Search results for: electron work function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19618

Search results for: electron work function

19318 Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells

Authors: Soraya Abtouche, Zeyneb Ghoualem, Syrine Daoudi, Lina Ouldmohamed, Xavier Assfeld

Abstract:

This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2.

Keywords: DSSC, porphyrin, TD-DFT, electronic properties, donor-acceptor groups

Procedia PDF Downloads 78
19317 Inverted Geometry Ceramic Insulators in High Voltage Direct Current Electron Guns for Accelerators

Authors: C. Hernandez-Garcia, P. Adderley, D. Bullard, J. Grames, M. A. Mamun, G. Palacios-Serrano, M. Poelker, M. Stutzman, R. Suleiman, Y. Wang, , S. Zhang

Abstract:

High-energy nuclear physics experiments performed at the Jefferson Lab (JLab) Continuous Electron Beam Accelerator Facility require a beam of spin-polarized ps-long electron bunches. The electron beam is generated when a circularly polarized laser beam illuminates a GaAs semiconductor photocathode biased at hundreds of kV dc inside an ultra-high vacuum chamber. The photocathode is mounted on highly polished stainless steel electrodes electrically isolated by means of a conical-shape ceramic insulator that extends into the vacuum chamber, serving as the cathode electrode support structure. The assembly is known as a dc photogun, which has to simultaneously meet the following criteria: high voltage to manage space charge forces within the electron bunch, ultra-high vacuum conditions to preserve the photocathode quantum efficiency, no field emission to prevent gas load when field emitted electrons impact the vacuum chamber, and finally no voltage breakdown for robust operation. Over the past decade, JLab has tested and implemented the use of inverted geometry ceramic insulators connected to commercial high voltage cables to operate a photogun at 200kV dc with a 10 cm long insulator, and a larger version at 300kV dc with 20 cm long insulator. Plans to develop a third photogun operating at 400kV dc to meet the stringent requirements of the proposed International Linear Collider are underway at JLab, utilizing even larger inverted insulators. This contribution describes approaches that have been successful in solving challenging problems related to breakdown and field emission, such as triple-point junction screening electrodes, mechanical polishing to achieve mirror-like surface finish and high voltage conditioning procedures with Kr gas to extinguish field emission.

Keywords: electron guns, high voltage techniques, insulators, vacuum insulation

Procedia PDF Downloads 113
19316 Effects of Folic Acid, Alone or in Combination with Other Nutrients on Homocysteine Level and Cognitive Function in Older People: A Systematic Review

Authors: Jiayan Gou, Kexin He, Xin Zhang, Fei Wang, Liuni Zou

Abstract:

Background: Homocysteine is a high-risk factor for cognitive decline, and folic acid supplementation can lower homocysteine levels. However, current clinical research results are inconsistent, and the effects of folic acid on homocysteine levels and cognitive function in older people are inconsistent. Objective: The objective of this study is to systematically evaluate the effects of folic acid alone or in combination with other nutrients on homocysteine levels and cognitive function in older adults. Methods: Systematic searches were conducted in five databases, including PubMed, Embase, the Cochrane Library, Web of Science, and CINAHL, from inception to June 1, 2023. Randomized controlled trials were included investigating the effects of folic acid alone or in combination with other nutrients on cognitive function in older people. Results: 17 articles were included, with six focusing on the effects of folic acid alone and 11 examining folic acid in combination with other nutrients. The study included 3,100 individuals aged 60 to 83.2 years, with a relatively equal gender distribution (approximately 51.82% male). Conclusion: Folic acid alone or combined with other nutrients can effectively lower homocysteine level and improve cognitive function in patients with mild cognitive impairment. But for patients with Alzheimer's disease and dementia, the intervention only can reduce the homocysteine level, but the improvement in cognitive function is not significant. In healthy older people, high baseline homocysteine levels (>11.3 μmol/L) and good ω-3 fatty acid status (>590 μmol/L) can enhance the improvement effect of folic acid on cognitive function. This trial has been registered on PROSPERO as CRD42023433096.

