Search results for: permanent magnet synchronous generator
997 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks
Authors: Guanghua Zhang, Fubao Wang, Weijun Duan
Abstract:
Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.Keywords: convolution neural network, discriminator, generator, unsupervised learning
Procedia PDF Downloads 269996 Technical and Economic Analysis Effects of Various Parameters on the Performance of Heat Recovery System on Gas Complex Turbo Generators
Authors: Hefzollah Mohammadian, Mohammad Bagher Heidari
Abstract:
This paper deals with the technical and economic effects of various parameters on the performance of heat recovery system on gas complex turbo generator. Given the importance of this issue, that is the main goal of economic efficiency and reduces costs; this project has been implemented similar plans in which the target is the implementation of specific patterns. The project will also help us in the process of gas refineries and the actual efficiency of the process after adding a system to analyze the turbine and predict potential problems and fix them and take appropriate measures according to the results of simulation analysis and results of the process gain. The results of modeling and the effect of different parameters on this line, have been done using Thermo Flow.Keywords: turbo compressor, turbo generator, heat recovery boiler, gas turbines
Procedia PDF Downloads 305995 Stability Analysis of a Low Power Wind Turbine for the Simultaneous Generation of Energy through Two Electric Generators
Authors: Daniel Icaza, Federico Córdova, Chiristian Castro, Fernando Icaza, Juan Portoviejo
Abstract:
In this article, the mathematical model is presented, and simulations were carried out using specialized software such as MATLAB before the construction of a 900-W wind turbine. The present study was conducted with the intention of taking advantage of the rotation of the blades of the wind generator after going through a process of amplification of speed by means of a system of gears to finally mechanically couple two electric generators of similar characteristics. This coupling allows generating a maximum voltage of 6 V in DC for each generator and putting in series the 12 V DC is achieved, which is later stored in batteries and used when the user requires it. Laboratory tests were made to verify the level of power generation produced based on the wind speed at the entrance of the blades.Keywords: smart grids, wind turbine, modeling, renewable energy, robust control
Procedia PDF Downloads 233994 Inverterless Grid Compatible Micro Turbine Generator
Authors: S. Ozeri, D. Shmilovitz
Abstract:
Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.Keywords: gas turbine, inverter, power multiplier, distributed generation
Procedia PDF Downloads 240993 A Comparison of Dietary Quality and Nutritional Adequacy of Meal Plans of a Diet Prescription Generator Web App against the Australian Guidelines to Healthy Eating
Authors: Ananda Perera
Abstract:
Diet therapy has a positive impact on many diseases in General Practice. If a meal plan can be generated as easily as writing a drug prescription for dyspepsia, then the evidence and practice gap in nutrition therapy can be narrowed. Meal plans of 50 diet prescriptions were compared with the criteria for a healthy diet given by Australian authorities. The energy value of each meal plan was compared with the recommended daily energy requirements of the authorities for Diet Prescription Generator (DPG) accuracy. Meal plans generated were within the criteria laid down by the Australian authorities for a healthy diet.Keywords: dieting, obesity, diabetes, weight loss, computerized decision support systems, dieting software, CDSS, meal plans
Procedia PDF Downloads 143992 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping
Authors: Kamand Bagherian, Nariman Niknejad
Abstract:
A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.Keywords: active damping, discrete-time nonlinear controller, disturbance tracking algorithm, oscillation transmitting support, position control, stability robustness, vibration isolation
Procedia PDF Downloads 104991 Power Quality Audit Using Fluke Analyzer
Authors: N. Ravikumar, S. Krishnan, B. Yokeshkumar
Abstract:
In present days, the power quality issues are increases due to non-linear loads like fridge, AC, washing machines, induction motor, etc. This power quality issues will affects the output voltages, output current, and output power of the total performance of the generator. This paper explains how to test the generator using the Fluke 435 II series power quality analyser. This Fluke 435 II series power quality analyser is used to measure the voltage, current, power, energy, total harmonic distortion (THD), current harmonics, voltage harmonics, power factor, and frequency. The Fluke 435 II series power quality analyser have several advantages. They are i) it will records output in analog and digital format. ii) the fluke analyzer will records at every 0.25 sec. iii) it will also measure all the electrical parameter at a time.Keywords: THD, harmonics, power quality, TNEB, Fluke 435
