Search results for: regional features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5438

Search results for: regional features

5138 A Traceability Index for Food

Authors: Hari Pulapaka

Abstract:

This paper defines and develops the notion of a traceability index for food and may be used by any consumer (restaurant, distributor, average consumer etc.). The concept is then extended to a region's food system as a way to measure how well a regional food system utilizes its own bounty or at least, is connected to its food sources. With increasing emphases on the sustainability of aspects of regional and ultimately, the global food system, it is reasonable to accept that if we know how close (in relative terms) an end-user of a set of ingredients (as they traverse through the maze of supply chains) is from the sources, we may be better equipped to evaluate the quality of the set as measured by any number of qualitative and quantitative criteria. We propose a mathematical model which may be adapted to a number of contexts and sizes. Two hypothetical cases of different scope are presented which highlight how the model works as an evaluator of steps between an end-user and the source(s) of the ingredients they consume. The variables in the model are flexible enough to be adapted to other applications beyond food systems.

Keywords: food, traceability, supply chain, mathematical model

Procedia PDF Downloads 274
5137 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density

Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita

Abstract:

Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.

Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite

Procedia PDF Downloads 104
5136 Serious Gaming for Behaviour Change: A Review

Authors: Ramy Hammady, Sylvester Arnab

Abstract:

Significant attention has been directed to adopt game interventions practically to change certain behaviours in many disciplines such as health, education, psychology through many years. That’s due to the intrinsic motivation that games can cause and the substantial impact the games can leave on the player. Many review papers were induced to highlight and measure the effectiveness of the game’s interventions on changing behaviours; however, most of these studies neglected the game design process itself and the game features and elements that can stimuli changing behaviours. Therefore, this paper aims to identify the most game design mechanics and features that are the most influencing on changing behaviour during or after games interventions. This paper also sheds light on the theories of changing behaviours that clearly can led the game design process. This study gives directions to game designers to spot the most influential game features and mechanics for changing behaviour games in order to exploit it on the same manner.

Keywords: behaviour change, game design, serious gaming, gamification, review

Procedia PDF Downloads 210
5135 The Effect of Primary Treatment on Histopathological Patterns and Choice of Neck Dissection in Regional Failure of Nasopharyngeal Carcinoma Patients

Authors: Ralene Sim, Stefan Mueller, N. Gopalakrishna Iyer, Ngian Chye Tan, Khee Chee Soo, R. Shetty Mahalakshmi, Hiang Khoon Tan

Abstract:

Background: Regional failure in nasopharyngeal carcinoma (NPC) is managed by salvage treatment in the form of neck dissection. Radical neck dissection (RND) is preferred over modified radical neck dissection (MRND) since it is traditionally believed to offer better long-term disease control. However, with the advent of more advanced imaging modalities like high-resolution Magnetic Resonance Imaging, Computed Tomography, and Positron Emission Tomography-CT scans, earlier detection is achieved. Additionally, concurrent chemotherapy also contributes to reduced tumour burden. Hence, there may be a lesser need for an RND and a greater role for MRND. With this retrospective study, the primary aim is to ascertain whether MRND, as opposed to RND, has similar outcomes and hence, whether there would be more grounds to offer a less aggressive procedure to achieve lower patient morbidity. Methods: This is a retrospective study of 66 NPC patients treated at Singapore General Hospital between 1994 to 2016 for histologically proven regional recurrence, of which 41 patients underwent RND and 25 who underwent MRND, based on surgeon preference. The type of ND performed, primary treatment mode, adjuvant treatment, and pattern of recurrence were reviewed. Overall survival (OS) was calculated using Kaplan-Meier estimate and compared. Results: Overall, the disease parameters such as nodal involvement and extranodal extension were comparable between the two groups. Comparing MRND and RND, the median (IQR) OS is 1.76 (0.58 to 3.49) and 2.41 (0.78 to 4.11) respectively. However, the p-value found is 0.5301 and hence not statistically significant. Conclusion: RND is more aggressive and has been associated with greater morbidity. Hence, with similar outcomes, MRND could be an alternative salvage procedure for regional failure in selected NPC patients, allowing similar salvage rates with lesser mortality and morbidity.

