Search results for: multi-criteria selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2389

Search results for: multi-criteria selection

2089 Optimization of Technical and Technological Solutions for the Development of Offshore Hydrocarbon Fields in the Kaliningrad Region

Authors: Pavel Shcherban, Viktoria Ivanova, Alexander Neprokin, Vladislav Golovanov

Abstract:

Currently, LLC «Lukoil-Kaliningradmorneft» is implementing a comprehensive program for the development of offshore fields of the Kaliningrad region. This is largely associated with the depletion of the resource base of land in the region, as well as the positive results of geological investigation surrounding the Baltic Sea area and the data on the volume of hydrocarbon recovery from a single offshore field are working on the Kaliningrad region – D-6 «Kravtsovskoye».The article analyzes the main stages of the LLC «Lukoil-Kaliningradmorneft»’s development program for the development of the hydrocarbon resources of the region's shelf and suggests an optimization algorithm that allows managing a multi-criteria process of development of shelf deposits. The algorithm is formed on the basis of the problem of sequential decision making, which is a section of dynamic programming. Application of the algorithm during the consolidation of the initial data, the elaboration of project documentation, the further exploration and development of offshore fields will allow to optimize the complex of technical and technological solutions and increase the economic efficiency of the field development project implemented by LLC «Lukoil-Kaliningradmorneft».

Keywords: offshore fields of hydrocarbons of the Baltic Sea, development of offshore oil and gas fields, optimization of the field development scheme, solution of multicriteria tasks in oil and gas complex, quality management in oil and gas complex

Procedia PDF Downloads 200
2088 Method for Selecting and Prioritising Smart Services in Manufacturing Companies

Authors: Till Gramberg, Max Kellner, Erwin Gross

Abstract:

This paper presents a comprehensive investigation into the topic of smart services and IIoT-Platforms, focusing on their selection and prioritization in manufacturing organizations. First, a literature review is conducted to provide a basic understanding of the current state of research in the area of smart services. Based on discussed and established definitions, a definition approach for this paper is developed. In addition, value propositions for smart services are identified based on the literature and expert interviews. Furthermore, the general requirements for the provision of smart services are presented. Subsequently, existing approaches for the selection and development of smart services are identified and described. In order to determine the requirements for the selection of smart services, expert opinions from successful companies that have already implemented smart services are collected through semi-structured interviews. Based on the results, criteria for the evaluation of existing methods are derived. The existing methods are then evaluated according to the identified criteria. Furthermore, a novel method for the selection of smart services in manufacturing companies is developed, taking into account the identified criteria and the existing approaches. The developed concept for the method is verified in expert interviews. The method includes a collection of relevant smart services identified in the literature. The actual relevance of the use cases in the industrial environment was validated in an online survey. The required data and sensors are assigned to the smart service use cases. The value proposition of the use cases is evaluated in an expert workshop using different indicators. Based on this, a comparison is made between the identified value proposition and the required data, leading to a prioritization process. The prioritization process follows an established procedure for evaluating technical decision-making processes. In addition to the technical requirements, the prioritization process includes other evaluation criteria such as the economic benefit, the conformity of the new service offering with the company strategy, or the customer retention enabled by the smart service. Finally, the method is applied and validated in an industrial environment. The results of these experiments are critically reflected upon and an outlook on future developments in the area of smart services is given. This research contributes to a deeper understanding of the selection and prioritization process as well as the technical considerations associated with smart service implementation in manufacturing organizations. The proposed method serves as a valuable guide for decision makers, helping them to effectively select the most appropriate smart services for their specific organizational needs.

Keywords: smart services, IIoT, industrie 4.0, IIoT-platform, big data

Procedia PDF Downloads 88
2087 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks

Authors: Sunmyeng Kim

Abstract:

IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.

Keywords: cooperative communications, MAC protocol, relay node, WLAN

Procedia PDF Downloads 330
2086 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
2085 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.

Abstract:

In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means

Procedia PDF Downloads 558
2084 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
2083 Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant

Authors: Cigdem Safak Saglam

Abstract:

Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant.

