legal entities), and the registration of special circumstances occurred during the execution of the sentence (files of inmates under special surveillance –FIES–, disciplinary sanctions, special therapies in prison, etc.).

Keywords: ECHR jurisprudence, formal and informal criminal control, privacy, disciplinary sanctions, social reintegration

Procedia PDF Downloads 144
18248 The Role of Arousal in Time Perception: Implications for Emotional Driving

Authors: Ewa Siedlecka

Abstract:

Emotional stress is an important risk factor in the rate and severity of traffic accidents. Moreover, incorrect time perception is implicated in the increase of traffic violations, such as running red lights or collisions. While the role of emotional arousal on perceived time is well-established, the role of physiological arousal in time perception remains unexamined. Specific emotions can be, however, associated with distinct physiological responses. In the current research, two studies examined the role of physiological arousal in time perception. In the first experiment, 41 participants engaged in a cold pressor task and had their time perception measured throughout the experiment. In the second study, 138 participants engaged in either isometric or deep breathing exercises. These activities were designed to simulate the sympathetic and parasympathetic nervous systems, respectively. Participants completed a bisection task to measure time perception in both studies, as well as a physiological response via an Electrocardiography (ECG). Results found that activation of the parasympathetic nervous system is associated with greater time perception. These findings are discussed with reference to models of time perception, as well as implications for emotional driving and misperceptions of speed. It is important to consider the role of physiology in the misperception of time, as these factors can lead to increases in driving accidents.

Keywords: emotions, nervous system, physiology, time perception

Procedia PDF Downloads 324
18247 Building Energy Modeling for Networks of Data Centers

Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody

Abstract:

The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.

Keywords: data-centers, energy, life cycle, network simulation

Procedia PDF Downloads 147