Search results for: early warning systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12724

Search results for: early warning systems

12424 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks

Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem

Abstract:

Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.

Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule

Procedia PDF Downloads 100
12423 Remote Patient Monitoring for Covid-19

Authors: Launcelot McGrath

Abstract:

The Coronavirus disease 2019 (COVID-19) has spread rapidly around the world, resulting in high mortality rates and very large numbers of people requiring medical treatment in ICU. Management of patient hospitalisation is a critical aspect to control this disease and reduce chaos in the healthcare systems. Remote monitoring provides a solution to protect vulnerable and elderly high-risk patients. Continuous remote monitoring of oxygen saturation, respiratory rate, heart rate, and temperature, etc., provides medical systems with up-to-the-minute information about their patients' statuses. Remote monitoring also limits the spread of infection by reducing hospital overcrowding. This paper examines the potential of remote monitoring for Covid-19 to assist in the rapid identification of patients at risk, facilitate the detection of patient deterioration, and enable early interventions.

Keywords: remote monitoring, patient care, oxygen saturation, Covid-19, hospital management

Procedia PDF Downloads 108
12422 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 98
12421 Levels of Family Empowerment and Parenting Skills of Parents with Children with Developmental Disabilities Who Are Users of Early Intervention Services

Authors: S. Bagur, S. Verger, B. Mut

Abstract:

Early childhood intervention (ECI) is understood as the set of interventions aimed at the child population with developmental disorders or disabilities from 0 to 6 years of age, the family, and the environment. Under the principles of family-centred practices, the members of the family nucleus are direct agents of intervention. Thus, the multidisciplinary team of professionals should work to improve family empowerment and the level of parenting skills. The aim of the present study is to analyse descriptively and differentially the level of parenting skills and family empowerment of parents using ECI services during the foster care phase. There were 135 families participating in the study. Three questionnaires were completed. The results show that the employment situation, the age of the child receiving an intervention, and the number of children in the family nucleus or the professional carrying out the intervention are variables that have a differential impact on different items of empowerment and parenting skills. The results are discussed and future lines of research are proposed, with the understanding that the initial analysis of the variables of empowerment and parenting skills may be predictors for the improvement of child development and family well-being. In addition, it is proposed to identify and analyse professional training in order to be able to adapt early care practices without depending on the discipline of the professional of reference.

Keywords: developmental disabilities, early childhood intervention, family empowerment, parenting skills

Procedia PDF Downloads 111
12420 Parents, Carers and Young Persons’ Views Regarding Nursing ‘Workarounds’ Within Clinical Electronic Patient Record Systems

Authors: Patrick Nurse, Professor Neil Sebire, Polly Livermore

Abstract:

The use of digital systems in healthcare is now highly prevalent. With further advancement of technology, these systems will become increasingly utilised within the healthcare sector. Therefore understanding how clinicians (for example, doctors, nurses) interact with technology and digital systems is critical to making care safer. Seven members from the Parent/Carers’ Research Advisory Group and the Young-Persons’ Research Group at a healthcare Trust in London and three staff members contributed to an engagement workshop to assess the impact of digital systems on the practice of nurses. The group also advised on the viability of a research study to investigate this further. A wide range of issues within digital system implementation in healthcare were raised, such as ‘workarounds’, system’s training, and upkeep and regulation of usage, which all emerged as early themes during the discussion. Further discussion focused on the subject of escalation of issues, ‘workarounds’, and problem solving. While challenging to implement, digital systems are hugely beneficial to healthcare providers. The workshop indicated that there is scope for investigation of the prevalence, nature, and escalation of ‘workarounds’, this was of key interest to the advisory group. An interesting concern of the group was their worry from a patient and parental perspective regarding how nurses might feel when needing to complete a ‘workaround’ during a busy shift. This is especially relevant if the reasons to complete the ‘workaround’ were outside the nurse’s control, driven by clinical need and urgency of care. This showed the level of insight that those using healthcare services have into the reality of workflows of those providing care. Additionally, it reflects the desire for patients and families to understand more about the administration and methodology of their care. Future study should be dedicated to understanding why nurses deploy ‘workarounds’, as well as their perspective and experience of them and subsequent escalation through leadership hierarchies

Keywords: patient engagement/involvement, workarounds, medication-administration, digital systems

Procedia PDF Downloads 90
12419 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome

Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya

Abstract:

Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically, significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.