Procedia PDF Downloads 177990 Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table
Authors: Anthony El Hachem, Hosam Salman
Abstract:
Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project.Keywords: construction challenges, deep foundations, drilled shafts, loose sands underwater table, permanent casing
Procedia PDF Downloads 194989 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation
Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo
Abstract:
This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology
Procedia PDF Downloads 76988 Reduced Vibration in a Levitating Motor
Authors: S. Kazadi, A. An, B. Shen
Abstract:
We investigate the fitness of a male and female permanent magnetic levitation support for use as an axle on a rotor for a levitating motor. The support enables passive thrust and axial support for the axle as a result of the unique arrangement of permanent magnets. As the axial and thrust bearing aspects are derived from magnetic repulsion, it is not immediately clear that the repulsion is stiff enough to enable even low power motors. This paper describes the design and performance of two low power motors based on the magnetic levitation support. We find that our low power motors, with rotational speeds of 618 and 833 rpms, exhibit performance free from excess vibrations that might hinder performance. This means that the actuation of the motors is adequately stabilized by the axle and results in motors capable of being utilized despite the levitation support.Keywords: levitating motor, magnetic levitation support, fitness, axle
Procedia PDF Downloads 370987 Study of Composite Materials for Aisha Containment Chamber
Authors: G. Costa, F. Noto, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi
Abstract:
The ion sources for accelerators devoted to medical applications must provide intense ion beams, with high reproducibility, stability and brightness. AISHa (Advanced Ion Source for Hadron-therapy) is a compact ECRIS whose hybrid magnetic system consists of a permanent Halbach-type hexapole magnet and a set of independently energized superconducting coils. These coils will be enclosed in a compact cryostat with two cryocoolers for LHe-free operation. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadrontherapy center using heavy ions. In the paper, we designed an innovative solution for the plasma containment chamber that allows us to solve our isolation and structural problems. We analyzed the materials chosen for our aim (glass fibers and carbon fibers) and we illustrated the all process (spinning, curing and machining) of the assembly of our chamber. The glass fibers and carbon fibers are used to reinforce polymer matrices and give rise to structural composites and composites by molding.Keywords: hadron-therapy, carbon fiber, glass fiber, vacuum-bag, ECR, ion source
Procedia PDF Downloads 210986 Feasibility Study of the Binary Fluid Mixtures C3H6/C4H10 and C3H6/C5H12 Used in Diffusion-Absorption Refrigeration Cycles
Authors: N. Soli, B. Chaouachi, M. Bourouis
Abstract:
We propose in this work the thermodynamic feasibility study of the operation of a refrigerating machine with absorption-diffusion with mixtures of hydrocarbons. It is for a refrigerating machine of low power (300 W) functioning on a level of temperature of the generator lower than 150 °C (fossil energy or solar energy) and operative with non-harmful fluids for the environment. According to this study, we determined to start from the digraphs of Oldham of the different binary of hydrocarbons, the minimal and maximum temperature of operation of the generator, as well as possible enrichment. The cooling medium in the condenser and absorber is done by the ambient air with a temperature at 35 °C. Helium is used as inert gas. The total pressure in the cycle is about 17.5 bars. We used suitable software to modulate for the two binary following the system propylene /butane and propylene/pentane. Our model is validated by comparison with the literature’s resultants.Keywords: absorption, DAR cycle, diffusion, propyléne
Procedia PDF Downloads 275985 Innovative Three Wire Capacitor Circuit System for Efficiency and Comfort Improvement of Ceiling Fans
Authors: R. K. Saket, K. S. Anand Kumar
Abstract:
This paper presents an innovative 3-wire capacitor circuit system used to increase the efficiency and comfort improvement of permanent split-capacitor ceiling fan. In this innovative circuit, current has been reduced to save electrical power. The system could be used to replace standard single phase motor 2-wire capacitor configuration by cost effective split value X rated of optimized AC capacitors with the auxiliary winding to provide reliable ceiling fan operation and improved machine performance to save power. In basic system operations, comparisons with conventional ceiling fan are described.Keywords: permanent split-capacitor motor, innovative 3-wire capacitor circuit system, standard 2-wire capacitor circuit system, metalized film X-rated capacitor