Keywords: B-complex vitamins, cognitive function, folic acid, homocysteine

Procedia PDF Downloads 71
19315 [Keynote Talk]: Existence of Random Fixed Point Theorem for Contractive Mappings

Authors: D. S. Palimkar

Abstract:

Random fixed point theory has received much attention in recent years, and it is needed for the study of various classes of random equations. The study of random fixed point theorems was initiated by the Prague school of probabilistic in the 1950s. The existence and uniqueness of fixed points for the self-maps of a metric space by altering distances between the points with the use of a control function is an interesting aspect in the classical fixed point theory. In a new category of fixed point problems for a single self-map with the help of a control function that alters the distance between two points in a metric space which they called an altering distance function. In this paper, we prove the results of existence of random common fixed point and its uniqueness for a pair of random mappings under weakly contractive condition for generalizing alter distance function in polish spaces using Random Common Fixed Point Theorem for Generalized Weakly Contractions.

Keywords: Polish space, random common fixed point theorem, weakly contractive mapping, altering function

Procedia PDF Downloads 273
19314 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries

Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos

Abstract:

Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.

Keywords: ceramics, energy storage, electrochemical measurements, transmission electron microscope

Procedia PDF Downloads 256
19313 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 307
19312 The Effect of Gamma rays on Physicochemical Properties of Carboxymethyl Starch

Authors: N. Rajeswara Rao, T. Venkatappa Rao, K. Sowri Babu, N. Srinivas Rao, P. S. V. Shanmukhi

Abstract:

Carboxymethyl Starch (CMS) is a biopolymer derived from starch by the substitution method. CMS is proclaimed to have improved physicochemical properties than native starch. The present work deals with the effect of gamma radiation on the physicochemical properties of CMS. The samples were exposed to gamma irradiation of doses 30, 60 and 90 kGy. The resultant properties were studied with electron spin resonance (ESR), fourier transform infrared spectrometer (FTIR), differential scanning calorimeter (DSC), X-ray diffractometer (XRD) and scanning electron microscopy. Irradiation of CMS by gamma rays initiates cleavage of glucosidic bonds producing different types of radicals. Some of these radicals convert to peroxy radicals by abstracting oxygen. The ESR spectrum of CMS is anisotropic and is thought to be due to the superposition of various component spectra. In order to analyze the ESR spectrum, computer simulations were also employed. ESR spectra are also recorded under different conditions like post-irradiation times, variable temperatures and saturation behavior in order to evaluate the stability of free radicals produced on irradiation. Thermal studies from DSC depict that for CMS the gelatization process was absconded at higher doses. Relative crystallinity was reduced significantly after irradiation from XRD Studies. FTIR studies also confirm the same aspect. From ESR studies, it was concluded that irradiated CMS could be a potential reference material in ESR dosimetry.

Keywords: gamma rays, free radicals, ESR simulations, gelatization

Procedia PDF Downloads 103
19311 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study

Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed

Abstract:

This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.

Keywords: direct approach, impedance function, soil-structure interaction, substructure approach

Procedia PDF Downloads 116
19310 Analytical Study of Symbolism in Literary Texts: A Pragma-Stylistic Approach

Authors: Hussain Hameed Mayuuf

Abstract:

We may find multiple functions that are required to exist in order for meaning, in any certain context, to manifest and act accordingly. Pragmatic function and symbolic function need to be contributing in a combined effort towards that manifestation in order for meaning to be acquired or achieved from within a structure too complex to detect meaning in it by employing any other means. This paper inspects symbolism pragma-stylistically in literary texts. Thus, it principally aims at showing the ways writers utilize symbolism to contribute to the themes of their works and, consequently, pinpointing the most frequently flouted maxim involved in symbolic interpretations in addition to the reason(s) behind the writer's exploitation of that maxim in the literary work. E. E. Cummings' play Him constitutes rich data for the present study. Thus, to achieve its aims, the present study hypothesizes that the descriptions of scenes, the playwright’s remarks, and the characters’ references are all manipulated symbolically to contribute to the themes of the play. It is also hypothesized that the maxim of manner is the most frequently flouted maxim involved in symbolic interpretations in the play, which comes as a result of the intended ambiguity and obscurity manipulated in the descriptions of the scenes, the playwright’s remarks and the characters’ references. In order to achieve the aims of the study and test its hypotheses, a theoretical background about symbolism in general and symbolism from pragma-stylistic points of view is presented. Then, (six) extracts of Him according to Eco’s (1984) model Semiotics and the Philosophy of Language are analyzed. The findings of the analysis verify the above-mentioned hypotheses.

Keywords: pragmatic function, stylistic function, Symbolism, pragma-stylistics, Cummings

Procedia PDF Downloads 164
19309 The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations

Authors: Chao-Qing Dai

Abstract:

In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation.

