Search results for: genetic enhancement
2671 Non-Invasive Pre-Implantation Genetic Assessment Using NGS in IVF Clinical Routine
Authors: Katalin Gombos, Bence Gálik, Krisztina Ildikó Kalács, Krisztina Gödöny, Ákos Várnagy, József Bódis, Attila Gyenesei, Gábor L. Kovács
Abstract:
Although non-invasive pre-implantation genetic testing for aneuploidy (NIPGT-A) is potentially appropriate to assess chromosomal ploidy of the embryo, practical application of it in a routine IVF center has not been started in the absence of a recommendation. We developed a comprehensive workflow for a clinically applicable strategy for NIPGT-A based on next-generation sequencing (NGS) technology. We performed MALBAC whole genome amplification and NGS on spent blastocyst culture media of Day 3 embryos fertilized with intra-cytoplasmic sperm injection (ICSI). Spent embryonic culture media of morphologically good quality score embryos were enrolled in further analysis with the blank culture media as background control. Chromosomal abnormalities were identified by an optimized bioinformatics pipeline applying a copy number variation (CNV) detecting algorithm. We demonstrate a comprehensive workflow covering both wet- and dry-lab procedures supporting a clinically applicable strategy for NIPGT-A. It can be carried out within 48 h which is critical for the same-cycle blastocyst transfer, but also suitable for “freeze all” and “elective frozen embryo” strategies. The described integrated approach of non-invasive evaluation of embryonic DNA content of the culture media can potentially supplement existing pre-implantation genetic screening methods.Keywords: next generation sequencing, in vitro fertilization, embryo assessment, non-invasive pre-implantation genetic testing
Procedia PDF Downloads 1562670 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.Keywords: genetic algorithm, kinematic hardening, material model, objective function
Procedia PDF Downloads 3352669 Clinical and Molecular Characterization of Ichthyosis at King Abdulaziz Medical City, Riyadh KSA
Authors: Reema K. AlEssa, Sahar Alshomer, Abdullah Alfaleh, Sultan ALkhenaizan, Mohammed Albalwi
Abstract:
Ichthyosis is a disorder of abnormal keratinization, characterized by excessive scaling, and consists of more than twenty subtypes varied in severity, mode of inheritance, and the genes involved. There is insufficient data in the literature about the epidemiology and characteristics of ichthyosis locally. Our aim is to identify the histopathological features and genetic profile of ichthyosis. Method: It is an observational retrospective case series study conducted in March 2020, included all patients who were diagnosed with Ichthyosis and confirmed by histological and molecular findings over the last 20 years in King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. Molecular analysis was performed by testing genomic DNA and checking genetic variations using the AmpliSeq panel. All disease-causing variants were checked against HGMD, ClinVar, Genome Aggregation Database (gnomAD), and Exome Aggregation Consortium (ExAC) databases. Result: A total of 60 cases of Ichthyosis were identified with a mean age of 13 ± 9.2. There is an almost equal distribution between female patients 29 (48%) and males 31 (52%). The majority of them were Saudis, 94%. More than half of patients presented with general scaling 33 (55%), followed by dryness and coarse skin 19 (31.6%) and hyperlinearity 5 (8.33%). Family history and history of consanguinity were seen in 26 (43.3% ), 13 (22%), respectively. History of colloidal babies was found in 6 (10%) cases of ichthyosis. The most frequent genes were ALOX12B, ALOXE3, CERS3, CYP4F22, DOLK, FLG2, GJB2, PNPLA1, SLC27A4, SPINK5, STS, SUMF1, TGM1, TGM5, VPS33B. Most frequent variations were detected in CYP4F22 in 16 cases (26.6%) followed by ALOXE3 6 (10%) and STS 6 (10%) then TGM1 5 (8.3) and ALOX12B 5 (8.3). The analysis of molecular genetic identified 23 different genetic variations in the genes of ichthyosis, of which 13 were novel mutations. Homozygous mutations were detected in the majority of ichthyosis cases, 54 (90%), and only 1 case was heterozygous. Few cases, 4 (6.6%) had an unknown type of ichthyosis with a negative genetic result. Conclusion: 13 novel mutations were discovered. Also, about half of ichthyosis patients had a positive history of consanguinity.Keywords: ichthyosis, genetic profile, molecular characterization, congenital ichthyosis
Procedia PDF Downloads 1972668 A Genetic Algorithm Based Ensemble Method with Pairwise Consensus Score on Malware Cacophonous Labels
Authors: Shih-Yu Wang, Shun-Wen Hsiao
Abstract:
In the field of cybersecurity, there exists many vendors giving malware samples classified results, namely naming after the label that contains some important information which is also called AV label. Lots of researchers relay on AV labels for research. Unfortunately, AV labels are too cluttered. They do not have a fixed format and fixed naming rules because the naming results were based on each classifiers' viewpoints. A way to fix the problem is taking a majority vote. However, voting can sometimes create problems of bias. Thus, we create a novel ensemble approach which does not rely on the cacophonous naming result but depend on group identification to aggregate everyone's opinion. To achieve this purpose, we develop an scoring system called Pairwise Consensus Score (PCS) to calculate result similarity. The entire method architecture combine Genetic Algorithm and PCS to find maximum consensus in the group. Experimental results revealed that our method outperformed the majority voting by 10% in term of the score.Keywords: genetic algorithm, ensemble learning, malware family, malware labeling, AV labels
Procedia PDF Downloads 872667 Review of Theories and Applications of Genetic Programing in Sediment Yield Modeling
Authors: Adesoji Tunbosun Jaiyeola, Josiah Adeyemo
Abstract:
Sediment yield can be considered to be the total sediment load that leaves a drainage basin. The knowledge of the quantity of sediments present in a river at a particular time can lead to better flood capacity in reservoirs and consequently help to control over-bane flooding. Furthermore, as sediment accumulates in the reservoir, it gradually loses its ability to store water for the purposes for which it was built. The development of hydrological models to forecast the quantity of sediment present in a reservoir helps planners and managers of water resources systems, to understand the system better in terms of its problems and alternative ways to address them. The application of artificial intelligence models and technique to such real-life situations have proven to be an effective approach of solving complex problems. This paper makes an extensive review of literature relevant to the theories and applications of evolutionary algorithms, and most especially genetic programming. The successful applications of genetic programming as a soft computing technique were reviewed in sediment modelling and other branches of knowledge. Some fundamental issues such as benchmark, generalization ability, bloat and over-fitting and other open issues relating to the working principles of GP, which needs to be addressed by the GP community were also highlighted. This review aim to give GP theoreticians, researchers and the general community of GP enough research direction, valuable guide and also keep all stakeholders abreast of the issues which need attention during the next decade for the advancement of GP.Keywords: benchmark, bloat, generalization, genetic programming, over-fitting, sediment yield
Procedia PDF Downloads 4482666 Awareness of Genetically Modified Products Among Malaysian Consumers
Authors: Muhamad Afiq Faisal, Yahaya, Mohd Faizal, Hamzah
Abstract:
Genetic modification technology allows scientists to alter the genetic information of a particular organism. The technology allows the production of genetically modified organism (GMO) that has the enhanced property compared to the unmodified organism. The application of such technology is not only in agriculture industry, it is now has been applied extensively in biopharmaceutical industry such as transgenic vaccines. In Malaysia, Biosafety Act 2007 has been enacted in which all GMO-based products must be labeled with adequate information before being marketed. This paper aims to determine the awareness level amongst Malaysian consumers on the GM products available in the market and the efficiency of information supplied in the GM product labeling. The result of the survey will serve as a guideline for Malaysia government agency bodies to provide comprehensive yet efficient information to consumers for the purpose of GM product labeling in the near future. In conclusion, the efficiency of information delivery plays a vital role in ensuring that the information is being conveyed clearly to Malaysian consumers during the selection process of GM products available in the market.Keywords: genetic modification technology, genetically modified organisms, genetically modified organism products labeling, Biosafety Act 2007
Procedia PDF Downloads 3632665 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 792664 A Second Order Genetic Algorithm for Traveling Salesman Problem
Authors: T. Toathom, M. Munlin, P. Sugunnasil
Abstract:
The traveling salesman problem (TSP) is one of the best-known problems in optimization problem. There are many research regarding the TSP. One of the most usage tool for this problem is the genetic algorithm (GA). The chromosome of the GA for TSP is normally encoded by the order of the visited city. However, the traditional chromosome encoding scheme has some limitations which are twofold: the large solution space and the inability to encapsulate some information. The number of solution for a certain problem is exponentially grow by the number of city. Moreover, the traditional chromosome encoding scheme fails to recognize the misplaced correct relation. It implies that the tradition method focuses only on exact solution. In this work, we relax some of the concept in the GA for TSP which is the exactness of the solution. The proposed work exploits the relation between cities in order to reduce the solution space in the chromosome encoding. In this paper, a second order GA is proposed to solve the TSP. The term second order refers to how the solution is encoded into chromosome. The chromosome is divided into 2 types: the high order chromosome and the low order chromosome. The high order chromosome is the chromosome that focus on the relation between cities such as the city A should be visited before city B. On the other hand, the low order chromosome is a type of chromosome that is derived from a high order chromosome. In other word, low order chromosome is encoded by the traditional chromosome encoding scheme. The genetic operation, mutation and crossover, will be performed on the high order chromosome. Then, the high order chromosome will be mapped to a group of low order chromosomes whose characteristics are satisfied with the high order chromosome. From the mapped set of chromosomes, the champion chromosome will be selected based on the fitness value which will be later used as a representative for the high order chromosome. The experiment is performed on the city data from TSPLIB.Keywords: genetic algorithm, traveling salesman problem, initial population, chromosomes encoding
Procedia PDF Downloads 2732663 Genetic Algorithm Methods for Determination Over Flow Coefficient of Medium Throat Length Morning Glory Spillway Equipped Crest Vortex Breakers
Authors: Roozbeh Aghamajidi
Abstract:
Shaft spillways are circling spillways used generally for emptying unexpected floods on earth and concrete dams. There are different types of shaft spillways: Stepped and Smooth spillways. Stepped spillways pass more flow discharges through themselves in comparison to smooth spillways. Therefore, awareness of flow behavior of these spillways helps using them better and more efficiently. Moreover, using vortex breaker has great effect on passing flow through shaft spillway. In order to use more efficiently, the risk of flow pressure decreases to less than fluid vapor pressure, called cavitations, should be prevented as far as possible. At this research, it has been tried to study different behavior of spillway with different vortex shapes on spillway crest on flow. From the viewpoint of the effects of flow regime changes on spillway, changes of step dimensions, and the change of type of discharge will be studied effectively. Therefore, two spillway models with three different vortex breakers and three arrangements have been used to assess the hydraulic characteristics of flow. With regard to the inlet discharge to spillway, the parameters of pressure and flow velocity on spillway surface have been measured at several points and after each run. Using these kinds of information leads us to create better design criteria of spillway profile. To achieve these purposes, optimization has important role and genetic algorithm are utilized to study the emptying discharge. As a result, it turned out that the best type of spillway with maximum discharge coefficient is smooth spillway with ogee shapes as vortex breaker and 3 number as arrangement. Besides it has been concluded that the genetic algorithm can be used to optimize the results.Keywords: shaft spillway, vortex breaker, flow, genetic algorithm
Procedia PDF Downloads 3722662 Thermal Analysis of Automobile Radiator Using Nanofluids
Authors: S. Sumanth, Babu Rao Ponangi, K. N. Seetharamu
Abstract:
As the technology is emerging day by day, there is a need for some better methodology which will enhance the performance of radiator. Nanofluid is the one area which has promised the enhancement of the radiator performance. Currently, nanofluid has got a well effective solution for enhancing the performance of the automobile radiators. Suspending the nano sized particle in the base fluid, which has got better thermal conductivity value when compared to a base fluid, is preferably considered for nanofluid. In the current work, at first mathematical formulation has been carried out, which will govern the performance of the radiator. Current work is justified by plotting the graph for different parameters. Current work justifies the enhancement of radiator performance using nanofluid.Keywords: nanofluid, radiator performance, graphene, gamma aluminium oxide (γ-Al2O3), titanium dioxide (TiO2)