Keywords: mammography, early detection, genetic screening, breast cancer

Procedia PDF Downloads 562
12418 Early-Onset Asthma and Early Smoking Increase Risk of Bipolar Disorder in Adolescents and Young Adults

Authors: Meng-Huan Wu, Wei-Er Wang, Tsu-Nai Wang, Wei-Jian Hsu, Vincent Chin-Hung Chen

Abstract:

Objective: Studies have reported a strong link between asthma and bipolar disorder. We conducted a 17-year community-based large cohort study to examine the relationship between asthma, early smoking initiation, and bipolar disorder during adolescence and early adulthood. Methods: A total of 162,766 participants aged 11–16 years were categorized into asthma and non-asthma groups at baseline and compared within the observation period. Covariates during late childhood or adolescence included parental education, cigarette smoking by family members of participants, and participant’s gender, age, alcohol consumption, smoking, and exercise habits. Data for urbanicity, prednisone use, allergic comorbidity, and Charlson comorbidity index were acquired from the National Health Insurance Research Database. The Cox proportional-hazards model was used to evaluate the association between asthma and bipolar disorder. Results: Our findings revealed that asthma increased the risk of bipolar disorder after adjustment for key confounders in the Cox proportional hazard regression model (adjusted HR: 1.31, 95% CI: 1.12-1.53). Hospitalizations or visits to the emergency department for asthma exhibited a dose–response effect on bipolar disorder (adjusted HR: 1.59, 95% CI: 1.22-2.06). Patients with asthma with onset before 20 years of age who smoked during late childhood or adolescence had the greatest risk for bipolar disorder (adjusted HR: 3.10, 95% CI: 1.29-7.44). Conclusions: Patients newly diagnosed with asthma had a 1.3 times higher risk of developing bipolar disorder. Smoking during late childhood or adolescence increases the risk of developing bipolar disorder in patients with asthma.

Keywords: adolescence, asthma, smoking, bipolar disorder, early adulthood

Procedia PDF Downloads 337
12417 Intelligent Prediction of Breast Cancer Severity

Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman

Abstract:

Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.

Keywords: breast cancer, intelligent classification, neural networks, mammography

Procedia PDF Downloads 487
12416 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages

Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong

Abstract:

Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.

Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale

Procedia PDF Downloads 64
12415 Bioengineering System for Prediction and Early Prenosological Diagnostics of Stomach Diseases Based on Energy Characteristics of Bioactive Points with Fuzzy Logic

Authors: Mahdi Alshamasin, Riad Al-Kasasbeh, Nikolay Korenevskiy

Abstract:

We apply mathematical models for the interaction of the internal and biologically active points of meridian structures. Amongst the diseases for which reflex diagnostics are effective are those of the stomach disease. It is shown that use of fuzzy logic decision-making yields good results for the prediction and early diagnosis of gastrointestinal tract diseases, depending on the reaction energy of biologically active points (acupuncture points). It is shown that good results for the prediction and early diagnosis of diseases from the reaction energy of biologically active points (acupuncture points) are obtained by using fuzzy logic decision-making.

