Search results for: recognition and enforcement of foreign judgment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3674

Search results for: recognition and enforcement of foreign judgment

3374 The Effect of Foreign Language Classroom Anxiety and Tolerance of Ambiguity on EFL Learners’ Listening Proficiency

Authors: Mohammad Hadi Mahmoodi, Azam Ghonchepoor, Sheilan Sohrabi

Abstract:

The present study was conducted to investigate the effect of foreign language classroom anxiety and ambiguity tolerance on EFL Learners’ listening proficiency. In so doing, 442 EFL learners were randomly selected form Azad University and some accredited language institutions in Hamaden, and were given the Foreign Language Classroom Anxiety Scale (FLCAS) (1983), and Second Language Tolerance of Ambiguity Scale (SLTAS) (1995). Participants’ listening proficiency level was determined through listening scores gained in standardized exams given by university professors or institutes in which they studied English. The results of two-way ANOVA revealed that listening proficiency was significantly affected by the interaction of anxiety and AT level of the participants. Each of the two variables were categorized in three levels of High, Mid, and Low. The highest mean score of listening belonged to the group with low degree of anxiety and high degree of ambiguity tolerance, and the lowest listening mean score was gained by the group with high level of anxiety and low level of tolerance of ambiguity. Also, the findings of multiple regressions confirmed that anxiety was the stronger predictor of listening comprehension in contrast with tolerance of ambiguity. Furthermore, the result of Pearson correlation coefficient showed that there was a significant negative relationship between the participants’ foreign language classroom anxiety and their ambiguity tolerance level.

Keywords: Foreign Language Classroom Anxiety, Second language tolerance of ambiguity, Listening proficiency

Procedia PDF Downloads 509
3373 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 155
3372 Foreign Languages and Employability in the European Union

Authors: Paulina Pietrzyk-Kowalec

Abstract:

This paper presents the phenomenon of multilingualism becoming the norm rather than the exception in the European Union. It also seeks to describe the correlation between the command of foreign languages and employability. It is evident that the challenges of today's societies when it comes to employability and to the reality of the current labor market are more and more diversified. Thus, it is one of the crucial tasks of higher education to prepare its students to face this kind of complexity, understand its nuances, and have the capacity to adapt effectively to situations that are common in corporations based in the countries belonging to the EU. From this point of view, the assessment of the impact that the command of foreign languages of European university students could have on the numerous business sectors becomes vital. It also involves raising awareness of future professionals to make them understand the importance of mastering communicative skills in foreign languages that will meet the requirements of students' prospective employers. The direct connection between higher education institutions and the world of business also allows companies to realize that they should rethink their recruitment and human resources procedures in order to take into account the importance of foreign languages. This article focuses on the objective of the multilingualism policy developed by the European Commission, which is to enable young people to master at least two foreign languages, which is crucial in their future careers. The article puts emphasis on the existence of a crucial connection between the research conducted in higher education institutions and the business sector in order to reduce current qualification gaps.

Keywords: cross-cultural communication, employability, human resources, language attitudes, multilingualism

Procedia PDF Downloads 134
3371 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor

Authors: Jadisha Cornejo, Helio Pedrini

Abstract:

Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.

Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks

Procedia PDF Downloads 182
3370 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning

Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker

Abstract:

Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.

Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning

Procedia PDF Downloads 148
3369 Cybercrime: International Police Cooperation with Europol

Authors: Daniel Suarez Alonso

Abstract:

Cybercrime is a growing international threat and a challenge for law enforcement agencies and judicial systems worldwide. International cooperation is necessary to solve this problem because cybercrime knows no borders and often involves multiple jurisdictions, being related to organised crime. The purpose of this article is to analyse international cooperation in the investigation and prosecution of cybercrime, focusing on the framework of the Regulation of the European Union Agency for Law Enforcement Cooperation (EUROPOL), cooperation that takes place between police authorities from different countries. It examines the legal and operational mechanisms in place to facilitate international cooperation in Europe in this area and assesses their effectiveness in the fight against cybercrime. In addition, the study of a Spanish investigation where cooperation with EUROPOL took place will be examined, analyzing how international cooperation was carried out to investigate and track down criminals. Lessons learned from this case will be discussed and recommendations for improving international cooperation in the fight against cybercrime will be proposed.

Keywords: Europol, international cooperation, cybercrime, computer crime, law

Procedia PDF Downloads 66
3368 Proposed Solutions Based on Affective Computing

Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla

Abstract:

A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.

Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition

Procedia PDF Downloads 369
3367 Ethical and Personality Factors and Accounting Professional Judgement

Authors: Shannon Hashemi, Alireza Daneshfar

Abstract:

Accounting ethical awareness has been widely promoted in recent years both in academia and in practice. However, the effectiveness of ethical awareness on accountants' judgment and choice of action is still debatable. This study investigates whether Machiavellianism and gender, as significant personality factors, influence the effect of ethical awareness on accountants' decision-making. Using an experiment, the results of ANOVA tests show that although introducing ethical awareness positively influences the accountants' judgment and choice of action, such an effect is significantly moderated by the accountants' Machiavellianism score and gender. Specifically, the test results show that the effect of introducing ethical awareness was higher on males with low Machiavellian score. The results also show that when the Machiavellian scores were high, the effect of ethical awareness was lower for both males and females. Applications of the results are discussed for accounting professionals as well as accounting ethics educators and researchers.

Keywords: ethical awareness, accounting decision making, Machiavellianism, ANOVA, ethics, accounting education

Procedia PDF Downloads 114
3366 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 667
3365 Evaluating the Role of Multisensory Elements in Foreign Language Acquisition

Authors: Sari Myréen

Abstract:

The aim of this study was to evaluate the role of multisensory elements in enhancing and facilitating foreign language acquisition among adult students in a language classroom. The use of multisensory elements enables the creation of a student-centered classroom, where the focus is on individual learner’s language learning process, perceptions and motivation. Multisensory language learning is a pedagogical approach where the language learner uses all the senses more effectively than in a traditional in-class environment. Language learning is facilitated due to multisensory stimuli which increase the number of cognitive connections in the learner and take into consideration different types of learners. A living lab called Multisensory Space creates a relaxed and receptive state in the learners through various multisensory stimuli, and thus promotes their natural foreign language acquisition. Qualitative and quantitative data were collected in two questionnaire inquiries among the Finnish students of a higher education institute at the end of their basic French courses in December 2014 and 2016. The inquiries discussed the effects of multisensory elements on the students’ motivation to study French as well as their learning outcomes. The results show that the French classes in the Multisensory Space provide the students with an encouraging and pleasant learning environment, which has a positive impact on their motivation to study the foreign language as well as their language learning outcomes.

Keywords: foreign language acquisition, pedagogical approach, multisensory learning, transcultural learning

Procedia PDF Downloads 386
3364 Unsupervised Reciter Recognition Using Gaussian Mixture Models

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.

Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model

Procedia PDF Downloads 380
3363 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients

Procedia PDF Downloads 259
3362 Foreign Tourists’ Attitude toward Service Marketing Mix and Intention to Revisit in Boutique Hotel

Authors: Nattapong Techarattanased

Abstract:

This survey research aimed to study the influence of attitude in services, product, and marketing mix affected intention to revisit in boutique hotel of foreign travelers in Bangkok, Thailand. The total 400 sets of closed-ended questionnaires were utilized for conducting data from foreign tourists who come to boutique hotel and can communicate in English. The descriptive statistics and multiple regression analysis were used to analyze data. The research found that tourists’ attitude towards the service of check in and check out process, food and beverage, guest room and other facilities affected in opportunity of revisiting, recommending to others and possibility of revisiting in the future at 0.05 statistically significant levels. Tourists’ attitude towards service and marketing mix in term of people, physical evidence, price, process and channel of distribution could forecast intention to revisit in term of recommending to others and intention to revisit in the future at 0.05 statistically significant levels.

Keywords: boutique hotel, foreign tourists, intention to revisit, service marketing mix

Procedia PDF Downloads 247
3361 A Fast, Reliable Technique for Face Recognition Based on Hidden Markov Model

Authors: Sameh Abaza, Mohamed Ibrahim, Tarek Mahmoud

Abstract:

Due to the development in the digital image processing, its wide use in many applications such as medical, security, and others, the need for more accurate techniques that are reliable, fast and robust is vehemently demanded. In the field of security, in particular, speed is of the essence. In this paper, a pattern recognition technique that is based on the use of Hidden Markov Model (HMM), K-means and the Sobel operator method is developed. The proposed technique is proved to be fast with respect to some other techniques that are investigated for comparison. Moreover, it shows its capability of recognizing the normal face (center part) as well as face boundary.

Keywords: HMM, K-Means, Sobel, accuracy, face recognition

Procedia PDF Downloads 331
3360 Mood Recognition Using Indian Music

Authors: Vishwa Joshi

Abstract:

The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.