Keywords: discrete sine-Gordon equation, variable coefficient Jacobian elliptic function method, exact solutions, equation

Procedia PDF Downloads 668
19308 Prediction of Phonon Thermal Conductivity of F.C.C. Al by Molecular Dynamics Simulation

Authors: Leila Momenzadeh, Alexander V. Evteev, Elena V. Levchenko, Tanvir Ahmed, Irina Belova, Graeme Murch

Abstract:

In this work, the phonon thermal conductivity of f.c.c. Al is investigated in detail in the temperature range 100 – 900 K within the framework of equilibrium molecular dynamics simulations making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials. It is found that the heat current auto-correlation function of the f.c.c. Al model demonstrates a two-stage temporal decay similar to the previously observed for f.c.c Cu model. After the first stage of decay, the heat current auto-correlation function of the f.c.c. Al model demonstrates a peak in the temperature range 100-800 K. The intensity of the peak decreases as the temperature increases. At 900 K, it transforms to a shoulder. To describe the observed two-stage decay of the heat current auto-correlation function of the f.c.c. Al model, we employ decomposition model recently developed for phonon-mediated thermal transport in a monoatomic lattice. We found that the electronic contribution to the total thermal conductivity of f.c.c. Al dominates over the whole studied temperature range. However, the phonon contribution to the total thermal conductivity of f.c.c. Al increases as temperature decreases. It is about 1.05% at 900 K and about 12.5% at 100 K.

Keywords: aluminum, gGreen-Kubo formalism, molecular dynamics, phonon thermal conductivity

Procedia PDF Downloads 413
19307 Understanding Cyber Terrorism from Motivational Perspectives: A Qualitative Data Analysis

Authors: Yunos Zahri, Ariffin Aswami

Abstract:

Cyber terrorism represents the convergence of two worlds: virtual and physical. The virtual world is a place in which computer programs function and data move, whereas the physical world is where people live and function. The merging of these two domains is the interface being targeted in the incidence of cyber terrorism. To better understand why cyber terrorism acts are committed, this study presents the context of cyber terrorism from motivational perspectives. Motivational forces behind cyber terrorism can be social, political, ideological and economic. In this research, data are analyzed using a qualitative method. A semi-structured interview with purposive sampling was used for data collection. With the growing interconnectedness between critical infrastructures and Information & Communication Technology (ICT), selecting targets that facilitate maximum disruption can significantly influence terrorists. This work provides a baseline for defining the concept of cyber terrorism from motivational perspectives.

Keywords: cyber terrorism, terrorism, motivation, qualitative analysis

Procedia PDF Downloads 421
19306 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit

Authors: Prabal Singh Verma

Abstract:

Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments.

Keywords: nonlinear plasma waves, longitudinal, wave-breaking, wake-field acceleration

Procedia PDF Downloads 385
19305 Thiazolo [5,4-d] Thiazole Based Polymers and Investigation of Optical Properties for Electronic Applications

Authors: Zeynep Dikmen, Vural Bütün

Abstract:

Electron donor or acceptor capability to participate in electron conjugation is the requirement for an electroactive material. Conjugated molecules and polymers bearing heterocyclic units have potential as optically electroactive materials. Thiazolo thiazole based compounds have attention for last two decades, because they have attractive electronic and optical properties, these compounds are useful for electronic application areas such as dye sentisized solar cells (DSSCs), organic light emitting diodes (OLEDs) and field effect transistors (FETs). Thiazolo[5,4-d]thiazole is bicyclic aromatic structure contains N and S atoms which act as electron donor. A new electron accepting or donating group bound to thiazolo [5,4-d] thiazole fused ring can change the electronic, spectroscopic, stability and dyeing properties of the new material. Polyphenylene(thiazolo [5,4-d] thiazole) (p-PhTT) compound was synthesized via condensation reaction of terephthalaldehyde with dithiooxamide. The chemical structure was determined with solid state 13C NMR spectroscopy. Optical properties (i.e. absorbance and band gap) was determined via solid UV-vis spectroscopy. The insoluble polymer was quarternized with 4-vinylbenzyl chloride (VBC). Colorless VBC changed into a yellow liquid. AgNO3 complex were prepared and optical properties were investigated with UV-Vis, fluorescence spectroscopy and X-ray spectroscopy and cyclic voltammetry studies were examined in this research. This structure exhibits good absorbance and fluorescence in UV-vis region. Synthesis scheme of PyTT and preparation of metal complexes are given. PyTT has absorbance at ~360 nm and fluorescence at ~420 nm.