Procedia PDF Downloads 2522661 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm
Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll
Abstract:
This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.Keywords: concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC
Procedia PDF Downloads 2812660 An Application of Integrated Multi-Objective Particles Swarm Optimization and Genetic Algorithm Metaheuristic through Fuzzy Logic for Optimization of Vehicle Routing Problems in Sugar Industry
Authors: Mukhtiar Singh, Sumeet Nagar
Abstract:
Vehicle routing problem (VRP) is a combinatorial optimization and nonlinear programming problem aiming to optimize decisions regarding given set of routes for a fleet of vehicles in order to provide cost-effective and efficient delivery of both services and goods to the intended customers. This paper proposes the application of integrated particle swarm optimization (PSO) and genetic optimization algorithm (GA) to address the Vehicle routing problem in sugarcane industry in India. Suger industry is very prominent agro-based industry in India due to its impacts on rural livelihood and estimated to be employing around 5 lakhs workers directly in sugar mills. Due to various inadequacies, inefficiencies and inappropriateness associated with the current vehicle routing model it costs huge money loss to the industry which needs to be addressed in proper context. The proposed algorithm utilizes the crossover operation that originally appears in genetic algorithm (GA) to improve its flexibility and manipulation more readily and avoid being trapped in local optimum, and simultaneously for improving the convergence speed of the algorithm, level set theory is also added to it. We employ the hybrid approach to an example of VRP and compare its result with those generated by PSO, GA, and parallel PSO algorithms. The experimental comparison results indicate that the performance of hybrid algorithm is superior to others, and it will become an effective approach for solving discrete combinatory problems.Keywords: fuzzy logic, genetic algorithm, particle swarm optimization, vehicle routing problem
Procedia PDF Downloads 3942659 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 762658 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines
Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi
Abstract:
One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine
Procedia PDF Downloads 612657 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm
Authors: Ovidiu Domşa, Nicolae Bold
Abstract:
Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.Keywords: chromosome, genetic algorithm, subtree, test
Procedia PDF Downloads 3252656 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer
Authors: R. Karmouch
Abstract:
A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.Keywords: photodeterioration, silicon nanocrystals, ion implantation, photoluminescence, surface plasmons
Procedia PDF Downloads 4212655 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer
Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang
Abstract:
The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer
Procedia PDF Downloads 1132654 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms
Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi
Abstract:
A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization
Procedia PDF Downloads 4312653 Association of Glutathione S-transferase M1 and T1 Gene Polymorphisms with Vitiligo in Saudi Population
Authors: Ghaleb Bin Huraib, Fahad Al Harthi, Mohammad Mustafa, Abdulrahman Al-Asmari
Abstract:
Introduction: Vitiligo is an acquired pigmentary skin disorder with the regional disappearance of melanocytes. Vitiligo affects 0.1 to 2% of the global population, and the incidence varies substantially depending on ethnicity. Glutathione S-transferase (GST) is a multigene family of enzymes that detoxify oxidative stress products. The oxidative stress-related GSTM1/GSTT1 genes deletion may cause epidermal melanocytes destruction and the development of vitiligo. Hence, the present study aimed to investigate the association of GST gene polymorphisms with vitiligo in the Saudi population, if any. Materials and Methods: The present study includes 129 vitiligo cases and 130 age-matched healthy controls. The proportion of male and female