Search results for: model based design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42708

Search results for: model based design

42408 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness

Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki

Abstract:

Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.

Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation

Procedia PDF Downloads 451
42407 Landscape Factors Eliciting the Sense of Relaxation in Urban Green Space

Authors: Kaowen Grace Chang

Abstract:

Urban green spaces play an important role in promoting wellbeing through the sense of relaxation for urban residents. Among many designing factors, what the principal ones that could effectively influence people’s sense of relaxation? And, what are the relationship between the sense of relaxation and those factors? Regarding those questions, there is still little evidence for sufficient support. Therefore, the purpose of this study, based on individual responses to environmental information, is to investigate the landscape factors that relate to well-being through the sense of relaxation in mixed-use urban environments. We conducted the experimental design and model construction utilizing choice-based conjoint analysis to test the factors of plant arrangement pattern, plant trimming condition, the distance to visible automobile, the number of landmark objects, and the depth of view. Through the operation of balanced fractional orthogonal design, the goal is to know the relationship between the sense of relaxation and different designs. In a result, the three factors of plant trimming condition, the distance to visible automobile, and the depth of view shed are significantly effective to the sense of relaxation. The stronger magnitude of maintenance and trimming, the further distance to visible automobiles, and deeper view shed that allow the users to see further scenes could significantly promote green space users’ sense of relaxation in urban green spaces.

Keywords: urban green space, landscape planning and design, sense of relaxation, choice model

Procedia PDF Downloads 128
42406 The Future of Insurance: P2P Innovation versus Traditional Business Model

Authors: Ivan Sosa Gomez

Abstract:

Digitalization has impacted the entire insurance value chain, and the growing movement towards P2P platforms and the collaborative economy is also beginning to have a significant impact. P2P insurance is defined as innovation, enabling policyholders to pool their capital, self-organize, and self-manage their own insurance. In this context, new InsurTech start-ups are emerging as peer-to-peer (P2P) providers, based on a model that differs from traditional insurance. As a result, although P2P platforms do not change the fundamental basis of insurance, they do enable potentially more efficient business models to be established in terms of ensuring the coverage of risk. It is therefore relevant to determine whether p2p innovation can have substantial effects on the future of the insurance sector. For this purpose, it is considered necessary to develop P2P innovation from a business perspective, as well as to build a comparison between a traditional model and a P2P model from an actuarial perspective. Objectives: The objectives are (1) to represent P2P innovation in the business model compared to the traditional insurance model and (2) to establish a comparison between a traditional model and a P2P model from an actuarial perspective. Methodology: The research design is defined as action research in terms of understanding and solving the problems of a collectivity linked to an environment, applying theory and best practices according to the approach. For this purpose, the study is carried out through the participatory variant, which involves the collaboration of the participants, given that in this design, participants are considered experts. For this purpose, prolonged immersion in the field is carried out as the main instrument for data collection. Finally, an actuarial model is developed relating to the calculation of premiums that allows for the establishment of projections of future scenarios and the generation of conclusions between the two models. Main Contributions: From an actuarial and business perspective, we aim to contribute by developing a comparison of the two models in the coverage of risk in order to determine whether P2P innovation can have substantial effects on the future of the insurance sector.

Keywords: Insurtech, innovation, business model, P2P, insurance

Procedia PDF Downloads 68
42405 Performance Improvement of Information System of a Banking System Based on Integrated Resilience Engineering Design

Authors: S. H. Iranmanesh, L. Aliabadi, A. Mollajan

Abstract:

Integrated resilience engineering (IRE) is capable of returning banking systems to the normal state in extensive economic circumstances. In this study, information system of a large bank (with several branches) is assessed and optimized under severe economic conditions. Data envelopment analysis (DEA) models are employed to achieve the objective of this study. Nine IRE factors are considered to be the outputs, and a dummy variable is defined as the input of the DEA models. A standard questionnaire is designed and distributed among executive managers to be considered as the decision-making units (DMUs). Reliability and validity of the questionnaire is examined based on Cronbach's alpha and t-test. The most appropriate DEA model is determined based on average efficiency and normality test. It is shown that the proposed integrated design provides higher efficiency than the conventional RE design. Results of sensitivity and perturbation analysis indicate that self-organization, fault tolerance, and reporting culture respectively compose about 50 percent of total weight.