Keywords: nasopharyngeal carcinoma, neck dissection, modified neck dissection, radical neck dissection

Procedia PDF Downloads 170
5134 The Mechanism of Upgrading and Urban Development in the Egyptian City: Case Study of Damietta

Authors: Lina Fayed Amin

Abstract:

The research studied, in the beginning, the related urban concepts such as the urban, development, urban development. As it also deals with the upgrading, urban upgrading, community participation and the role of local administration in development and upgrading projects. Then it studies some regional upgrading & urban development projects in Egypt followed by international projects, and the analysis the strategies followed in dealing with these projects. Afterwards, we state the regional aspects of both Damietta governorate & city, dealing with its potentials & development constraints. Followed by studying the upgrading and urban development projects strategies in reflection to the city’s crucial problems, and the constraints that faced the upgrading & development project. Then, it studied the implementation of the project’s strategies & it provided the financial resources needed for the development project in Damietta city. Followed by the studying of the urban and human development projects in the upgrading of Damietta city, as well as analyzing the different projects &analyzing the results of these projects on the aspects of the city’s needs. Then the research analysis in comparison the upgrading and urban development project in Damietta and the regional upgrading and development projects in Egypt. As well as the comparison between the upgrading and urban development project and the international projects in some Arabic and foreign countries in relation to the goals, problems, obstacles, the community participation, the finance resources and the results. Finally, it reviews the results and recommendations that were reached as a result of studying the similar urban upgrading projects in Egypt and in some Arabic and foreign countries. Followed by the analytical analysis of the upgrading and urban development in Egypt

Keywords: Damietta city, urban development, upgrading mechanisms, urban upgrading

Procedia PDF Downloads 425
5133 Calibration of Site Effect Parameters in the GMPM BSSA 14 for the Region of Spain

Authors: Gonzalez Carlos, Martinez Fransisco

Abstract:

The creation of a seismic prediction model that considers all the regional variations and perfectly adjusts its results to the response spectra is very complicated. To achieve statistically acceptable results, it is necessary to process a sufficiently robust data set, and even if high efficiencies are achieved, this model will only work properly in this region. However, when using it in other regions, differences are found due to different parameters that have not been calibrated to other regions, such as the site effect. The fact that impedance contrasts, as well as other factors belonging to the site, have a great influence on the local response is well known, which is why this work, using the residual method, is intended to establish a regional calibration of the corresponding parameters site effect for the Spain region in the global GMPM BSSA 14.

Keywords: GMPM, seismic prediction equations, residual method, response spectra, impedance contrast

Procedia PDF Downloads 84
5132 Effect of Structural Change on Productivity Convergence: A Panel Unit Root Analysis

Authors: Amjad Naveed

Abstract:

This study analysed the role of structural change in the process of labour productivity convergence at country and regional levels. Many forms of structural changes occurred within the European Union (EU) countries i.e. variation in sectoral employment share, changes in demand for products, variations in trade patterns and advancement in technology which may have an influence on the process of convergence. Earlier studies on convergence have neglected the role of structural changes which can have resulted in different conclusion on the nature of convergence. The contribution of this study is to examine the role of structural change in testing labour productivity convergence at various levels. For the empirical purpose, the data of 19 EU countries, 259 regions and 6 industries is used for the period of 1991-2009. The results indicate that convergence varies across regional and country levels for different industries when considered the role of structural change.

Keywords: labor produvitivty, convergence, structural change, panel unit root

Procedia PDF Downloads 285
5131 The Role of the Returned Migration in the Regional Economic Growth

Authors: Jessica Ordoñez, Francisco Ochoa, Pascual García

Abstract:

The objective of this paper is to analyze the relationship between return migration in Ecuador and economic growth. The improvement of macroeconomic conditions in Latin America, starting in 2012, makes the region a new migratory destination, in both senses in north-south and south-south flows. Current studies highlight only the role of the entrepreneurial migrant in generating employment and economic growth in the region. Nevertheless, it has not been considered that not all migrants are entrepreneurs and that not all entrepreneurs contribute to economic growth. This research compares the socioeconomic and labor characteristics of migrant returnees working as freelancers in Ecuador. The principal aim is to demystify the role of migrant entrepreneurs in regional growth and to identify socioeconomic characteristics that can enhance growth. A panel econometric model was used, which is part of the information from labor and macroeconomic surveys.

Keywords: economic growth, entrepreneur, migration, returned migration

Procedia PDF Downloads 212
5130 Gait Biometric for Person Re-Identification

Authors: Lavanya Srinivasan

Abstract:

Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat, and case recorded using longwave infrared, short wave infrared, medium wave infrared, and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using YOLO, background subtraction, silhouettes extraction, and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the principal component analysis and recognised using different classifiers. The comparative results with the different classifier show that linear discriminant analysis outperforms other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset.