Keywords: thiazolo thiazole, quarternized polymers, polymeric ligands, Ag complexes

Procedia PDF Downloads 264
19304 Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)

Authors: N. Massoum, B. Bouazza

Abstract:

In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device, simulation software

Procedia PDF Downloads 513
19303 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis

Authors: Sipu Guo, Silin Huang

Abstract:

Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.

Keywords: allostatic load, executive function, network analysis, rural adolescent

Procedia PDF Downloads 52
19302 The Impact of Audit Committee Industry Expertise on Internal Audit Function

Authors: Abdulaziz Alzeban

Abstract:

This study examines whether internal audit function is indeed greater when audit committee members have industry expertise combined with auditing expertise. Data from a survey of 64 chief internal auditors from companies registered on the Saudi Stock Exchange TADAWL, provides results that suggest that when audit committee members possess both industry expertise and auditing expertise, the committee’s role in improving the quality of internal audit is enhanced. This outcome is concluded as one that can be generalized beyond the Saudi Arabian context.

Keywords: internal audit, audit committee, industry expertise, function

Procedia PDF Downloads 357
19301 Electrochemical Synthesis and Morphostructural Study of the Cuprite Thin Film

Authors: M. El Hajji, A. Hallaoui, L. Bazzi, A. Benlhachemi, Lh. Bazzi, M. Hilali, O. Jbara, A. Tara, B. Bakiz

Abstract:

The cathodic electro deposition of the cuprite Cu2O by chrono potentiometry is performed on two types of electrodes "titanium and stainless steel", in a basic medium containing the precursor of copper. The plot produced vs SCE, shows the formation of a brown layer on the electrode surface. The chrono potentiometric recording made between - 0.2 and - 1 mA/cm2, has allowed us to have a deposit having different morphologies and structural orientation obtained as a function of the variation of many parameters. The morphology, the size of crystals, and the phase of the deposits produced were studied by conventional techniques of analysis of the solid, particularly the X-ray diffraction (XRD), scanning electron microscopy analysis (SEM) and quantitative chemical analysis (EDS). The results will be presented and discussed, they show that the majority of deposits are pure and uniform.

Keywords: cathodic electrodeposition, cuprite Cu2O, XRD, SEM, EDS analysis

Procedia PDF Downloads 418
19300 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin

Authors: Osama K. Abou-Zied, Saba A. Sulaiman

Abstract:

We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.

Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption

Procedia PDF Downloads 332
19299 Use of Simultaneous Electron Backscatter Diffraction and Energy Dispersive X-Ray Spectroscopy Techniques to Characterize High-Temperature Oxides Formed on Nickel-Based Superalloys Exposed to Super-Critical Water Environment

Authors: Mohsen Sanayei, Jerzy Szpunar, Sami Penttilä

Abstract:

Exposure of Nickel-based superalloys to high temperature and harsh environment such as Super-Critical Water (SCW) environment leads to the formation of oxide scales composed of multiple and complex phases that are difficult to differentiate with conventional analysis techniques. In this study, we used simultaneous Electron Backscatter Diffraction (EBSD) and Energy Dispersive X-ray Spectroscopy (EDS) to analyze the complex oxide scales formed on several Nickel-based Superalloys exposed to high temperature SCW. Multi-layered structures of Iron, Nickel, Chromium and Molybdenum oxides and spinels were clearly identified using the simultaneous EBSD-EDS analysis technique. Furthermore, the orientation relationship between the oxide scales and the substrate has been investigated.

Keywords: electron backscatter diffraction, energy dispersive x-ray spectroscopy, superalloy, super-critical water

Procedia PDF Downloads 316
19298 Lung Function, Urinary Heavy Metals And ITS Other Influencing Factors Among Community In Klang Valley

Authors: Ammar Amsyar Abdul Haddi, Mohd Hasni Jaafar

Abstract:

Heavy metals are elements naturally presented in the environment that can cause adverse effect to health. But not much literature was found on effects toward lung function, where impairment of lung function may lead to various lung diseases. The objective of the study is to explore the lung function impairment, urinary heavy metal level, and its associated factors among the community in Klang valley, Malaysia. Sampling was done in Kuala Lumpur suburb public and housing areas during community events throughout March 2019 till October 2019. respondents who gave the consent were given a questionnaire to answer and was proceeded with a lung function test. Urine samples were obtained at the end of the session and sent for Inductively coupled plasma mass spectrometry (ICP-MS) analysis for heavy metal cadmium (Cd) and lead (Pb) concentration. A total of 200 samples were analysed, and of all, 52% of respondents were male, Age ranging from 18 years old to 74 years old with a mean age of 38.44. Urinary samples show that 12% of the respondent (n=22) has Cd level above than average, and 1.5 % of the respondent (n=3) has urinary Pb at an above normal level. Bivariate analysis show that there was a positive correlation between urinary Cd and urinary Pb (r= 0.309; p<0.001). Furthermore, there was a negative correlation between urinary Cd level and full vital capacity (FVC) (r=-0.202, p=0.004), Force expiratory volume at 1 second (FEV1) (r = -0.225, p=0.001), and also with Force expiratory flow between 25-75% FVC (FEF25%-75%) (r= -0.187, p=0.008). however, urinary Pb did not show any association with FVC, FEV1, FEV1/FVC, or FEF25%-75%. Multiple linear regression analysis shows that urinary Cd remained significant and negatively affect FVC% (p=0.025) and FEV1% (p=0.004) achieved from the predicted value. On top of that, other factors such as education level (p=0.013) and duration of smoking(p=0.003) may influencing both urinary Cd and performance in lung function as well, suggesting Cd as a potential mediating factor between smoking and impairment of lung function. however, there was no interaction detected between heavy metal or other influencing factor in this study. In short, there is a negative linear relationship detected between urinary Cd and lung function, and urinary Cd is likely to affects lung function in a restrictive pattern. Since smoking is also an influencing factor for urinary Cd and lung function impairment, it is highly suggested that smokers should be screened for lung function and urinary Cd level in the future for early disease prevention.

Keywords: lung function, heavy metals, community

Procedia PDF Downloads 155
19297 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube

Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi

Abstract:

Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.

Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators

Procedia PDF Downloads 124
19296 The Use of the Matlab Software as the Best Way to Recognize Penumbra Region in Radiotherapy

Authors: Alireza Shayegan, Morteza Amirabadi

Abstract:

The y tool was developed to quantitatively compare dose distributions, either measured or calculated. Before computing ɣ, the dose and distance scales of the two distributions, referred to as evaluated and reference, are re-normalized by dose and distance criteria, respectively. The re-normalization allows the dose distribution comparison to be conducted simultaneously along dose and distance axes. Several two-dimensional images were acquired using a Scanning Liquid Ionization Chamber EPID and Extended Dose Range (EDR2) films for regular and irregular radiation fields. The raw images were then converted into two-dimensional dose maps. Transitional and rotational manipulations were performed for images using Matlab software. As evaluated dose distribution maps, they were then compared with the corresponding original dose maps as the reference dose maps.

Keywords: energetic electron, gamma function, penumbra, Matlab software

Procedia PDF Downloads 300
19295 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 73
19294 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter

Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar

Abstract:

Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).

Keywords: filter media, hydraulic loading rate, residence time distribution, tracer

Procedia PDF Downloads 277
19293 Dust Ion Acoustic Shock Waves in Dissipative Superthermal Plasmas

Authors: Hamid Reza Pakzad

Abstract:

In this paper, the properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma, whose constituents are inertial ions, superthermal electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The dissipation is taken into account the kinematic viscosity among the plasma constituents. It is shown that the basic features of DIA shock waves are significantly modified by the effects of electron superthermality and ion kinematic viscosity.

Keywords: reductive perturbation method, dust ion acoustic shock wave, superthermal electron, dissipative plasmas

Procedia PDF Downloads 313
19292 Parallel Evaluation of Sommerfeld Integrals for Multilayer Dyadic Green's Function

Authors: Duygu Kan, Mehmet Cayoren

Abstract:

Sommerfeld-integrals (SIs) are commonly encountered in electromagnetics problems involving analysis of antennas and scatterers embedded in planar multilayered media. Generally speaking, the analytical solution of SIs is unavailable, and it is well known that numerical evaluation of SIs is very time consuming and computationally expensive due to the highly oscillating and slowly decaying nature of the integrands. Therefore, fast computation of SIs has a paramount importance. In this paper, a parallel code has been developed to speed up the computation of SI in the framework of calculation of dyadic Green’s function in multilayered media. OpenMP shared memory approach is used to parallelize the SI algorithm and resulted in significant time savings. Moreover accelerating the computation of dyadic Green’s function is discussed based on the parallel SI algorithm developed.