Keywords: thermal power plant, lignite coal, pretreatment, demineralization, electrodialysis, recycling, ash dampening

Procedia PDF Downloads 482
2082 Investigating Complement Clause Choice in Written Educated Nigerian English (ENE)

Authors: Juliet Udoudom

Abstract:

Inappropriate complement selection constitutes one of the major features of non-standard complementation in the Nigerian users of English output of sentence construction. This paper investigates complement clause choice in Written Educated Nigerian English (ENE) and offers some results. It aims at determining preferred and dispreferred patterns of complement clause selection in respect of verb heads in English by selected Nigerian users of English. The complementation data analyzed in this investigation were obtained from experimental tasks designed to elicit complement categories of Verb – Noun -, Adjective – and Prepositional – heads in English. Insights from the Government – Binding relations were employed in analyzing data, which comprised responses obtained from one hundred subjects to a picture elicitation exercise, a grammaticality judgement test, and a free composition task. The findings indicate a general tendency for clausal complements (CPs) introduced by the complementizer that to be preferred by the subjects studied. Of the 235 tokens of clausal complements which occurred in our corpus, 128 of them representing 54.46% were CPs headed by that, while whether – and if-clauses recorded 31.07% and 8.94%, respectively. The complement clause-type which recorded the lowest incidence of choice was the CP headed by the Complementiser, for with a 5.53% incident of occurrence. Further findings from the study indicate that semantic features of relevant embedding verb heads were not taken into consideration in the choice of complementisers which introduce the respective complement clauses, hence the that-clause was chosen to complement verbs like prefer. In addition, the dispreferred choice of the for-clause is explicable in terms of the fact that the respondents studied regard ‘for’ as a preposition, and not a complementiser.

Keywords: complement, complement clause complement selection, complementisers, government-binding

Procedia PDF Downloads 188
2081 Variant Selection and Pre-transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel

Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury

Abstract:

Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its micro structure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.

Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation

Procedia PDF Downloads 489
2080 The Effect of Program Type on Mutation Testing: Comparative Study

Authors: B. Falah, N. E. Abakouy

Abstract:

Due to its high computational cost, mutation testing has been neglected by researchers. Recently, many cost and mutants’ reduction techniques have been developed, improved, and experimented, but few of them has relied the possibility of reducing the cost of mutation testing on the program type of the application under test. This paper is a comparative study between four operators’ selection techniques (mutants sampling, class level operators, method level operators, and all operators’ selection) based on the program code type of each application under test. It aims at finding an alternative approach to reveal the effect of code type on mutation testing score. The result of our experiment shows that the program code type can affect the mutation score and that the programs using polymorphism are best suited to be tested with mutation testing.

Keywords: equivalent mutant, killed mutant, mutation score, mutation testing, program code type, software testing

Procedia PDF Downloads 554
2079 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 455
2078 Functional Mortality of Anopheles stephensi, the Urban Malaria Vector as Induced by the Sublethal Exposure to Deltamethrin

Authors: P. Aarumugam, N. Krishnamoorthy, K. Gunasekaran

Abstract:

The mosquitoes with loss of minimum three legs especially the hind legs have the negative impact on the survival hood of mosquitoes. Three days old unfed adult female laboratory strain was selected in each generation against sublethal dosages (0.004%, 0.005%, 0.007% and 0.01%) of deltamethrin upto 40 generations. Impregnated papers with acetone were used for control. Every fourth generation, survived mosquitoes were observed for functional mortality. Hind legs lost were significantly (P< 0.05) higher in treated than the controls up to generation 24, thereafter no significant lost. In contrary, no significant forelegs lost among exposed mosquitoes. Middle legs lost were also not significant in the exposed mosquitoes except first generation (F1). The field strain (Chennai) did not show any significant loss of legs (fore or mid or hind) compared to the control. The selection pressure on mosquito population influences strong natural selection to develop various adaptive mechanisms.