Keywords: biometric, gait, silhouettes, YOLO

Procedia PDF Downloads 172
5129 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification

Authors: Zin Mar Lwin

Abstract:

Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods.

Keywords: BCI, EEG, ICA, SVM

Procedia PDF Downloads 278
5128 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models

Authors: Hadush Kidane Meresa

Abstract:

The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.

Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland

Procedia PDF Downloads 602
5127 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 316
5126 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 639
5125 Video Processing of a Football Game: Detecting Features of a Football Match for Automated Calculation of Statistics

Authors: Rishabh Beri, Sahil Shah

Abstract:

We have applied a range of filters and processing in order to extract out the various features of the football game, like the field lines of a football field. Another important aspect was the detection of the players in the field and tagging them according to their teams distinguished by their jersey colours. This extracted information combined about the players and field helped us to create a virtual field that consists of the playing field and the players mapped to their locations in it.

Keywords: Detect, Football, Players, Virtual

Procedia PDF Downloads 331
5124 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: climate, degradation, HVAC, neighborhood component analysis

Procedia PDF Downloads 431
5123 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods

Authors: Bin Liu

Abstract:

Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.

Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)

Procedia PDF Downloads 161
5122 Negotiated Peace in Africa: A Case Study on the Pretoria Peace Deal between Federal Democratic Republic of Ethiopia and Tigray Peoples Liberation Front

Authors: Daniel Gidey, Kunwar Siddarth Dadhwal, Tagel Wondimu

Abstract:

There are numerous ways for ending conflict; hitherto, most conflicts are resolved either through negotiated or victor's peace, this article is about the former. Negotiations entail concessions, consensus-building, and mutual trust in order to transform a belligerent situation into a settlement. In such a context, regional and sub-regional organizations play a critical role in mediating conflicting parties so as to prevent, manage, and resolve conflicts between and among conflicting parties. This article is about the AU-led negotiated peace deal on the bloody conflict between the Tigray Peoples Liberation Front (TPLF) and the Federal Democratic Republic of Ethiopia (FDRE) by undertaking the Pretoria Peace Accord as a case study. In terms of research method, the article is based on a critical evaluation of the literature and content analysis on the very research topic. Findings of the study revealed that the AU, through Olusegun Obasanjo and other dignitaries, played a critical role in nurturing compromise and mutual trust between the TPLF and the Ethiopian federal government so as to take along the Pretoria peace deal. Through critical literature review and content analysis of the Peace deal, the article has concluded that negotiated peace is likely, at least, to achieve negative peace.

Keywords: regional organizations, peace promotion, African Union, negotiating conflicts, Northern Ethiopia, conflict resolution

Procedia PDF Downloads 80
5121 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks

Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia

Abstract:

This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.

Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks

Procedia PDF Downloads 337
5120 Intelligent Grading System of Apple Using Neural Network Arbitration

Authors: Ebenezer Obaloluwa Olaniyi

Abstract:

In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.

Keywords: image processing, neural network, apple, intelligent system

Procedia PDF Downloads 398
5119 Volcanostratigraphy Reconaissance Study Using Ridge Continuity to Solve Complex Volcanic Deposit Problems, Case Study Old Sunda Volcano

Authors: Afy Syahidan ACHMAD, Astin NURDIANA, SURYANTINI

Abstract:

In volcanic arc environment we can find multiple volcanic deposits which overlapped with another volcanic deposit so it will complicates source and distribution determination. This problem getting more difficult when we can not trace any deposit border evidences in field especially in high vegetation volcanic area, or overlapped deposit with same characteristics. Main purpose of this study is to solve complex volcanostratigraphy mapping problems trough ridge, valley, and river continuity. This method application carried out in Old Sunda Volcanic, West Java, Indonesia. Using 1:100.000 and 1:50.000 topographic map, and regional geology map, old sunda volcanic deposit was differentiated in regional level and detail level. Final product of this method is volcanostratigraphy unit determination in reconnaissance stage to simplify mapping process.