Keywords: music, mood, features, classification

Procedia PDF Downloads 497
3359 Impact of Foreign Aid on Economic Development

Authors: Saeed Anwar

Abstract:

Foreign aid has long been a prominent tool in the pursuit of economic development in recipient countries. This research paper aims to analyze the impact of foreign aid on economic development and explore the effectiveness of aid in promoting sustainable growth, poverty reduction, and improvements in human development indicators. Drawing upon a comprehensive review of existing literature, both theoretical frameworks and empirical evidence are synthesized to provide insights into the complex relationship between foreign aid and economic development. The paper examines various channels through which foreign aid influences economic development, including infrastructure development, education and healthcare investments, technology transfer, and institutional capacity building. It explores the potential positive effects of aid in stimulating economic growth, reducing poverty, and enhancing human capital formation. Additionally, it investigates the potential challenges and limitations associated with aid, such as aid dependency, governance issues, and the potential crowding out of domestic resources. Furthermore, the study assesses the heterogeneity of aid effectiveness across different types of aid modalities, recipient country characteristics, and aid allocation mechanisms. It considers the role of aid conditionality, aid fragmentation, and aid targeting in influencing the effectiveness of aid in promoting economic development. The findings of this research contribute to the ongoing discourse on foreign aid and economic development by providing a comprehensive analysis of the existing literature. The study highlights the importance of context-specific factors, recipient country policies, and aid effectiveness frameworks in determining the impact of foreign aid on economic development outcomes. The insights derived from this research can inform policymakers, donor agencies, and practitioners in designing and implementing effective aid strategies to maximize the positive impact of foreign aid on economic development.

Keywords: foreign aid, economic development, sustainable growth, poverty reduction, human development indicators, infrastructure development, education, healthcare, technology transfer, institutional capacity building, aid effectiveness, aid dependency, governance, crowding out, aid conditionality, aid fragmentation, aid targeting, recipient country policies, aid strategies, donor agencies, policymaking

Procedia PDF Downloads 65
3358 Comparing Productivity of the Foreign versus Local Construction Workers Based on Their Level of Technical Training and Cultural Characteristics: Case Study of Kish Island, Iran

Authors: Mansour Rezvani, Mohammad Mahdi Mortaheb

Abstract:

This study considers the employment of foreign workforce in Kish Free Trade and Industrial Zone and aims to investigate the productivity of foreign construction labours as compared to their local counterpart. Moreover, this study compares work skills and experience of foreign and local Iranian construction workers to optimize construction working conditions. The results and findings have been effectively applied to develop a training program to optimize and promote Iranian workforce productivity and effectiveness in construction industry in comparison with foreign workforce. It is hoped that the accumulated findings contribute to decrease demand for foreign workers and skills shortages in construction sectors. Therefore, job vacancies for local residents in Kish and other looking for job people in main lands will be increased. The method of collecting data has been conducted by distributing a questionnaire and interviewing most foreign construction workers, local Iranian construction works and the project managers of five mega projects in Kish Island including Mica mall, Basak, Persian, Damoon and Sarina mall. All data have been analyzed by SPSS and Excel software. A topic-related survey was conducted through a structured questionnaire including 54 employers, 20 contractors and 13 consultants. About 56 factors were identified. After implementing the context validity test, 52 factors were stated in 52 questions based on five major groups consist of: (1) economical, (2) social and cultural, (3) individual, (4) technical, (5) organizational, environmental and legal. Based on the quantified Relative Importance Index, the ten most important factors, ten less important factors, and three most important categories were identified. To date, there is not any comprehensive study that explores the important critical factors in mega construction projects on Kish Island to identify the major problems to decrease demand for foreign workers.

Keywords: cultural characteristics, foreign worker, local construction workers, productivity, technical training

Procedia PDF Downloads 147
3357 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform

Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu

Abstract:

Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.

Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform

Procedia PDF Downloads 65
3356 A Comparison of Brands Equity between Samsung and Apple in the View of Students of Management Science Faculty, Suan Sunandha Rajabhat University

Authors: Somsak Klaysung

Abstract:

This study aims to investigate the comparison of brands equity between Samsung and Apple from students of Suan Sunandha Rajabhat University. The research method will using quantitative research, data was collected by questionnaires distributed to communication of arts students in the faculty of management science of Suan Sunandha Rajabhat University for 100 samples by purposive sampling method. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic is t-test for hypothesis testing. The results showed that brands equity between Apple and Samsung brand have the ability to recognize brand from the customer by perceived value of the uniqueness of brand and recall when in a situation that must be purchased (Salience), which is the lowest level in branding and consumers can recognize the capacity of the product (Judgment) and opinions about the quality and reliability when it comes to mobile phones Apple and Samsung brand are not different.