Keywords: Anopheles stephensi, deltamethrin, functional mortality, synthetic pyrethroids

Procedia PDF Downloads 395
2077 Selection Criteria in the Spanish Secondary Education Content and Language Integrated Learning (CLIL) Programmes and Their Effect on Code-Switching in CLIL Methodology

Authors: Dembele Dembele, Philippe

Abstract:

Several Second Language Acquisition (SLA) studies have stressed the benefits of Content and Language Integrated Learning (CLIL) and shown how CLIL students outperformed their non-CLIL counterparts in many L2 skills. However, numerous experimental CLIL programs seem to have mainly targeted above-average and rather highly motivated language learners. The need to understand the impact of the student’s language proficiency on code-switching in CLIL instruction motivated this study. Therefore, determining the implications of the students’ low-language proficiency for CLIL methodology, as well as the frequency with which CLIL teachers use the main pedagogical functions of code-switching, seemed crucial for a Spanish CLIL instruction on a large scale. In the mixed-method approach adopted, ten face-to-face interviews were conducted in nine Valencian public secondary education schools, while over 30 CLIL teachers also contributed with their experience in two online survey questionnaires. The results showed the crucial role language proficiency plays in the Valencian CLIL/Plurilingual selection criteria. The presence of a substantial number of low-language proficient students in CLIL groups, which in turn implied important methodological consequences, was another finding of the study. Indeed, though the pedagogical use of L1 was confirmed as an extended practice among CLIL teachers, more than half of the participants perceived that code-switching impaired attaining their CLIL lesson objectives. Therein, the dissertation highlights the need for more extensive empirical research on how code-switching could prove beneficial in CLIL instruction involving low-language proficient students while maintaining the maximum possible exposure to the target language.

Keywords: CLIL methodology, low language proficiency, code switching, selection criteria, code-switching functions

Procedia PDF Downloads 81
2076 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes

Authors: Vincent Liu

Abstract:

Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.

Keywords: diabetes, machine learning, 30-day readmission, metaheuristic

Procedia PDF Downloads 61
2075 Optimizing Design Parameters for Efficient Saturated Steam Production in Fire Tube Boilers: A Cost-Effective Approach

Authors: Yoftahe Nigussie Worku

Abstract:

This research focuses on advancing fire tube boiler technology by systematically optimizing design parameters to achieve efficient saturated steam production. The main objective is to design a high-performance boiler with a production capacity of 2000kg/h at a 12-bar design pressure while minimizing costs. The methodology employs iterative analysis, utilizing relevant formulas, and considers material selection and production methods. The study successfully results in a boiler operating at 85.25% efficiency, with a fuel consumption rate of 140.37kg/hr and a heat output of 1610kW. Theoretical importance lies in balancing efficiency, safety considerations, and cost minimization. The research addresses key questions on parameter optimization, material choices, and safety-efficiency balance, contributing valuable insights to fire tube boiler design.

Keywords: safety consideration, efficiency, production methods, material selection

Procedia PDF Downloads 66
2074 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber

Authors: J. E. O. Hernandez

Abstract:

In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.

Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming

Procedia PDF Downloads 193
2073 Identifying Applicant Potential Through Admissions Testing

Authors: Belinda Brunner

Abstract:

Objectives: Communicate common test constructs of well-known higher education admissions tests. Discuss influences on admissions test construct definition and design and discuss research on related to factors influencing success in academic study. Discuss how admissions tests can be used to identify relevant talent. Examine how admissions test can be used to facilitate educational mobility and inform selection decisions when the prerequisite curricula is not standardized Observations: Generally speaking, constructs of admissions tests can be placed along a continuum from curriculum-related knowledge to more general reasoning abilities. For example, subject-specific achievement tests are more closely aligned to a prescribed curriculum, while reasoning tests are typically not associated with a specific curriculum. This session will draw reference from the test-constructs of well-known international higher education admissions tests, such as the UK clinical aptitude test (UKCAT) which is used for medicine and dentistry admissions. Conclusions: The purpose of academic admissions testing is to identify potential students with the prerequisite skills set needed to succeed in the academic environment, but how can the test construct help achieve this goal? Determination of the appropriate test construct for tests used in the admissions selection decisions should be influenced by a number of factors, including the preceding academic curricula, other criteria influencing the admissions decision, and the principal purpose for testing. Attendees of this session will learn the types of aptitudes and knowledge that are assessed higher education admissions tests and will have the opportunity to gain insight into how careful and deliberate consideration of the desired test constructs can aid in identifying potential students with the greatest likelihood of success in medical school.