Keywords: volcanostratigraphy, study, method, volcanic deposit

Procedia PDF Downloads 402
5118 The Role of University in High-Level Human Capital Cultivation in China’s West Greater Bay Area

Authors: Rochelle Yun Ge

Abstract:

University has played an active role in the country’s development in China. There has been an increasing research interest on the development of higher education cooperation, talent cultivation and attraction, and innovation in the regional development. The Triple Helix model, which indicates that regional innovation and development can be engendered by collaboration among university, industry and government, is often adopted as research framework. The research using triple helix model emphasizes the active and often leading role of university in knowledge-based economy. Within this framework, universities are conceptualized as key institutions of knowledge production, transmission and transference potentially making critical contributions to regional development. Recent research almost uniformly consistent in indicating the high-level research labours (i.e., doctoral, post-doctoral researchers and academics) as important actors in the innovation ecosystem with their cross-geographical human capital and resources presented. In 2019, the development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) was officially launched as an important strategy by the Chinese government to boost the regional development of the Pearl River Delta and to support the realization of “One Belt One Road” strategy. Human Capital formation is at the center of this plan. One of the strategic goals of the GBA development is set to evolve into an international educational hub and innovation center with high-level talents. A number of policies have been issued to attract and cultivate human resources in different GBA cities, in particular for the high-level R&D (research and development) talents such as doctoral and post-doctoral researchers. To better understand the development of high-level talents hub in the GBA, more empirical considerations should be given to explore the approaches of talents cultivation and attraction in the GBA. What remains to explore is the ways to better attract, train, support and retain these talents in the cross-systems context. This paper aims to investigate the role of university in human capital development under China’s national agenda of GBA integration through the lens of universities and actors. Two flagship comprehensive universities are selected to be the cases and 30 interviews with university officials, research leaders, post-doctors and doctoral candidates are used for analysis. In particular, we look at in what ways have universities aligned their strategies and practices to the Chinese government’s GBA development strategy? What strategies and practices have been developed by universities for the cultivation and attraction of high-level research labor? And what impacts the universities have made for the regional development? The main arguments of this research highlights the specific ways in which universities in smaller sub-regions can collaborate in high-level human capital formation and the role policy can play in facilitating such collaborations.

Keywords: university, human capital, regional development, triple-helix model

Procedia PDF Downloads 113
5117 Object-Scene: Deep Convolutional Representation for Scene Classification

Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang

Abstract:

Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.

Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization

Procedia PDF Downloads 331
5116 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 105
5115 Regional Problems of Electronic Governance in Autonomous Republic of Adjara

Authors: Manvelidze irakli, Iashvili Genadi

Abstract:

Research has shown that public institutions in Autonomous Republic of Ajara try their best to make their official electronic data (web-pages, social websites) more informative and improve them. Part of public institutions offer interesting electronic services and initiatives to the public although they are seldom used in communication process. The statistical analysis of the use of web-pages and social websites of public institutions for example their facebook page show lack of activity. The reason could be the fact that public institutions give people less possibility of interaction in official web-pages. Second reason could be the fact that these web-pages are less known to the public and the third reason could be the fact that heads of these institutions lack awareness about the necessity of strengthening citizens’ involvement. In order to increase people’s involvement in this process it is necessary to have at least 23 e-services in one web-page. The research has shown that 11 of the 16 public institutions have only 5 services which are contact, social networks and hotline. Besides introducing innovative services government institutions should evaluate them and make them popular and easily accessible for the public. It would be easy to solve this problem if public institutions had concrete strategic plan of public relations which involved matters connected with maximum usage of electronic services while interaction with citizens. For this moment only one governmental body has a functioning action plan of public relations. As a result of the research organizational, social, methodological and technical problems have been revealed. It should be considered that there are many feedback possibilities like forum, RSS, blogs, wiki, twitter, social networks, etc. usage of only one or three of such instruments indicate that there is no strategy of regional electronic governance. It is necessary to develop more mechanisms of feedback which will increase electronic interaction, discussions and it is necessary to introduce the service of online petitions. It is important to reduce the so-called “digital inequality” and increase internet access for the public. State actions should decrease such problems. In the end if such shortcomings will be improved the role of electronic interactions in democratic processes will increase.

Keywords: e-Government, electronic services, information technology, regional government, regional government

Procedia PDF Downloads 310
5114 Development of Value Productivity in Automotive Industry

Authors: Jiří Klečka, Dagmar Čámská

Abstract:

This paper is focused on the investigation of productivity (total productivity and partial productivity). The value productivity is an indicator of level and changes in technical economic efficiency of production factors. It represents an important factor in achieving corporate objectives. This text works with the contemporary concept of value productivity that means that indicators of the productivity express the effect of economic efficiency not only of inputs consumption, but also of inputs binding efficiency. This approach is based on principles of the economic profit, respectively the economic value added (EVA). The research is done on the sample of Czech enterprises operating in the automotive industry in the regions of Liberec and the Central Bohemia. The data sample covers the time period 2006-2011 which allows the comparison of development before crisis and during crisis period. It enables to discover the companies' reaction during crises and the regional comparison allows to showing if there are significant differences between regions.