Procedia PDF Downloads 523984 Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability
Authors: Hosein Faramarzpour
Abstract:
This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared.Keywords: thermophotovoltaic generator, micro combustor, micro power generator, combustion regimes, flame dynamic
Procedia PDF Downloads 103983 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture
Authors: Chul Ho Han, Kyoung Hoon Kim
Abstract:
This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.Keywords: entropy, exergy, ammonia-water mixture, heat exchanger
Procedia PDF Downloads 399982 Application of Matrix Converter for the Power Control of a DFIG-Based Wind Turbine
Authors: E. Bounadja, M. O. Mahmoudi, A. Djahbar, Z. Boudjema
Abstract:
This paper presents a control approach of the doubly fed induction generator (DFIG) in conjunction with a direct AC-AC matrix converter used in generating mode. This device is intended to be implemented in a variable speed wind energy conversion system connected to the grid. Firstly, we developed a model of matrix converter, controlled by the Venturini modulation technique. In order to control the power exchanged between the stator of the DFIG and the grid, a control law is synthesized using a high order sliding mode controller. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 2-MW wind turbine driven a DFIG using the Matlab/Simulink.Keywords: doubly fed induction generator (DFIG), matrix converter, high-order sliding mode controller, wind energy
Procedia PDF Downloads 523981 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions
Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju
Abstract:
Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.Keywords: distributed generation, electrical distribution systems, fault resistance
Procedia PDF Downloads 516980 Experimental Analysis of Electrical Energy Producing Using the Waste Heat of Exhaust Gas by the Help of Thermoelectric Generator
Authors: Dilek Ozlem Esen, Mesut Kaya
Abstract:
The focus of this study is to analyse the results of heat recovery from exhaust gas which is produced by an internal combustion engine (ICE). To obtain a small amount of energy, an exhaust system which is suitable for recovery waste heat has been constructed. Totally 27 TEGs have been used to convert from the heat to electric energy. By producing a small amount of this energy by the help of thermoelectric generators can reduce engine loads thus decreasing pollutant emissions, fuel consumption, and CO2. This case study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. As a result of this study, 0,45 A averaged current rate, 13,02 V averaged voltage rate and 5,8 W averaged electrical energy have been produced in a five hours operation time.Keywords: thermoelectric, peltier, thermoelectric generator (TEG), exhaust, cogeneration
Procedia PDF Downloads 655979 The Review of Permanent Downhole Monitoring System
Abstract:
With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield
Procedia PDF Downloads 79978 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle
Authors: Mahmoud Huleihil
Abstract:
In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.Keywords: magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine
Procedia PDF Downloads 247977 Parallel Random Number Generation for the Modern Supercomputer Architectures
Authors: Roman Snytsar
Abstract:
Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing
Procedia PDF Downloads 120976 Structure and Magnetic Properties of Low-Temperature Synthesized M-W Hexaferrite Composites
Authors: Young-Min Kang
Abstract:
M-type Sr-hexaferrites (SrFe12O19) is one of the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. For a M-type Sr-hexaferrite with a saturation magnetization (MS) of ~74.0 emu/g the practical limits of remanent flux density (Br) and maximum energy product (BH) max are ~4.6 kG and ~5.3 MGOe. Meanwhile, W-type hexaferrite (SrFe18O27) with higher MS ~81emu/g can be a good candidate for the development of enhanced ferrite magnet. However the W-type hexaferrite is stable at the temperature over 1350 ºC in air, and thus it is hard to control grain size and the coercivity. We report here high-MS M-W composite hexaferrites synthesized at 1250 ºC in air by doping Ca, Co, Mn, and Zn into the hexaferrite structures. The hexaferrites samples of stoichiometric SrFe12O19 (SrM) and Ca-Co-Mn-Zn doped hexaferrite (Sr0.7Ca0.3Fen-0.6Co0.2Mn0.2Zn0.2Oa) were prepared by conventional solid state reaction process with varying Fe content (10 ≤ n ≤ 17). Analysis by x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) were performed for phase identification and microstructural observation respectively. Magnetic hysteresis curves were measured using vibrating sample magnetometer (VSM) at room temperature (300 K). Single M-type phase could be obtained in the non-doped SrM sample after calcinations at the range of 1200 ºC ~ 1300 ºC, showing MS