Keywords: banking system, Data Envelopment Analysis (DEA), Integrated Resilience Engineering (IRE), performance evaluation, perturbation analysis

Procedia PDF Downloads 159
42404 A New Proposed Framework for the Development of Interface Design for Malaysian Interactive Courseware

Authors: Norfadilah Kamaruddin

Abstract:

This paper introduces a new proposed framework for the development process of interface design for Malaysian interactive courseware by exploring four established model in the recent research literature, existing Malaysian government guidelines and Malaysian developers practices. In particular, the study looks at the stages and practices throughout the development process. Significant effects of each of the stages are explored and documented, and significant interrelationships among them suggested. The results of analysis are proposed as potential model that helps in establishing and designing a new version of Malaysian interactive courseware.

Keywords: development processes, interaction with interface, interface design, social sciences

Procedia PDF Downloads 361
42403 Case-Based Reasoning Approach for Process Planning of Internal Thread Cold Extrusion

Authors: D. Zhang, H. Y. Du, G. W. Li, J. Zeng, D. W. Zuo, Y. P. You

Abstract:

For the difficult issues of process selection, case-based reasoning technology is applied to computer aided process planning system for cold form tapping of internal threads on the basis of similarity in the process. A model is established based on the analysis of process planning. Case representation and similarity computing method are given. Confidence degree is used to evaluate the case. Rule-based reuse strategy is presented. The scheme is illustrated and verified by practical application. The case shows the design results with the proposed method are effective.

Keywords: case-based reasoning, internal thread, cold extrusion, process planning

Procedia PDF Downloads 483
42402 Current of Drain for Various Values of Mobility in the Gaas Mesfet

Authors: S. Belhour, A. K. Ferouani, C. Azizi

Abstract:

In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.

Keywords: analytical, gallium arsenide, MESFET, mobility, models

Procedia PDF Downloads 54
42401 Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model

Authors: Doğan Yıldız, Aydan Müşerref Erkmen

Abstract:

The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances.

Keywords: model predictive control, nonlinear octocopter model, collision avoidance, obstacle detection

Procedia PDF Downloads 168
42400 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 90
42399 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands

Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert

Abstract:

Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.

Keywords: damping, energy-based seismic design, hysteretic energy, input energy

Procedia PDF Downloads 148
42398 Study and Construction on Signalling System during Reverse Motion Due to Obstacle

Authors: S. M. Yasir Arafat

Abstract:

Driving models are needed by many researchers to improve traffic safety and to advance autonomous vehicle design. To be most useful, a driving model must state specifically what information is needed and how it is processed. So we developed an “Obstacle Avoidance and Detection Autonomous Car” based on sensor application. The ever increasing technological demands of today call for very complex systems, which in turn require highly sophisticated controllers to ensure that high performance can be achieved and maintained under adverse conditions. Based on a developed model of brakes operation, the controller of braking system operation has been designed. It has a task to enable solution to the problem of the better controlling of braking system operation in a more accurate way then it was the case now a day.

Keywords: automobile, obstacle, safety, sensing

Procedia PDF Downloads 340
42397 Comprehensive Risk Assessment Model in Agile Construction Environment

Authors: Jolanta Tamošaitienė

Abstract:

The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.

Keywords: assessment, environment, agile, model, risk

Procedia PDF Downloads 230
42396 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework

Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe

Abstract:

This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.