patients with vitiligo is almost equal. The multiplex polymerase chain reaction (PCR) method was used for polymorphic analysis. Results: Increased odds of generalized vitiligo was observed with the null genotypes of GSTT1- gene (OR = 1.91, 95% CI = 1.07-3.42, p = 0.019). The possible genetic combinations of GSTM1/GSTT1 and their genotypic distribution showed the frequency of GSTM1+/GSTT1+ 62/130 (47.69%) and GSTM1-/GSTT1+ 52/130 (40.00%) were higher in controls than in cases 44/129 (34.11%), 43/129 (33.34%), respectively while GSTM1+/GSTT1- and GSTM1-/GSTT1- null genotypes were higher 22/129 (17.05%) and 20/129 (15.50%) in vitiligo patients as compared to controls 11/130 (8.46%), 5/130 (3.84%), respectively. The strength of association of different genetic combinations with cases have shown GSTM1+/GSTT1- (OR = 2.81, 95% CI = 1.24-6.40, p = 0.009) and GSTM1-/GSTT1- (OR = 5.63, 95% CI = 1.96 - 16.16, p = 0.0004) were significantly higher in vitiligo cases as compared to controls. We did not observe any significant association of age and gender of patients with GST gene polymorphisms. Conclusions: The GSTT1-, GSTM1+/GSTT1- and GSTM1-/GSTT1- null genotypes were significantly associated with vitiligo. These genetic polymorphisms may be the associative genetic risk factor for vitiligo among Saudis. It could be used as a genetic marker for screening vitiligo patients among Saudis. Further studies on GSTs gene polymorphism in larger sample sizes from different geographical areas and ethnicity are needed to strengthen the present findings.Keywords: vitiligo, GSTM1, GSTT1, gene polymorphism, oxidative stress
Procedia PDF Downloads 1252652 Optimizing Emergency Rescue Center Layouts: A Backpropagation Neural Networks-Genetic Algorithms Method
Authors: Xiyang Li, Qi Yu, Lun Zhang
Abstract:
In the face of natural disasters and other emergency situations, determining the optimal location of rescue centers is crucial for improving rescue efficiency and minimizing impact on affected populations. This paper proposes a method that integrates genetic algorithms (GA) and backpropagation neural networks (BPNN) to address the site selection optimization problem for emergency rescue centers. We utilize BPNN to accurately estimate the cost of delivering supplies from rescue centers to each temporary camp. Moreover, a genetic algorithm with a special partially matched crossover (PMX) strategy is employed to ensure that the number of temporary camps assigned to each rescue center adheres to predetermined limits. Using the population distribution data during the 2022 epidemic in Jiading District, Shanghai, as an experimental case, this paper verifies the effectiveness of the proposed method. The experimental results demonstrate that the BPNN-GA method proposed in this study outperforms existing algorithms in terms of computational efficiency and optimization performance. Especially considering the requirements for computational resources and response time in emergency situations, the proposed method shows its ability to achieve rapid convergence and optimal performance in the early and mid-stages. Future research could explore incorporating more real-world conditions and variables into the model to further improve its accuracy and applicability.Keywords: emergency rescue centers, genetic algorithms, back-propagation neural networks, site selection optimization
Procedia PDF Downloads 892651 Habitat Suitability, Genetic Diversity and Population Structure of Two Sympatric Fruit Bat Species Reveal the Need of an Urgent Conservation Action
Authors: Mohamed Thani Ibouroi, Ali Cheha, Claudine Montgelard, Veronique Arnal, Dawiyat Massoudi, Guillelme Astruc, Said Ali Ousseni Dhurham, Aurelien Besnard
Abstract:
The Livingstone's flying fox (Pteropus livingstonii) and the Comorian fruit bat (P.seychellensis comorensis) are two endemic fruit bat species among the mostly threatened animals of the Comoros archipelagos. Despite their role as important ecosystem service providers like all flying fox species as pollinators and seed dispersers, little is known about their ecologies, population genetics and structures making difficult the development of evidence-based conservation strategies. In this study, we assess spatial distribution and ecological niche of both species using Species Distribution Modeling (SDM) based on the recent Ensemble of Small Models (ESMs) approach using presence-only data. Population structure and genetic diversity of the two species were assessed using both mitochondrial and microsatellite markers based on non-invasive genetic samples. Our ESMs highlight a clear niche partitioning of the two sympatric species. Livingstone’s flying fox has a very limited distribution, restricted