Keywords: automotive industry, Czech Republic, economic efficiency, regional comparison, value productivity

Procedia PDF Downloads 290
5113 Offline Signature Verification Using Minutiae and Curvature Orientation

Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee

Abstract:

A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.

Keywords: signature, ridge breaks, minutiae, orientation

Procedia PDF Downloads 146
5112 Big Brain: A Single Database System for a Federated Data Warehouse Architecture

Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf

Abstract:

Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.

Keywords: data integration, data warehousing, federated architecture, Online Analytical Processing (OLAP)

Procedia PDF Downloads 236
5111 Analyzing Conflict Text; ‘Akunyili Memo: State of the Nation’: an Approach from CDA

Authors: Nengi A. H. Ejiobih

Abstract:

Conflict is one of the defining features of human societies. Often, the use or misuse of language in interaction is the genesis of conflict. As such, it is expected that when people use language they do so in socially determined ways and with almost predictable social effects. The objective of this paper was to examine the interest at work as manifested in language choice and collocations in conflict discourse. It also scrutinized the implications of linguistic features in conflict discourse as it concerns ideology and power relations in political discourse in Nigeria. The methodology used for this paper is an approach from Critical discourse analysis because of its multidisciplinary model of analysis, linguistic features and its implications were analysed. The datum used is a text from the Sunday Sun Newspaper in Nigeria, West Africa titled Akunyili Memo: State of the Nation. Some of the findings include; different ideologies are inherent in conflict discourse, there is the presence of power relations being produced, exercised, maintained and produced throughout the discourse and the use of pronouns in conflict discourse is valuable because it is used to initiate and maintain relationships in social context. This paper has provided evidence that, taking into consideration the nature of the social actions and the way these activities are translated into languages, the meanings people convey by their words are identified by their immediate social, political and historical conditions.

Keywords: conflicts, discourse, language, linguistic features, social context

Procedia PDF Downloads 479
5110 Regional Variations in Spouse Selection Patterns of Women in India

Authors: Nivedita Paul

Abstract:

Marriages in India are part and parcel of kinship and cultural practices. Marriage practices differ in India because of cross-regional diversities in social relations which itself has evolved as a result of causal relationship between space and culture. As the place is important for the formation of culture and other social structures, therefore there is regional differentiation in cultural practices and marital customs. Based on the cultural practices some scholars have divided India into North and South kinship regions where women in the North get married early and have lesser autonomy compared to women in the South where marriages are mostly consanguineous. But, the emergence of new modes and alternative strategies such as matrimonial advertisements becoming popular, as well as the increase in women’s literacy and work force participation, matchmaking process in India has changed to some extent. The present study uses data from Indian Human Development Survey II (2011-12) which is a nationally representative multitopic survey that covers 41,554 households. Currently married women of age group 15-49 in their first marriage; whose year of marriage is from the 1970s to 2000s have been taken for the study. Based on spouse selection experiences, the sample of women has been divided into three marriage categories-self, semi and family arranged. Women in self-arranged or love marriage is the sole decision maker in choosing the partner, in semi-arranged marriage or arranged marriage with consent both parents and women together take the decision, whereas in family arranged or arranged marriage without consent only parents take the decision. The main aim of the study is to show the spatial and regional variations in spouse selection decision making. The basis for regionalization has been taken from Irawati Karve’s pioneering work on kinship studies in India called Kinship Organization in India. India is divided into four kinship regions-North, Central, South and East. Since this work was formulated in 1953, some of the states have experienced changes due to modernization; hence these have been regrouped. After mapping spouse selection patterns using GIS software, it is found that the northern region has mostly family arranged marriages (around 64.6%), the central zone shows a mixed pattern since family arranged marriages are less than north but more than south and semi-arranged marriages are more than north but less than south. The southern zone has the dominance of semi-arranged marriages (around 55%) whereas the eastern zone has more of semi-arranged marriage (around 53%) but there is also a high percentage of self-arranged marriage (around 42%). Thus, arranged marriage is the dominant form of marriage in all four regions, but with a difference in the degree of the involvement of the female and her parents and relatives.

Keywords: spouse selection, consent, kinship, regional pattern

Procedia PDF Downloads 168
5109 A Dynamic Equation for Downscaling Surface Air Temperature

Authors: Ch. Surawut, D. Sukawat

Abstract:

In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. These equations provide downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.

Keywords: dynamic equation, downscaling, inverse distance, weight interpolation

Procedia PDF Downloads 306