Keywords: IoT, fog, cloud, data analysis, data privacy

Procedia PDF Downloads 71
42395 A Multi-Objective Optimization Tool for Dual-Mode Operating Active Magnetic Regenerator Model

Authors: Anna Ouskova Leonteva, Michel Risser, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet

Abstract:

This paper proposes an efficient optimization tool for an active magnetic regenerator (AMR) model, operating in two modes: magnetic refrigeration system (MRS) and thermo-magnetic generator (TMG). The aim of this optimizer is to improve the design of the AMR by applying a multi-physics multi-scales numerical model as a core of evaluation functions to achieve industrial requirements for refrigeration and energy conservation systems. Based on the multi-objective non-dominated sorting genetic algorithm 3 (NSGA3), it maximizes four different objectives: efficiency and power density for MRS and TMG. The main contribution of this work is in the simultaneously application of a CPU-parallel NSGA3 version to the AMR model in both modes for studying impact of control and design parameters on the performance. The parametric study of the optimization results are presented. The main conclusion is that the common (for TMG and MRS modes) optimal parameters can be found by the proposed tool.

Keywords: ecological refrigeration systems, active magnetic regenerator, thermo-magnetic generator, multi-objective evolutionary optimization, industrial optimization problem, real-world application

Procedia PDF Downloads 94
42394 Reflection on Using Bar Model Method in Learning and Teaching Primary Mathematics: A Hong Kong Case Study

Authors: Chui Ka Shing

Abstract:

This case study research attempts to examine the use of the Bar Model Method approach in learning and teaching mathematics in a primary school in Hong Kong. The objectives of the study are to find out to what extent (a) the Bar Model Method approach enhances the construction of students’ mathematics concepts, and (b) the school-based mathematics curriculum development with adopting the Bar Model Method approach. This case study illuminates the effectiveness of using the Bar Model Method to solve mathematics problems from Primary 1 to Primary 6. Some effective pedagogies and assessments were developed to strengthen the use of the Bar Model Method across year levels. Suggestions including school-based curriculum development for using Bar Model Method and further study were discussed.

Keywords: bar model method, curriculum development, mathematics education, problem solving

Procedia PDF Downloads 197
42393 Reframing Service Oriented Architecture Design Principles in Software Design Quality

Authors: Purnomo Yustianto, Robin Doss, Novianto B. Kurniawan Suhardi

Abstract:

Since its inception, the design activities of Service Oriented Architecture (SOA) has been guided with aspects from the Service Design Principles (SDP), such as cohesion, granularity, loose coupling, discoverability, and autonomy, etc. The goal of this paper is two folds. The first is to examine the position of SDP within the context of software quality, and the second is to reframe the aspects of SDP into a more concise terms and relations. This paper is divided into four parts, in which after the introduction, a review on related software quality is provided to determine the quality context of SDP. The third part reviews the original SDP and offers a relation model among the SDP aspects. The fourth part explores the design quality metrics available for SOA and proposes a relationship representing the design quality. Among the aspects of design principles, the cohesion and coupling aspect is determined to be the two important aspects for achieving reusability of a service.

Keywords: SOA, software quality, service design principle, reusability, cohesion, coupling

Procedia PDF Downloads 142
42392 Community Arts-Based Learning for Interdisciplinary Pedagogy: Measuring Program Effectiveness Using Design Imperatives for 'a New American University'

Authors: Kevin R. Wilson, Roger Mantie

Abstract:

Community arts-based learning and participatory education are pedagogical techniques that serve to be advantageous for students, curriculum development, and local communities. Using an interpretive approach to examine the significance of this arts-informed research in relation to the eight ‘design imperatives’ proposed as the new model for measuring quality in scholarship for Arizona State University as ‘A New American University’, the purpose of this study was to investigate personal, social, and cultural benefits resulting from student engagement in interdisciplinary community-based projects. Students from a graduate level music education class at the ASU Tempe campus (n=7) teamed with students from an undergraduate level community development class at the ASU Downtown Phoenix campus (n=14) to plan, facilitate, and evaluate seven community-based projects in several locations around the Phoenix-metro area. Data was collected using photo evidence, student reports, and evaluative measures designed by the students. The effectiveness of each project was measured in terms of their ability to meet the eight design imperatives to: 1) leverage place; 2) transform society; 3) value entrepreneurship; 4) conduct use-inspired research; 5) enable student success; 6) fuse intellectual disciplines; 7) be socially embedded; and 8) engage globally. Results indicated that this community arts-based project sufficiently captured the essence of each of these eight imperatives. Implications for how the nature of this interdisciplinary initiative allowed for the eight imperatives to manifest are provided, and project success is expounded upon in relation to utility of each imperative. Discussion is also given for how this type of service learning project formatted within the ‘New American University’ model for measuring quality in academia can be a beneficial pedagogical tool in higher education.