Keywords: acupuncture points, fuzzy logic, diagnostically important points (DIP), confidence factors, membership functions, stomach diseases

Procedia PDF Downloads 467
12414 A Study of Small Business Failure: Impact of Leadership and the Leadership Process

Authors: Theresa Robinson Harris

Abstract:

Small businesses are important to the United States economy, yet the majority struggle to remain relevant and close before their fifth year. This qualitative study explored small business failure by comparing the experiences of small-business owners to understand their involvement with leadership during the early stages of the business, and the impact of this on the firms’ ability to survive. Participants’ experiences from two groups were compared to glean an understanding of the leadership process, how leadership differs between the groups, and to see what themes or constructs emerged that could help to explain the high failure rate. Leadership was perceived to be important when envisioning a path for the future and when providing a platform for employees to succeed. Those who embraced leadership as a skillset were more likely to get through the challenges of the early developmental years while those ignoring the importance of leadership were more likely to close prematurely. These findings suggest a disconnect with regards to the understanding, role, and benefits of leadership in small organizations, particularly young organizations in the early stages of development.

Keywords: leadership, small business, entrepreneurship, success, failure

Procedia PDF Downloads 252
12413 Discussion on Big Data and One of Its Early Training Application

Authors: Fulya Gokalp Yavuz, Mark Daniel Ward

Abstract:

This study focuses on a contemporary and inevitable topic of Data Science and its exemplary application for early career building: Big Data and Leaving Learning Community (LLC). ‘Academia’ and ‘Industry’ have a common sense on the importance of Big Data. However, both of them are in a threat of missing the training on this interdisciplinary area. Some traditional teaching doctrines are far away being effective on Data Science. Practitioners needs some intuition and real-life examples how to apply new methods to data in size of terabytes. We simply explain the scope of Data Science training and exemplified its early stage application with LLC, which is a National Science Foundation (NSF) founded project under the supervision of Prof. Ward since 2014. Essentially, we aim to give some intuition for professors, researchers and practitioners to combine data science tools for comprehensive real-life examples with the guides of mentees’ feedback. As a result of discussing mentoring methods and computational challenges of Big Data, we intend to underline its potential with some more realization.

Keywords: Big Data, computation, mentoring, training

Procedia PDF Downloads 362
12412 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures

Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski

Abstract:

Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.

Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems

Procedia PDF Downloads 348
12411 The Role of Bone Marrow Fatty Acids in the Early Stage of Post-Menopausal Osteoporosis

Authors: Sizhu Wang, Cuisong Tang, Lin Zhang, Guangyu Tang

Abstract:

Objective: We aimed to detect the composition of bone marrow fatty acids early after ovariectomized (OVX) surgery and explore the potential mechanism. Methods: Thirty-two female Sprague-Dawley (SD) rats (12 weeks) were randomly divided into OVX group and Sham group (N=16/group), and received ovariectomy or sham surgery respectively. After 3 and 28 days, eight rats in each group were sacrificed to detect the composition of bone marrow fatty acids by gas chromatography–mass spectrometry (GC–MS) and evaluate the trabecular bone microarchitecture by micro-CT. Significant different fatty acids in the early stage of post-menopausal osteoporosis were selected by OPLS-DA and t test. Then selected fatty acids were further studied in the process of osteogenic differentiation through RT-PCR and Alizarin Red S staining. Results: An apparent sample clustering and group separation were observed between OVX group and sham group three days after surgery, which suggested the role of bone marrow fatty acids in the early stage of postmenopausal osteoporosis. Specifically, myristate, palmitoleate and arachidonate were found to play an important role in classification between OVX group and sham group. We further investigated the effect of palmitoleate and arachidonate on osteogenic differentiation and found that palmitoleate promoted the osteogenic differentiation of MC3T3-E1 cells while arachidonate inhibited this process. Conclusion: Profound bone marrow fatty acids changes have taken place in the early stage of post-menopausal osteoporosis. Bone marrow fatty acids may begin to affect osteogenic differentiation shortly after deficiency of estrogen.