Keywords: Sommerfeld-integrals, multilayer dyadic Green’s function, OpenMP, shared memory parallel programming

Procedia PDF Downloads 247
19291 Answering the Call for Empirical Evidence: Burnout, Context and Remote Work

Authors: Clif P. Lewis, Ise-Lu Möller

Abstract:

The COVID-19 pandemic has had a profound impact on employment. The ‘future of work’ is now the ‘present of work’. Changes in the social context within which organisations are embedded necessitated drastic changes in how we work. Through the leveraging of technology and changes in mindset, we have seen exciting innovations in the world of work. This global shift in the context of employment offers a unique opportunity to examine a key unresolved issue in the study of Burnout, namely contextual antecedents. This study answers the call for deeper empirical insight into the contexts within which Burnout occur. We explore the emergence of Burnout within a remote work context by using survey data that incorporates the latest global work trends into the Areas of Worklife framework.

Keywords: burnout, remote work, pandemic, wellness

Procedia PDF Downloads 180
19290 Wear Diagnosis of Diesel Engine Helical Gear

Authors: Surjit Angra, Gajanan Rane, Vinod Kumar, Sushma Rani

Abstract:

This paper presents metallurgical investigation of failed helical gear of diesel engine gear box used in a car. The failure had occurred near the bottomland of the tooth spacing. The failed surface was studied under Scanning Electron Microscope (SEM) and also visually investigated. The images produced through SEM at various magnifications were studied. Detailed metallurgical study indicates that failure was due to foreign material inclusion which is a casting defect. Further study also revealed pitting, spalling and inter-granular fracture as the causes of gear failure.

Keywords: helical gear, scanning electron microscope, casting defect, pitting

Procedia PDF Downloads 448
19289 Prevalence of Occupational Asthma Diagnosed by Specific Challenge Test in 5 Different Working Environments in Thailand

Authors: Sawang Saenghirunvattana, Chao Saenghirunvattana, Maria Christina Gonzales, Wilai Srimuk, Chitchamai Siangpro, Kritsana Sutthisri

Abstract:

Introduction: Thailand is one of the fastest growing countries in Asia. It has emerged from agricultural to industrialized economy. Work places have shifted from farms to factories, offices and streets were employees are exposed to certain chemicals and pollutants causing occupational diseases particularly asthma. Work-related diseases are major concern and many studies have been published to demonstrate certain professions and their exposures that elevate the risk of asthma. Workers who exhibit coughing, wheezing and difficulty of breathing are brought to a health care setting where Pulmonary Function Test (PFT) is performed and based from results, they are then diagnosed of asthma. These patients, known to have occupational asthma eventually get well when removed from the exposure of the environment. Our study, focused on performing PFT or specific challenge test in diagnosing workers of occupational asthma with them executing the test within their workplace, maintaining the environment and their daily exposure to certain levels of chemicals and pollutants. This has provided us with an understanding and reliable diagnosis of occupational asthma. Objective: To identify the prevalence of Thai workers who develop asthma caused by exposure to pollutants and chemicals from their working environment by conducting interview and performing PFT or specific challenge test in their work places. Materials and Methods: This study was performed from January-March 2015 in Bangkok, Thailand. The percentage of abnormal symptoms of 940 workers in 5 different areas (factories of plastic, fertilizer, animal food, office and streets) were collected through a questionnaire. The demographic information, occupational history, and the state of health were determined using a questionnaire and checklists. PFT was executed in their work places and results were measured and evaluated. Results: Pulmonary Function test was performed by 940 participants. The specific challenge test was done in factories of plastic, fertilizer, animal food, office environment and on the streets of Thailand. Of the 100 participants working in the plastic industry, 65% complained of having respiratory symptoms. None of them had an abnormal PFT. From the participants who worked with fertilizers and are exposed to sulfur dioxide, out of 200 participants, 20% complained of having symptoms and 8% had abnormal PFT. The 300 subjects working with animal food reported that 45% complained of respiratory symptoms and 15% had abnormal PFT results. From the office environment where there is indoor pollution, Out of 140 subjects, 7% had symptoms and 4% had abnormal PFT. The 200 workers exposed to traffic pollution, 24% reported respiratory symptoms and 12% had abnormal PFT. Conclusion: We were able to identify and diagnose participants of occupational asthma through their abnormal lung function test done at their work places. The chemical agents and exposures were determined therefore effective management of workers with occupational asthma were advised to avoid further exposure for better chances of recovery. Further studies identifying the risk factors and causative agents of asthma in workplaces should be developed to encourage interventional strategies and programs that will prevent occupation related diseases particularly asthma.

Keywords: occupational asthma, pulmonary function test, specific challenge test, Thailand

Procedia PDF Downloads 304