Keywords: community arts-based learning, participatory education, pedagogy, service learning

Procedia PDF Downloads 384
42391 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements

Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray

Abstract:

Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.

Keywords: MASW, resonant column test, SCPT, site response analysis, torsional shear test

Procedia PDF Downloads 383
42390 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 23
42389 Design and Analysis of a Laminated Composite Automotive Drive Shaft

Authors: Hossein Kh. Bisheh, Nan Wu

Abstract:

Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.

Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling

Procedia PDF Downloads 204
42388 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference

Authors: Jang kyun Cho, Jeong-dong Lee

Abstract:

The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.

Keywords: innovation diffusion, agent based model, small-world network, demand forecasting

Procedia PDF Downloads 316
42387 A Valid Professional Development Framework For Supporting Science Teachers In Relation To Inquiry-Based Curriculum Units

Authors: Fru Vitalis Akuma, Jenna Koenen

Abstract:

The science education community is increasingly calling for learning experiences that mirror the work of scientists. Although inquiry-based science education is aligned with these calls, the implementation of this strategy is a complex and daunting task for many teachers. Thus, policymakers and researchers have noted the need for continued teacher Professional Development (PD) in the enactment of inquiry-based science education, coupled with effective ways of reaching the goals of teacher PD. This is a complex problem for which educational design research is suitable. The purpose at this stage of our design research is to develop a generic PD framework that is valid as the blueprint of a PD program for supporting science teachers in relation to inquiry-based curriculum units. The seven components of the framework are the goal, learning theory, strategy, phases, support, motivation, and an instructional model. Based on a systematic review of the literature on effective (science) teacher PD, coupled with developer screening, we have generated a design principle per component of the PD framework. For example, as per the associated design principle, the goal of the framework is to provide science teachers with experiences in authentic inquiry, coupled with enhancing their competencies linked to the adoption, customization and design; then the classroom implementation and the revision of inquiry-based curriculum units. The seven design principles have allowed us to synthesize the PD framework, which, coupled with the design principles, are the preliminary outcomes of the current research. We are in the process of evaluating the content and construct validity of the framework, based on nine one-on-one interviews with experts in inquiry-based classroom and teacher learning. To this end, we have developed an interview protocol with the input of eight such experts in South Africa and Germany. Using the protocol, the expert appraisal of the PD framework will involve three experts from Germany, South Africa, and Cameroon, respectively. These countries, where we originate and/or work, provide a variety of inquiry-based science education contexts, making the countries suitable in the evaluation of the generic PD framework. Based on the evaluation, we will revise the framework and its seven design principles to arrive at the final outcomes of the current research. While the final content and construct a valid version of the framework will serve as an example of the needed ways through which effective inquiry-based science teacher PD may be achieved, the final design principles will be useful to researchers when transforming the framework for use in any specific educational context. For example, in our further research, we will transform the framework to one that is practical and effective in supporting inquiry-based practical work in resource-constrained physical sciences classrooms in South Africa. Researchers in other educational contexts may similarly consider the final framework and design principles in their work. Thus, our final outcomes will inform practice and research around the support of teachers to increase the incorporation of learning experiences that mirror the work of scientists in a worldwide manner.