on steep slope of natural forests at high elevation. On the contrary, the Comorian fruit bat has a relatively large geographic range spread over low elevations in farmlands and villages. Our genetic analysis shows a low genetic diversity for both fruit bats species. They also show that the Livingstone’s flying fox population of the two islands were genetically isolated while no evidence of genetic differentiation was detected for the Comorian fruit bats between islands. Our results support the idea that natural habitat loss, especially the natural forest loss and fragmentation are the important factors impacting the distribution of the Livingstone’s flying fox by limiting its foraging area and reducing its potential roosting sites. On the contrary, the Comorian fruit bats seem to be favored by human activities probably because its diets are less specialized. By this study, we concluded that the Livingstone’s flying fox species and its habitat are of high priority in term of conservation at the Comoros archipelagos scale.Keywords: Comoros islands, ecological niche, habitat loss, population genetics, fruit bats, conservation biology
Procedia PDF Downloads 2682650 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 4732649 ACTN3 Genotype Association with Motoric Performance of Roma Children
Authors: J. Bernasovska, I. Boronova, J. Poracova, M. Mydlarova Blascakova, V. Szabadosova, P. Ruzbarsky, E. Petrejcikova, I. Bernasovsky
Abstract:
The paper presents the results of the molecular genetics analysis in sports research, with special emphasis to use genetic information in diagnosing of motoric predispositions in Roma boys from East Slovakia. The ability and move are the basic characteristics of all living organisms. The phenotypes are influenced by a combination of genetic and environmental factors. Genetic tests differ in principle from the traditional motoric tests, because the DNA of an individual does not change during life. The aim of the presented study was to examine motion abilities and to determine the frequency of ACTN3 (R577X) gene in Roma children. Genotype data were obtained from 138 Roma and 155 Slovak boys from 7 to 15 years old. Children were investigated on physical performance level in association with their genotype. Biological material for genetic analyses comprised samples of buccal swabs. Genotypes were determined using Real Time High resolution melting PCR method (Rotor-Gene 6000 Corbett and Light Cycler 480 Roche). The software allows creating reports of any analysis, where information of the specific analysis, normalized and differential graphs and many information of the samples are shown. Roma children of analyzed group legged to non-Romany children at the same age in all the compared tests. The % distribution of R and X alleles in Roma children was different from controls. The frequency of XX genotype was 9.26%, RX 46.33% and RR was 44.41%. The frequency of XX genotype was 9.26% which is comparable to a frequency of an Indian population. Data were analyzed with the ANOVA test.Keywords: ACTN3 gene, R577X polymorphism, Roma children, sport performance, Slovakia
Procedia PDF Downloads 3352648 Molecular Genetic Purity Test Using SSR Markers in Pigeon Pea
Authors: Rakesh C. Mathad, G. Y. Lokesh, Basavegowda
Abstract:
In agriculture using quality seeds of improved varieties is very important to ensure higher productivity thereby food security and sustainability. To ensure good productivity, seeds should have characters as described by the breeder. To know whether the characters as described by the breeder are expressing in a variety such as genuineness or genetic purity, field grow out test (GOT) is done. In pigeon pea which is long durational crop, conducting a GOT may take very long time and expensive also. Since in pigeon pea flower character is a most distinguishing character from the contaminants, conducting a field grow out test require 120-130 days or till flower emergence, which may increase cost of storage and seed production. This will also delay the distribution of seed inventory to the pigeon pea growing areas. In this view during 2014-15 with financial support of Govt. of Karnataka, India, a project to develop a molecular genetic test for newly developed variety of pigeon pea cv.TS3R was commissioned at Seed Unit, UAS, Raichur. A molecular test was developed with the help SSR markers to identify pure variety from possible off types in newly released pigeon pea variety TS3R. In the investigation, 44 primer pairs were screened to identify the specific marker associated with this variety. Pigeon pea cv. TS3R could be clearly identified by using the primer CCM 293 based on the banding pattern resolved on gel