Keywords: bone marrow fatty acids, GC-MS, osteoblast, osteoporosis, post-menopausal

Procedia PDF Downloads 106
12410 Early Formation of Adipocere in Subtropical Climate

Authors: Asit K. Sikary, O. P. Murty

Abstract:

Adipocere formation is a modification of the process of putrefaction. It consists mainly of saturated fatty acids, formed by the post-mortem hydrolysis and hydrogenation of body fats with the help of bacterial enzymes in the presence of warmth, moisture and anaerobic bacteria. In temperate climate, it takes weeks to develop while in India it starts to begin within 4-5 days. In this study, we have collected cases with adipocere formation, which were from the South Delhi region (average room temperature 27-390C) and autopsied at our centre. Details of the circumstances of the death, cause and time of death, surrounding environment and demographic profile of the deceased were taken into account. Total 16 cases were included in this study. Adipocere formation was predominantly present over cheeks, shoulder, breast, flanks, buttocks, and thighs. Out of 16, 11 cases were found in a dry atmosphere, 5 cases were brought from the water. There were 5 cases in which adipocere formation was seen in less than 2 days, and among them, in 1 case, as early as one day. This study showed that adipocere formation can be seen as early as 1 day in a hot and humid environment.

Keywords: adipocere, drowning, hanging, humid environment, strangulation, subtropical climate

Procedia PDF Downloads 422
12409 Spatial Organization of Organelles in Living Cells: Insights from Mathematical Modelling

Authors: Congping Lin

Abstract:

Intracellular transport in fungi has a number of important roles in, e.g., filamentous fungal growth and cellular metabolism. Two basic mechanisms for intracellular transport are motor-driven trafficking along microtubules (MTs) and diffusion. Mathematical modelling has been actively developed to understand such intracellular transport and provide unique insight into cellular complexity. Based on live-cell imaging data in Ustilago hyphal cells, probabilistic models have been developed to study mechanism underlying spatial organization of molecular motors and organelles. In particular, anther mechanism - stochastic motility of dynein motors along MTs has been found to contribute to half of its accumulation at hyphal tip in order to support early endosome (EE) recycling. The EE trafficking not only facilitates the directed motion of peroxisomes but also enhances their diffusive motion. Considering the importance of spatial organization of early endosomes in supporting peroxisome movement, computational and experimental approaches have been combined to a whole-cell level. Results from this interdisciplinary study promise insights into requirements for other membrane trafficking systems (e.g., in neurons), but also may inform future 'synthetic biology' studies.

Keywords: intracellular transport, stochastic process, molecular motors, spatial organization

Procedia PDF Downloads 133
12408 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 93
12407 Use of Locomotor Activity of Rainbow Trout Juveniles in Identifying Sublethal Concentrations of Landfill Leachate

Authors: Tomas Makaras, Gintaras Svecevičius

Abstract:

Landfill waste is a common problem as it has an economic and environmental impact even if it is closed. Landfill waste contains a high density of various persistent compounds such as heavy metals, organic and inorganic materials. As persistent compounds are slowly-degradable or even non-degradable in the environment, they often produce sublethal or even lethal effects on aquatic organisms. The aims of the present study were to estimate sublethal effects of the Kairiai landfill (WGS: 55°55‘46.74“, 23°23‘28.4“) leachate on the locomotor activity of rainbow trout Oncorhynchus mykiss juveniles using the original system package developed in our laboratory for automated monitoring, recording and analysis of aquatic organisms’ activity, and to determine patterns of fish behavioral response to sublethal effects of leachate. Four different concentrations of leachate were chosen: 0.125; 0.25; 0.5 and 1.0 mL/L (0.0025; 0.005; 0.01 and 0.002 as part of 96-hour LC50, respectively). Locomotor activity was measured after 5, 10 and 30 minutes of exposure during 1-minute test-periods of each fish (7 fish per treatment). The threshold-effect-concentration amounted to 0.18 mL/L (0.0036 parts of 96-hour LC50). This concentration was found to be even 2.8-fold lower than the concentration generally assumed to be “safe” for fish. At higher concentrations, the landfill leachate solution elicited behavioral response of test fish to sublethal levels of pollutants. The ability of the rainbow trout to detect and avoid contaminants occurred after 5 minutes of exposure. The intensity of locomotor activity reached a peak within 10 minutes, evidently decreasing after 30 minutes. This could be explained by the physiological and biochemical adaptation of fish to altered environmental conditions. It has been established that the locomotor activity of juvenile trout depends on leachate concentration and exposure duration. Modeling of these parameters showed that the activity of juveniles increased at higher leachate concentrations, but slightly decreased with the increasing exposure duration. Experiment results confirm that the behavior of rainbow trout juveniles is a sensitive and rapid biomarker that can be used in combination with the system for fish behavior monitoring, registration and analysis to determine sublethal concentrations of pollutants in ambient water. Further research should be focused on software improvement aimed to include more parameters of aquatic organisms’ behavior and to investigate the most rapid and appropriate behavioral responses in different species. In practice, this study could be the basis for the development and creation of biological early-warning systems (BEWS).