Keywords: Apple and Samsung brand, brand equity, judgment, performance, resonance, salience

Procedia PDF Downloads 215
3355 An Exploration of the Effects of Individual and Interpersonal Factors on Saudi Learners' Motivation to Learn English as a Foreign Language

Authors: Fakieh Alrabai

Abstract:

This paper presents an experimental study designed to explore some of the learner’s individual and interpersonal factors (e.g. persistence, interest, regulation, satisfaction, appreciation, etc.) that Saudi learners experience when learning English as a Foreign Language and how learners’ perceptions of these factors influence various aspects of their motivation to learn English language. As part of the study, a 27-item structured survey was administered to a randomly selected sample of 105 Saudi learners from public schools and universities. Data collected through the survey were subjected to some basic statistical analyses, such as "mean" and "standard deviation". Based on the results from the analysis, a number of generalizations and conclusions are made in relation to how these inherent factors affect Saudi learners’ motivation to learn English as a foreign language. In addition, some recommendations are offered to Saudi academics on how to effectively make use of such factors, which may enable Saudi teachers and learners of English as a foreign language to achieve better learning outcomes in an area widely associated by Saudis with lack of success.

Keywords: persistence, interest, appreciation, satisfaction, SL/FL motivation

Procedia PDF Downloads 416
3354 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV

Authors: Maria Pavlova

Abstract:

In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.

Keywords: camera, object recognition, OpenCV, Raspberry

Procedia PDF Downloads 218
3353 The Role of Interest Groups in Foreign Policy: Assessing the Influence of the 'Pro-Jakarta Lobby' in Australia and Indonesia's Bilateral Relations

Authors: Bec Strating

Abstract:

This paper examines the ways that domestic politics and pressure–generated through lobbying, public diplomacy campaigns and other tools of soft power-contributes to the formation of short-term and long-term national interests, priorities and strategies of states in their international relations. It primarily addresses the conceptual problems regarding the kinds of influence that lobby groups wield in foreign policy and how this influence might be assessed. Scholarly attention has been paid to influential foreign policy lobbies and interest groups, particularly in the areas of US foreign policy. Less attention has been paid to how lobby groups might influence the foreign policy of a middle power such as Australia. This paper examines some of the methodological complexities in developing and conducting a research project that can measure the nature and influence of lobbies on foreign affairs priorities and activities. This paper will use Australian foreign policy in the context of its historical bilateral relationship with Indonesia as a case study for considering the broader issues of domestic influences on foreign policy. Specifically, this paper will use the so-called ‘pro-Jakarta lobby’ as an example of an interest group. The term ‘pro-Jakarta lobby’ is used in media commentary and scholarship to describe an amorphous collection of individuals who have sought to influence Australian foreign policy in favour of Indonesia. The term was originally applied to a group of Indonesian experts at the Australian National University in the 1980s but expanded to include journalists, think tanks and key diplomats. The concept of the ‘pro-Jakarta lobby’ was developed largely through criticisms of Australia’s support for Indonesia’s sovereignty of East Timor and West Papua. Pro-Independence supporters were integral for creating the ‘lobby’ in their rhetoric and criticisms about the influence on Australian foreign policy. In these critical narratives, the ‘pro-Jakarta lobby’ supported a realist approach to relations with Indonesia during the years of President Suharto’s regime, which saw appeasement of Indonesia as paramount to values of democracy and human rights. The lobby was viewed as integral in embedding a form of ‘foreign policy exceptionalism’ towards Indonesia in Australian policy-making circles. However, little critical and scholarly attention has been paid to nature, aims, strategies and activities of the ‘pro-Jakarta lobby.' This paper engages with methodological issues of foreign policy analysis: what was the ‘pro-Jakarta lobby’? Why was it considered more successful than other activist groups in shaping policy? And how can its influence on Australia’s approach to Indonesia be tested in relation to other contingent factors shaping policy? In addressing these questions, this case study will assist in addressing a broader scholarly concern about the capacities of collectives or individuals in shaping and directing the foreign policies of states.