Keywords: admissions, measuring success, selection, identify skills

Procedia PDF Downloads 488
2072 Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features

Authors: Bo Wang

Abstract:

The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically.

Keywords: multi-source image geometric process, high precision geometric positioning, quotient space of multi-geometric features, optimized weight selection

Procedia PDF Downloads 284
2071 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 150
2070 GIS Model for Sanitary Landfill Site Selection Based on Geotechnical Parameters

Authors: Hecson Christian, Joel Macwan

Abstract:

Landfill site selection in an urban area is a critical issue in the planning process. With the growth of the urbanization, it has a mammoth impact on the economy, ecology, and environmental health of the region. Outsized amount of wastes are produced and the problem gets soared every day. Hence, selection of ideal site for sanitary landfill is a challenge for urban planners and solid waste managers. Disposal site is a function of many parameters. Among all, Geotechnical parameters are very vital as the same is related to surrounding open land. Moreover, the accessible safe and acceptable land is also scarce. Therefore, in this paper geotechnical parameters are used to develop a GIS model to identify an ideal location for landfill purpose. Metropolitan city of Surat is highly populated and fastest growing urban area in India. The research objectives are to conduct field experiments to collect data and to transfer the facts in GIS platform to evolve a model, to find ideal location. Planners’ preferences were obtained to use analytical hierarchical process (AHP) to find weights of each parameter. Integration of GIS and Multi-Criteria Decision Analysis (MCDA) techniques are applied to improve decision-making. It augments an environment for transformation and combination of geographical data and planners’ preferences. GIS performs deterministic overlay and buffer operations. MCDA methods evaluate alternatives based on the decision makers’ subjective values and priorities. Research results have shown many alternative locations. Economic analysis of selected site from actual operations point of view is not included in this research.

Keywords: GIS, AHP, MCDA, Geo-technical

Procedia PDF Downloads 145
2069 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features

Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili

Abstract:

In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.

Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features

Procedia PDF Downloads 320
2068 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures

Procedia PDF Downloads 357
2067 Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix

Authors: Chen Chih-Cheng, Chen I-Cheng, Lee Yung-Tan, Kuo Yen-Whea, Yu Chin-Hung

Abstract:

The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model.

Keywords: simple multiple-attribute rating technique, World Grand Prix, best spike player, International Volleyball Federation

Procedia PDF Downloads 474
2066 Investigation of Additives' Corrosion Inhibition Effects on Dye

Authors: Abdullah Bilal Ozturk, Nil Acarali, Hediye Irem Ozgunduz, Hava Gizem Kandilci, Hanifi Sarac

Abstract:

In this study, zeolite, shellac and different boron chemicals were used as additive to dye and effects were comprehensively investigated. Considering previous studies additive materials that had not used before were determined for produce dye with physical properties. Literature research about the materials provides determining easily sufficient amount of additive materials. Accessible of additives or yearly production amounts are become important issue at selection of materials. Zeolite and boron chemicals are suitable selection in that easy access and has large amount of production in our country. Previous research about boron chemicals shows they have flame retardant effect on textile materials besides numerous usage areas. Also, from previous research, shellac was used widely for protection and insulation of metallic materials. Zeolite added to dye to increase adhesive effect of dye. In this study, corrosion tests were applied to find out if there are positive effects of zeolite, shellac, and boron chemicals to dye’s physical properties.

Keywords: dye, corrosion, zeolite, shellac, boron

Procedia PDF Downloads 338
2065 Consumers’ Willingness to Pay for Organic Vegetables in Oyo State

Authors: Olanrewaju Kafayat, O., Salman Kabir, K.