in the range of 72 ~ 72.6 emu/g. The Ca-Co-Mn-Zn doped SrM with Fe content, 10 ≤ n ≤ 13, showed both M and W-phases peaks in the XRD after respective calcinations at 1250 ºC. The sample with n=13 showed the MS of 70.7, 75.3, 78.0 emu/g, respectively, after calcination at 1200, 1250, 1300 ºC. The high MS over that of non-doped SrM (~72 emu/g) is attributed to the volume portion of W-phase. It is also revealed that the high MS W-phase could not formed if only one of the Ca, Co, Zn is missed in the substitution. These elements are critical to form the W-phase at the calcinations temperature of 1250 ºC, which is 100 ºC lower than the calcinations temperature for non-doped Sr-hexaferrites.Keywords: M-type hexaferrite, W-type hexaferrite, saturation magnetization, low-temperature synthesis
Procedia PDF Downloads 166975 Recursive Parametric Identification of a Doubly Fed Induction Generator-Based Wind Turbine
Authors: A. El Kachani, E. Chakir, A. Ait Laachir, A. Niaaniaa, J. Zerouaoui
Abstract:
This document presents an adaptive controller based on recursive parametric identification applied to a wind turbine based on the doubly-fed induction machine (DFIG), to compensate the faults and guarantee efficient of the DFIG. The proposed adaptive controller is based on the recursive least square algorithm which considers that the best estimator for the vector parameter is the vector x minimizing a quadratic criterion. Furthermore, this method can improve the rapidity and precision of the controller based on a model. The proposed controller is validated via simulation on a 5.5 kW DFIG-based wind turbine. The results obtained seem to be good. In addition, they show the advantages of an adaptive controller based on recursive least square algorithm.Keywords: adaptive controller, recursive least squares algorithm, wind turbine, doubly fed induction generator
Procedia PDF Downloads 292974 Design, Modelling, and Fabrication of Bioinspired Frog Robot for Synchronous and Asynchronous Swimming
Authors: Afaque Manzoor Soomro, Faheem Ahmed, Fida Hussain Memon, Kyung Hyun Choi
Abstract:
This paper proposes the bioinspired soft frog robot. All printing technology was used for the fabrication of the robot. Polyjet printing was used to print the front and back limbs, while ultrathin filament was used to print the body of the robot, which makes it a complete soft swimming robot. The dual thrust generation approach has been proposed by embedding the main muscle and antagonistic muscle in all the limbs, which enables it to attain high speed (18 mm/s), and significant control of swimming in dual modes (synchronous and asynchronous modes). To achieve the swimming motion of the frog, the design, motivated by the rigorous modelling and real frog dynamics analysis, enabled the as-developed frog robot (FROBOT) to swim at a significant level of consistency with the real frog. The FROBOT (weighing 65 g) can swim at different controllable frequencies (0.5–2Hz) and can turn in any direction by following custom-made LabVIEW software’s commands which enables it to swim at speed up to 18 mm/s on the surface of deep water (100 cm) with excellent weight balance.Keywords: soft robotics, soft actuator, frog robot, 3D printing
Procedia PDF Downloads 101973 Control Technique for Single Phase Bipolar H-Bridge Inverter Connected to the Grid
Authors: L. Hassaine, A. Mraoui, M. R. Bengourina
Abstract:
In photovoltaic system, connected to the grid, the main goal is to control the power that the inverter injects into the grid from the energy provided by the photovoltaic generator. This paper proposes a control technique for a photovoltaic system connected to the grid based on the digital pulse-width modulation (DSPWM) which can synchronise a sinusoidal current output with a grid voltage and generate power at unity power factor. This control is based on H-Bridge inverter controlled by bipolar PWM Switching. The electrical scheme of the system is presented. Simulations results of output voltage and current validate the impact of this method to determinate the appropriate control of the system. A digital design of a generator PWM using VHDL is proposed and implemented on a Xilinx FPGA.Keywords: grid connected photovoltaic system, H-Bridge inverter, control, bipolar PWM
Procedia PDF Downloads 317972 Robust Image Design Based Steganographic System
Authors: Sadiq J. Abou-Loukh, Hanan M. Habbi
Abstract:
This paper presents a steganography to hide the transmitted information without excite suspicious and also illustrates the level of secrecy that can be increased by using cryptography techniques. The proposed system has been implemented firstly by encrypted image file one time pad key and secondly encrypted message that hidden to perform encryption followed by image embedding. Then the new image file will be created from the original image by using four triangles operation, the new image is processed by one of two image processing techniques. The proposed two processing techniques are thresholding and differential predictive coding (DPC). Afterwards, encryption or decryption keys are generated by functional key generator. The generator key is used one time only. Encrypted text will be hidden in the places that are not used for image processing and key generation system has high embedding rate (0.1875 character/pixel) for true color image (24 bit depth).Keywords: encryption, thresholding, differential predictive coding, four triangles operation