Keywords: design principles, educational design research, evaluation, inquiry-based science education, professional development framework

Procedia PDF Downloads 130
42386 Living Lab as a Service: Developing Context Induced, Co-creational Innovation Routines as a Process Tool for Nature Based Solutions

Authors: Immanuel Darkwa

Abstract:

Climate change and environmental degradation are existential threats requiring urgent transnational action. The SDGs, as well as regional initiatives the like European Green Deal, as ambitious as they are, put an emphasis on innovatively tackling threats posed by climate change regionally. While co-creational approaches are being propagated, there is no reference blueprint for how potential solutions, particularly nature-based solutions, may be developed and implemented within urban-settings. Using a single case study in Zagreb, Croatia, this paper proposes a workshop-tool for a Living Lab as a Service model for sustainable Nature-Based-Thinking, Nature–Centred-Design and Nature based solutions. The approach is based on a co-creational methodology developed through literature synthesis, expert interviews, focus group discussions, surveys and synthesized through rigorous research analysis and participatory observation. The ensuing tool involves workshop-processes, tested with through-the-process identified stakeholders with distinctive roles and functions. The resulting framework proposes a Nature-Based-Centred-Thinking process tool involving ‘green’ routines supported by a focal unit and a collaborative network, and that allows for the development of nature-based solutions.

Keywords: living labs, nature-based solutions, nature- based design, innovation processes, innovation routines and tools

Procedia PDF Downloads 48
42385 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 183
42384 On the Application and Comparison of Two Geostatistics Methods in the Parameterisation Step to Calibrate Groundwater Model: Grid-Based Pilot Point and Head-Zonation Based Pilot Point Methods

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Properly selecting the most suitable and effective geostatistics method in the parameterization step of groundwater modeling is critical to attain a satisfactory model. In this paper, two geostatistics methods, i.e., Grid-Based Pilot Point (GB-PP) and Head-Zonation Based Pilot Point (HZB-PP) methods, were applied in an eogenetic karst catchment and compared using as model performances and computation time the criteria. Overall, the results show that appropriate selection of method is substantial in the parameterization of physically-based groundwater models, as it influences both the accuracy and simulation times. It was found that GB-PP method performed comparably superior to HZB-PP method. However, reflecting its model performances, HZB-PP method is promising for further application in groundwater modeling.

Keywords: groundwater model, geostatistics, pilot point, parameterization step

Procedia PDF Downloads 144
42383 An Experimental Quantitative Case Study of Competency-Based Learning in Online Mathematics Education

Authors: Pascal Roubides

Abstract:

The presentation proposed herein describes a research case study of a hybrid application of the competency-based education model best exemplified by Western Governor’s University, within the general temporal confines of an accelerated (8-week) term of a College Algebra course at the author’s institution. A competency-based model was applied to an accelerated online College Algebra course, built as an Open Educational Resources (OER) course, seeking quantifiable evidence of any differences in the academic achievement of students enrolled in the competency-based course and the academic achievement of the current delivery of the same course. Competency-based learning has been gaining in support in recent times and the author’s institution has also been involved in its own efforts to design and develop courses based on this approach. However, it is unknown whether there had been any research conducted to quantify evidence of the effect of this approach against traditional approaches prior to the author’s case study. The research question sought to answer in this experimental quantitative study was whether the online College Algebra curriculum at the author’s institution delivered via an OER-based competency-based model can produce statistically significant improvement in retention and success rates against the current delivery of the same course. Results obtained in this study showed that there is no statistical difference in the retention rate of the two groups. However, there was a statistically significant difference found between the rates of successful completion of students in the experimental group versus those in the control group.