Abstract:

The role of organic agriculture in providing food and income is now gaining wider recognition (Van Elzakker et al 2007). The increasing public concerns about food safety issues on the use of fertilizers, pesticide residues, growth hormones, GM organisms, and increasing awareness of environmental quality issues have led to an expanding demand for environmentally friendly products (Thompson, 1998; Rimal et al., 2005). As a result national governments are concerned about diet and health, and there has been renewed recognition of the role of public policy in promoting healthy diets, thus to provide healthier, safer, more confident citizens (Poole et al., 2007), With these benefits, a study into organic vegetables is very vital to all the major stakeholders. This study analyzed the willingness of consumers to pay for organic vegetables in Oyo state, Nigeria. Primary data was collected with the aid of structured questionnaire administered to 168 respondents. These were selected using multistage random sampling. The first stage involved the selection two (2) ADP zones out of the three (3) ADP zones in Oyo state, The second stage involved the random selection of two (2) local government areas each out of the two (2) ADP zones which are; Ibadan South West and Ogbomoso North and random selection of 4 wards each from the local government areas. The third stage involved random selection of 42 household each from of the local government areas. Descriptive statistics, the principal component analysis, and the logistic regression were used to analyze the data. Results showed 55 percent of the respondents were female while 80 percent were  50 years. 74 percent of the respondents agreed that organic vegetables are of better quality. 31 percent of the respondents were aware of organic vegetables as against 69 percent who were not aware. From the logistic model, educational attainment, amount spent on organic vegetables monthly, better quality of organic vegetables and accessibility to organic vegetables were significant and had a positive relationship on willingness to pay for organic vegetable. The variables that were significant and had a negative relationship with WTP are less attractiveness of organic vegetables and household size of the respondents. This study concludes that consumers with higher level of education were more likely to be aware and willing to pay for organic vegetables than those with low levels of education, the study therefore recommends creation of awareness on the relevance of consuming organic vegetables through effective marketing and educational campaigns.

Keywords: consumers awareness, willingness to pay, organic vegetables, Oyo State

Procedia PDF Downloads 271
2064 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 83
2063 English Language Proficiency and Use as Determinants of Transactional Success in Gbagi Market, Ibadan, Nigeria

Authors: A. Robbin

Abstract:

Language selection can be an efficient negotiation strategy employed by both service or product providers and their customers to achieve transactional success. The transactional scenario in Gbagi Market, Ibadan, Nigeria provides an appropriate setting for the exploration of the Nigerian multilingual situation with its own interesting linguistic peculiarities which questions the functionality of the ‘Lingua Franca’ in trade situations. This study examined English Language proficiency among Yoruba Traders in Gbagi Market, Ibadan and its use as determinants of transactional success during service encounters. Randomly selected Yoruba-English bilingual traders and customers were administered questionnaires and the data subjected to statistical and descriptive analysis using Giles Communication Accommodation Theory. Findings reveal that only fifty percent of the traders used for the study were proficient in speaking English language. Traders with minimal proficiency in Standard English, however, resulted in the use of the Nigerian Pidgin English. Both traders and customers select the Mother Tongue, which is the Yoruba Language during service encounters but are quick to converge to the other’s preferred language as the transactional exchange demands. The English language selection is not so much for the prestige or lingua franca status of the language as it is for its functions, which include ease of communication, negotiation, and increased sales. The use of English during service encounters is mostly determined by customer’s linguistic preference which the trader accommodates to for better negotiation and never as a first choice. This convergence is found to be beneficial as it ensures sales and return patronage. Although the English language is not a preferred code choice in Gbagi Market, it serves a functional trade strategy for transactional success during service encounters in the market.