Procedia PDF Downloads 493971 Dynamics Behavior of DFIG Wind Energy Conversion System Incase Dip Voltage
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today’s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.Keywords: doubly fed induction generator (DFIG), wind energy, grid fault, electrical engineering
Procedia PDF Downloads 471970 Study of a Photovoltaic System Using MPPT Buck-Boost Converter
Authors: A. Bouchakour, L. Zaghba, M. Brahami, A. Borni
Abstract:
The work presented in this paper present the design and the simulation of a centrifugal pump coupled to a photovoltaic (PV) generator via a MPPT controller. The PV system operating is just done in sunny period by using water storage instead of electric energy storage. The process concerns the modelling, identification and simulation of a photovoltaic pumping system, the centrifugal pump is driven by an asynchronous three-phase voltage inverter sine triangle PWM motor through. Two configurations were simulated. For the first, it is about the alimentation of the motor pump group from electrical power supply. For the second, the pump unit is connected directly to the photovoltaic panels by integration of a MPPT control. A code of simulation of the solar pumping system was initiated under the Matlab-Simulink environment. Very convivial and flexible graphic interfaces allow an easy use of the code and knowledge of the effects of change of the sunning and temperature on the pumping system.Keywords: photovoltaic generator, chopper, electrical motor, centrifugal pump
Procedia PDF Downloads 380969 Prevalence of Dens Evaginatus in Adolescent Population of Melaka: A Retrospective Study
Authors: Preethy Mary Donald, Renjith George Pallivathukal
Abstract:
Dens evaginatus (DE) is a rare developmental anomaly characterized by a slender enamel-covered tubercle which projects from the occlusal surface of an otherwise normal premolar. DE can often interfere normal occlusion and can lead to complications like sensitivity, pulpal exposure and temporo mandibular joint problems. The orthopantomographs (OPGs) and dental records of patients under the age of 20 who attended the faculty of dentistry, Melaka-Manipal Medical College were examined for DE. Results: The prevalence of DE was 23% among the study group. Males presented with a higher prevalence of 67% and females with 33%. The prevalence of Dens evaginatus was distributed as 28% in maxillary central incisor, 52% in maxillary lateral incisors, 12% in mandibular second premolars. Prevalence in permanent dentitions appeared to be higher than deciduous dentition. The bilateral occurrence of Dens evaginatus is an interesting phenomenon. 57% of the cases of the DE were bilateral.Keywords: deciduous dentition, dens evaginatus, permanent dentition, prevalence
Procedia PDF Downloads 308968 Algorithmic Approach to Management of Complications of Permanent Facial Filler: A Saudi Experience
Authors: Luay Alsalmi
Abstract:
Background: Facial filler is the most common type of cosmetic surgery next to botox. Permanent filler is preferred nowadays due to the low cost brought about by non-recurring injection appointments. However, such fillers pose a higher risk for complications, with even greater adverse effects when the procedure is done using unknown dermal filler injections. AIM: This study aimed to establish an algorithm to categorize and manage patients that receive permanent fillers. Materials and Methods: Twelve participants were presented to the service through emergency or as outpatient from November 2015 to May 2021. Demographics such as age, sex, date of injection, time of onset, and types of complications were collected. After examination, all cases were managed based on an algorithm established. FACE-Q was used to measure overall satisfaction and psychological well-being. Results: The algorithm to diagnose and manage these patients effectively with a high satisfaction rate was established in this study. All participants were non-smoker females with no known medical comorbidities. The algorithm presented determined the treatment plan when faced with complications. Results revealed high appearance-related psychosocial distress was observed prior to surgery, while it significantly dropped after surgery. FACE-Q was able to establish evidence of satisfactory ratings among patients prior to and after surgery. Conclusion: This treatment algorithm can guide the surgeon in formulating a suitable plan with fewer complications and a high satisfaction rate.Keywords: facial filler, FACE-Q, psycho-social stress, botox, treatment algorithm
Procedia PDF Downloads 86