Keywords: foreign policy, interests groups, Australia, Indonesia

Procedia PDF Downloads 343
3352 The Study on How Social Cues in a Scene Modulate Basic Object Recognition Proces

Authors: Shih-Yu Lo

Abstract:

Stereotypes exist in almost every society, affecting how people interact with each other. However, to our knowledge, the influence of stereotypes was rarely explored in the context of basic perceptual processes. This study aims to explore how the gender stereotype affects object recognition. Participants were presented with a series of scene pictures, followed by a target display with a man or a woman, holding a weapon or a non-weapon object. The task was to identify whether the object in the target display was a weapon or not. Although the gender of the object holder could not predict whether he or she held a weapon, and was irrelevant to the task goal, the participant nevertheless tended to identify the object as a weapon when the object holder was a man than a woman. The analysis based on the signal detection theory showed that the stereotype effect on object recognition mainly resulted from the participant’s bias to make a 'weapon' response when a man was in the scene instead of a woman in the scene. In addition, there was a trend that the participant’s sensitivity to differentiate a weapon from a non-threating object was higher when a woman was in the scene than a man was in the scene. The results of this study suggest that the irrelevant social cues implied in the visual scene can be very powerful that they can modulate the basic object recognition process.

Keywords: gender stereotype, object recognition, signal detection theory, weapon

Procedia PDF Downloads 209
3351 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs

Authors: Mina Youssef Makram Ibrahim

Abstract:

Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.

Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition

Procedia PDF Downloads 62
3350 Not Suitable for Repatriation nor Refugee Status: How Undocumented Immigrant Women Survives Street Policing

Authors: Angel Mabudusha

Abstract:

The impression created by the high volume of foreign nationals being deported by the South African Home Affairs and the police departments is that all undocumented foreign nationals insist on staying in South Africa and voluntary repatriation is open for every person. However, those foreign nationals whose request for deportation has been rejected are often not reported on especially their everyday survival as undocumented immigrant women and their encounter with the police on the street. As a result, this paper aims at exploring the everyday experiences of these women on the street and on why the number of undocumented immigrant women in this country will remain a challenge to the police department. The research was conducted in two cities in South Africa, namely: Johannesburg and Pretoria where the police, the undocumented immigrant women, the human rights lawyers and NGO officials were interviewed on this matter. Based on the idea that voluntary repatriation is open for every immigrant, this study has found that some women’ request for voluntary repatriation remain a dream that never came true. Furthermore, this article proposes more humanitarian ways of dealing with undocumented immigrant women.

Keywords: repatriation, refugee status, undocumented foreign nationals, humanitarian

Procedia PDF Downloads 414
3349 Occurrence of Foreign Matter in Food: Applied Identification Method - Association of Official Agricultural Chemists (AOAC) and Food and Drug Administration (FDA)

Authors: E. C. Mattos, V. S. M. G. Daros, R. Dal Col, A. L. Nascimento

Abstract:

The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.

Keywords: extraneous materials, food contamination, foreign matter, surveillance

Procedia PDF Downloads 359
3348 Evaluate the Changes in Stress Level Using Facial Thermal Imaging

Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian

Abstract:

This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.

Keywords: stress, thermal imaging, face, SVM, polygraph

Procedia PDF Downloads 486
3347 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis

Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha

Abstract:

Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.

Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier

Procedia PDF Downloads 467
3346 An Empirical Study on Growth, Trade, Foreign Direct Investment and Environment in India

Authors: Shilpi Tripathi

Abstract:

India has adopted the policy of economic reforms (Globalization, Liberalization, and Privatization) in 1991 which has reduced the trade barriers and investment restrictions and further increased the economy’s international trade, foreign direct investment (FDI) inflows and Gross Domestic Product (GDP) growth. The paper empirically studies the relationship between India’s international trades, GDP, FDI and environment during 1978-2012. The first part of the paper focuses on the background and trends of FDI, GDP, trade, and environment (CO2). The second part focuses on the literature regarding the relationship among all the variables. The last part of paper, we examine the results of empirical analysis like co integration and Granger causality between foreign trade, FDI inflows, GDP and CO2 since 1978. The findings of the paper revealed that there is only one uni- directional causality exists between GDP and trade. The direction of causality reveals that international trade is one of the major contributors to the economic growth (GDP). While, there is no causality found between GDP and FDI, FDI, and CO2 and International trade and CO2. The paper concludes with the policy recommendations that will ensure environmental friendly trade, investment and growth in India for future.

Keywords: international trade, foreign direct investment, GDP, CO2, co-integration, granger causality test

Procedia PDF Downloads 439
3345 An End-to-end Piping and Instrumentation Diagram Information Recognition System

Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha

Abstract:

Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.

Keywords: object recognition system, P&ID, symbol recognition, text recognition

Procedia PDF Downloads 153