Keywords: communication accommodation theory, language selection, proficiency, service encounter, transaction

Procedia PDF Downloads 158
2062 Time Bound Parallel Processing of a Disaster Management Alert System Using Random Selection of Target Audience: Bangladesh Context

Authors: Hasan Al Bashar Abul Ulayee, AKM Saifun Nabi, MD Mesbah-Ul-Awal

Abstract:

Alert system for disaster management is common now a day and can play a vital role reducing devastation and saves lives and costs. An alert in right time can save thousands of human life, help to take shelter, manage other assets including live stocks and above all, a right time alert will help to take preparation to face and early recovery of the situation. In a country like Bangladesh where populations is more than 170 million and always facing different types of natural calamities and disasters, an early right time alert is very effective and implementation of alert system is challenging. The challenge comes from the time constraint of alerting the huge number of population. The other method of existing disaster management pre alert is traditional, sequential and non-selective so efficiency is not good enough. This paper describes a way by which alert can be provided to maximum number of people within the short time bound using parallel processing as well as random selection of selective target audience.

Keywords: alert system, Bangladesh, disaster management, parallel processing, SMS

Procedia PDF Downloads 470
2061 Identification and Validation of Co-Dominant Markers for Selection of the CO-4 Anthracnose Disease Resistance Gene in Common Bean Cultivar G2333

Authors: Annet Namusoke, Annet Namayanja, Peter Wasswa, Shakirah Nampijja

Abstract:

Common bean cultivar G2333 which offers broad resistance for anthracnose has been widely used as a source of resistance in breeding for anthracnose resistance. The cultivar is pyramided with three genes namely CO-4, CO-5 and CO-7 and of these three genes, the CO-4 gene has been found to offer the broadest resistance. The main aim of this work was to identify and validate easily assayable PCR based co-dominant molecular markers for selection of the CO-4 gene in segregating populations derived from crosses of G2333 with RWR 1946 and RWR 2075, two commercial Andean cultivars highly susceptible to anthracnose. Marker sequences for the study were obtained by blasting the sequence of the COK-4 gene in the Phaseolus gene database. Primer sequence pairs that were not provided from the Phaseolus gene database were designed by the use of Primer3 software. PCR conditions were optimized and the PCR products were run on 6% HPAGE gel. Results of the polymorphism test indicated that out of 18 identified markers, only two markers namely BM588 and BM211 behaved co-dominantly. Phenotypic evaluation for reaction to anthracnose disease was done by inoculating 21days old seedlings of three parents, F1 and F2 populations with race 7 of Colletotrichum lindemuthianum in the humid chamber. DNA testing of the BM588 marker onto the F2 segregating population of the crosses RWR 1946 x G 2333 and RWR 2075 x G2333 further revealed that the marker BM588 co-segregated with disease resistance with co-dominance of two alleles of 200bp and 400bp, fitting the expected segregation ratio of 1:2:1. The BM588 marker was significantly associated with disease resistance and gave promising results for marker assisted selection of the CO-4 gene in the breeding lines. Activities to validate the BM211 marker are also underway.

Keywords: codominant, Colletotrichum lindemuthianum, MAS, Phaseolus vulgaris

Procedia PDF Downloads 291
2060 Content Based Face Sketch Images Retrieval in WHT, DCT, and DWT Transform Domain

Authors: W. S. Besbas, M. A. Artemi, R. M. Salman

Abstract:

Content based face sketch retrieval can be used to find images of criminals from their sketches for 'Crime Prevention'. This paper investigates the problem of CBIR of face sketch images in transform domain. Face sketch images that are similar to the query image are retrieved from the face sketch database. Features of the face sketch image are extracted in the spectrum domain of a selected transforms. These transforms are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Walsh Hadamard Transform (WHT). For the performance analyses of features selection methods three face images databases are used. These are 'Sheffield face database', 'Olivetti Research Laboratory (ORL) face database', and 'Indian face database'. The City block distance measure is used to evaluate the performance of the retrieval process. The investigation concludes that, the retrieval rate is database dependent. But in general, the DCT is the best. On the other hand, the WHT is the best with respect to the speed of retrieving images.

Keywords: Content Based Image Retrieval (CBIR), face sketch image retrieval, features selection for CBIR, image retrieval in transform domain

Procedia PDF Downloads 493