Keywords: competency-based learning, online mathematics, online math education, online courses

Procedia PDF Downloads 106
42382 Architectural Design Studio (ADS) as an Operational Synthesis in Architectural Education

Authors: Francisco A. Ribeiro Da Costa

Abstract:

Who is responsible for teaching architecture; consider various ways to participate in learning, manipulating various pedagogical tools to streamline the creative process. The Architectural Design Studio (ADS) should become a holistic, systemic process responding to the complexity of our world. This essay corresponds to a deep reflection developed by the author on the teaching of architecture. The outcomes achieved are the corollary of experimentation; discussion and application of pedagogical methods that allowed consolidate the creativity applied by students. The purpose is to show the conjectures that have been considered effective in creating an intellectual environment that nurtures the subject of Architectural Design Studio (ADS), as an operational synthesis in the final stage of the degree. These assumptions, which are part of the proposed model, displaying theories and teaching methodologies that try to respect the learning process based on student learning styles Kolb, ensuring their latent specificities and formulating the structure of the ASD discipline. In addition, the assessing methods are proposed, which consider the architectural Design Studio as an operational synthesis in the teaching of architecture.

Keywords: teaching-learning, architectural design studio, architecture, education

Procedia PDF Downloads 368
42381 Basic One-Dimensional Modelica®-Model for Simulation of Gas-Phase Adsorber Dynamics

Authors: Adrian Rettig, Silvan Schneider, Reto Tamburini, Mirko Kleingries, Ulf Christian Muller

Abstract:

Industrial adsorption processes are, mainly due to si-multaneous heat and mass transfer, characterized by a high level of complexity. The conception of such processes often does not take place systematically; instead scale-up/down respectively number-up/down methods based on existing systems are used. This paper shows how Modelica® can be used to develop a transient model enabling a more systematic design of such ad- and desorption components and processes. The core of this model is a lumped-element submodel of a single adsorbent grain, where the thermodynamic equilibria and the kinetics of the ad- and desorption processes are implemented and solved on the basis of mass-, momentum and energy balances. For validation of this submodel, a fixed bed adsorber, whose characteristics are described in detail in the literature, was modeled and simulated. The simulation results are in good agreement with the experimental results from the literature. Therefore, the model development will be continued, and the extended model will be applied to further adsorber types like rotor adsorbers and moving bed adsorbers.

Keywords: adsorption, desorption, linear driving force, dynamic model, Modelica®, integral equation approach

Procedia PDF Downloads 349
42380 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies

Keywords: crop yield, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 385
42379 Investigation of Existing Guidelines for Four-Legged Angular Telecommunication Tower

Authors: Sankara Ganesh Dhoopam, Phaneendra Aduri

Abstract:

Lattice towers are light weight structures which are primarily governed by the effects of wind loading. Ensuring a precise assessment of wind loads on the tower structure, antennas, and associated equipment is vital for the safety and efficiency of tower design. Earlier, the Indian standards are not available for design of telecom towers. Instead, the industry conventionally relied on the general building wind loading standard for calculating loads on tower components and the transmission line tower design standard for designing the angular members of the towers. Subsequently, the Bureau of Indian Standards (BIS) revised these standards and angular member design standard. While the transmission line towers are designed using the above standard, a full-scale model test will be done to prove the design. Telecom angular towers are also designed using the same with overload factor/factor of safety without full scale tower model testing. General construction in steel design code is available with limit state design approach and is applicable to the design of general structures involving angles and tubes but not used for angle member design of towers. Recently, in response to the evolving industry needs, the Bureau of Indian Standards (BIS) introduced a new standard titled “Isolated Towers, Masts, and Poles using structural steel -Code of practice” for the design of telecom towers. This study focuses on a 40m four legged angular tower to compare loading calculations and member designs between old and new standards. Additionally, a comparative analysis aligning with the new code provisions with international loading and design standards with a specific focus on American standards has been carried out. This paper elaborates code-based provisions used for load and member design calculations, including the influence of "ka" area averaging factor introduced in new wind load case.

Keywords: telecom, angular tower, PLS tower, GSM antenna, microwave antenna, IS 875(Part-3):2015, IS 802(Part-1/sec-2):2016, IS 800:2007, IS 17740:2022, ANSI/TIA-222G, ANSI/TIA-222H.

Procedia PDF Downloads 51