electrophoresis and PCR reactions. However some of the markers like AHSSR 46, CCM 82 and CCM 57 can be used to test other popular varieties in the region like Asha, GRG-811 and Maruti respectively. Further to develop this in to a lab test, the seed sample size was standardized to 200 seeds and a grow out matrix was developed. This matrix was used to sample 12 days old leaves to extract DNA. The lab test results were validated with actual field GOT test results and found variations within the acceptable limit of 1%. This molecular method can now be employed to test the genetic purity in pigeon pea cv TS3R which reduces the time and can be a cheaper alternative method for field GOT.Keywords: genuineness, grow-out matrix, molecular genetic purity, SSR markers
Procedia PDF Downloads 2852647 The Interdisciplinary Synergy Between Computer Engineering and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm.Keywords: VRP, TSP, genetic algorithm, computer engineering, optimization
Procedia PDF Downloads 152646 Morpho-Agronomic Response to Water Stress of Some Nigerian Bambara Groundnut (Vigna Subterranea (L.) Verdc.) Germplasm and Genetic Diversity Studies of Some Selected Accessions Using Ssr Markers
Authors: Abejide Dorcas Ropo, , Falusi Olamide Ahmed, Daudu Oladipupo Abdulazeez Yusuf, Salihu Bolaji Zuluquri Neen, Muhammad Liman Muhammad, Gado Aishatu Adamu
Abstract:
Water stress is a major factor limiting the productivity of crops in the world today. This study evaluated the morpho-agronomic response of twenty-four (24) Nigerian Bambara groundnut landraces to water stress and genetic diversity of some selected accessions using SSR markers. The studies was carried out in the Botanical garden of the Department of Plant Biology, Federal University of Technology, Minna, Niger State, Nigeria in a randomized complete block design using three replicates. Molecular analysis using SSR primers was carried out at the Centre for Bio- Science, International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria in order to characterize ten selected accessions comprising of the seven most drought tolerant and the three most susceptible accessions detected from the morpho-agronomic studies. Results revealed that water stress decreased morpho-agronomic traits such as plant height, leaf area, number of leaves per plant and seed yield etc. A total of 22 alleles were detected by the SSR markers used with a mean number of 4 allelles. Simple Sequence Repeat (SSR) markers MBamCO33, Primer 65 and G358B2-D15 each detected 4 allelles while Primer 3FR and 4FR detected 5 allelles each. The study revealed significantly high polymorphisms in 10 Loci. The mean value of Polymorpic information content was 0.6997 implying the usefulness of the primers used in identifying genetic similarities and differences among the Bambara groundnut genotypes. The SSR analysis revealed a comparable pattern between genetic diversity and drought tolerance of the genotypes. The Unweighted Paired Group Method with Arithmethic Mean (UPGMA) dendrogram showed that at a genetic distance of 0.1, the accessions were grouped into three groups according to their level of tolerance to drought. The two most drought tolerant accessions were grouped together and the 5th and 6th most drought tolerant accession were also grouped together. This suggests that the genotypes grouped together may be genetically close, may possess similar genes or have a common origin. The degree of genetic variants obtained could be useful in bambara groundnut breeding for drought tolerance. The identified drought tolerant bambara groundnut landraces are important genetic resources for drought stress tolerance breeding programme of bambara groundnut. The genotypes are also useful for germplasm conservation and global implications.Keywords: bambara groundnut, genetic diversity, germplasm, SSR markers, water stress
Procedia PDF Downloads 232645 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks
Authors: N. Nalini, Lokesh B. Bhajantri
Abstract:
In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology
Procedia PDF Downloads 4532644 Identifying Environmental Adaptive Genetic Loci in Caloteropis Procera (Estabragh): Population Genetics and Landscape Genetic Analyses
Authors: Masoud Sheidaei, Mohammad-Reza Kordasti, Fahimeh Koohdar
Abstract:
Calotropis procera (Aiton) W.T.Aiton, (Apocynaceae), is an economically and medicinally important plant species which is an evergreen, perennial shrub growing in arid and semi-arid climates, and can tolerate very low annual rainfall (150 mm) and a dry season. The plant can also tolerate temperature ran off 20 to30°C and is not frost tolerant. This plant species prefers free-draining sandy soils but can grow also in alkaline and saline soils.It is found at a range of altitudes from exposed coastal sites to medium elevations up to 1300 m. Due to morpho-physiological adaptations of C. procera and its ability to tolerate various abiotic stresses. This taxa can compete with desirable pasture species and forms dense thickets that interfere with stock management, particularly mustering activities. Caloteropis procera grows only in southern part of Iran where in comprises a limited number of geographical populations. We used different population genetics and r landscape analysis to produce data on geographical populations of C. procera based on molecular genetic study using SCoT molecular markers. First, we used spatial principal components (sPCA), as it can analyze data in a reduced space and can be used for co-dominant markers as well as presence / absence data as is the case in SCoT molecular markers. This method also carries out Moran I and Mantel tests to reveal spatial autocorrelation and test for the occurrence of Isolation by distance (IBD). We also performed Random Forest analysis to identify the importance of spatial and geographical variables on genetic diversity. Moreover, we used both RDA (Redundency analysis), and LFMM (Latent factor mixed model), to identify the genetic loci significantly associated with geographical variables. A niche modellng analysis was carried our to predict present potential area for distribution of these plants and also the area present by the year 2050. The results obtained will be discussed in this paper.Keywords: population genetics, landscape genetic, Calotreropis procera, niche modeling, SCoT markers
Procedia PDF Downloads 942643 Efficiency Improvement for Conventional Rectangular Horn Antenna by Using EBG Technique
Authors: S. Kampeephat, P. Krachodnok, R. Wongsan
Abstract:
The conventional rectangular horn has been used for microwave antenna a long time. Its gain can be increased by enlarging the construction of horn to flare exponentially. This paper presents a study of the shaped woodpile Electromagnetic Band Gap (EBG) to improve its gain for conventional horn without construction enlargement. The gain enhancement synthesis method for shaped woodpile EBG that has to transfer the electromagnetic fields from aperture of a horn antenna through woodpile EBG is presented by using the variety of shaped woodpile EBGs such as planar, triangular, quadratic, circular, gaussian, cosine, and squared cosine structures. The proposed technique has the advantages of low profile, low cost for fabrication and light weight. The antenna characteristics such as reflection coefficient (S11), radiation patterns and gain are simulated by utilized A Computer Simulation Technology (CST) software. With the proposed concept, an antenna prototype was fabricated and experimented. The S11 and radiation patterns obtained from measurements show a good impedance matching and a gain enhancement of the proposed antenna. The gain at dominant frequency of 10 GHz is 25.6 dB, application for X- and Ku-Band Radar, that higher than the gain of the basic rectangular horn antenna around 8 dB with adding only one appropriated EBG structures.Keywords: conventional rectangular horn antenna, electromagnetic band gap, gain enhancement, X- and Ku-band radar
Procedia PDF Downloads 2812642 A Genetic Algorithm Approach to Solve a Weaving Job Scheduling Problem, Aiming Tardiness Minimization
Authors: Carolina Silva, João Nuno Oliveira, Rui Sousa, João Paulo Silva
Abstract:
This study uses genetic algorithms to solve a job scheduling problem in a weaving factory. The underline problem regards an NP-Hard problem concerning unrelated parallel machines, with sequence-dependent setup times. This research uses real data regarding a weaving industry located in the North of Portugal, with a capacity of 96 looms and a production, on average, of 440000 meters of fabric per month. Besides, this study includes a high level of complexity once most of the real production constraints are applied, and several real data instances are tested. Topics such as data analyses and algorithm performance are addressed and tested, to offer a solution that can generate reliable and due date results. All the approaches will be tested in the operational environment, and the KPIs monitored, to understand the solution's impact on the production, with a particular focus on the total number of weeks of late deliveries to clients. Thus, the main goal of this research is to develop a solution that allows for the production of automatically optimized production plans, aiming to the tardiness minimizing.Keywords: genetic algorithms, textile industry, job scheduling, optimization
Procedia PDF Downloads 157