Keywords: fish behavior biomarker, landfill leachate, locomotor activity, rainbow trout juveniles, sublethal effects

Procedia PDF Downloads 271
12406 Early Melt Season Variability of Fast Ice Degradation Due to Small Arctic Riverine Heat Fluxes

Authors: Grace E. Santella, Shawn G. Gallaher, Joseph P. Smith

Abstract:

In order to determine the importance of small-system riverine heat flux on regional landfast sea ice breakup, our study explores the annual spring freshet of the Sagavanirktok River from 2014-2019. Seasonal heat cycling ultimately serves as the driving mechanism behind the freshet; however, as an emerging area of study, the extent to which inland thermodynamics influence coastal tundra geomorphology and connected landfast sea ice has not been extensively investigated in relation to small-scale Arctic river systems. The Sagavanirktok River is a small-to-midsized river system that flows south-to-north on the Alaskan North Slope from the Brooks mountain range to the Beaufort Sea at Prudhoe Bay. Seasonal warming in the spring rapidly melts snow and ice in a northwards progression from the Brooks Range and transitional tundra highlands towards the coast and when coupled with seasonal precipitation, results in a pulsed freshet that propagates through the Sagavanirktok River. The concentrated presence of newly exposed vegetation in the transitional tundra region due to spring melting results in higher absorption of solar radiation due to a lower albedo relative to snow-covered tundra and/or landfast sea ice. This results in spring flood runoff that advances over impermeable early-season permafrost soils with elevated temperatures relative to landfast sea ice and sub-ice flow. We examine the extent to which interannual temporal variability influences the onset and magnitude of river discharge by analyzing field measurements from the United States Geological Survey (USGS) river and meteorological observation sites. Rapid influx of heat to the Arctic Ocean via riverine systems results in a noticeable decay of landfast sea ice independent of ice breakup seaward of the shear zone. Utilizing MODIS imagery from NASA’s Terra satellite, interannual variability of river discharge is visualized, allowing for optical validation that the discharge flow is interacting with landfast sea ice. Thermal erosion experienced by sediment fast ice at the arrival of warm overflow preconditions the ice regime for rapid thawing. We investigate the extent to which interannual heat flux from the Sagavanirktok River’s freshet significantly influences the onset of local landfast sea ice breakup. The early-season warming of atmospheric temperatures is evidenced by the presence of storms which introduce liquid, rather than frozen, precipitation into the system. The resultant decreased albedo of the transitional tundra supports the positive relationship between early-season precipitation events, inland thermodynamic cycling, and degradation of landfast sea ice. Early removal of landfast sea ice increases coastal erosion in these regions and has implications for coastline geomorphology which stress industrial, ecological, and humanitarian infrastructure.

Keywords: Albedo, freshet, landfast sea ice, riverine heat flux, seasonal heat cycling

Procedia PDF Downloads 129
12405 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 63
12404 Flood Mapping and Inoudation on Weira River Watershed (in the Case of Hadiya Zone, Shashogo Woreda)

Authors: Alilu Getahun Sulito

Abstract:

Exceptional floods are now prevalent in many places in Ethiopia, resulting in a large number of human deaths and property destruction. Lake Boyo watershed, in particular, had also traditionally been vulnerable to flash floods throughout the Boyo watershed. The goal of this research is to create flood and inundation maps for the Boyo Catchment. The integration of Geographic information system(GIS) technology and the hydraulic model (HEC-RAS) were utilized as methods to attain the objective. The peak discharge was determined using Fuller empirical methodology for intervals of 5, 10, 15, and 25 years, and the results were 103.2 m3/s, 158 m3/s, 222 m3/s, and 252 m3/s, respectively. River geometry, boundary conditions, manning's n value of varying land cover, and peak discharge at various return periods were all entered into HEC-RAS, and then an unsteady flow study was performed. The results of the unsteady flow study demonstrate that the water surface elevation in the longitudinal profile rises as the different periods increase. The flood inundation charts clearly show that regions on the right and left sides of the river with the greatest flood coverage were 15.418 km2 and 5.29 km2, respectively, flooded by 10,20,30, and 50 years. High water depths typically occur along the main channel and progressively spread to the floodplains. The latest study also found that flood-prone areas were disproportionately affected on the river's right bank. As a result, combining GIS with hydraulic modelling to create a flood inundation map is a viable solution. The findings of this study can be used to care again for the right bank of a Boyo River catchment near the Boyo Lake kebeles, according to the conclusion. Furthermore, it is critical to promote an early warning system in the kebeles so that people can be evacuated before a flood calamity happens. Keywords: Flood, Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation Mapping

Keywords: Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation Mapping

Procedia PDF Downloads 47
12403 The Effect of Photovoltaic Integrated Shading Devices on the Energy Performance of Apartment Buildings in a Mediterranean Climate

Authors: Jenan Abu Qadourah

Abstract:

With the depletion of traditional fossil resources and the growing human population, it is now more important than ever to reduce our energy usage and harmful emissions. In the Mediterranean region, the intense solar radiation contributes to summertime overheating, which raises energy costs and building carbon footprints, alternatively making it suitable for the installation of solar energy systems. In urban settings, where multi-story structures predominate and roof space is limited, photovoltaic integrated shading devices (PVSD) are a clean solution for building designers. However, incorporating photovoltaic (PV) systems into a building's envelope is a complex procedure that, if not executed correctly, might result in the PV system failing. As a result, potential PVSD design solutions must be assessed based on their overall energy performance from the project's early design stage. Therefore, this paper aims to investigate and compare the possible impact of various PVSDs on the energy performance of new apartments in the Mediterranean region, with a focus on Amman, Jordan. To achieve the research aim, computer simulations were performed to assess and compare the energy performance of different PVSD configurations. Furthermore, an energy index was developed by taking into account all energy aspects, including the building's primary energy demand and the PVSD systems' net energy production. According to the findings, the PVSD system can meet 12% to 43% of the apartment building's electricity needs. By highlighting the potential interest in PVSD systems, this study aids the building designer in producing more energy-efficient buildings and encourages building owners to install PV systems on the façade of their buildings.

Keywords: photovoltaic integrated shading device, solar energy, architecture, energy performance, simulation, overall energy index, Jordan

Procedia PDF Downloads 84
12402 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 66
12401 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 282
12400 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 73
12399 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 267
12398 The Relationship between Spindle Sound and Tool Performance in Turning

Authors: N. Seemuang, T. McLeay, T. Slatter

Abstract:

Worn tools have a direct effect on the surface finish and part accuracy. Tool condition monitoring systems have been developed over a long period and used to avoid a loss of productivity resulting from using a worn tool. However, the majority of tool monitoring research has applied expensive sensing systems not suitable for production. In this work, the cutting sound in turning machine was studied using microphone. Machining trials using seven cutting conditions were conducted until the observable flank wear width (FWW) on the main cutting edge exceeded 0.4 mm. The cutting inserts were removed from the tool holder and the flank wear width was measured optically. A microphone with built-in preamplifier was used to record the machining sound of EN24 steel being face turned by a CNC lathe in a wet cutting condition using constant surface speed control. The sound was sampled at 50 kS/s and all sound signals recorded from microphone were transformed into the frequency domain by FFT in order to establish the frequency content in the audio signature that could be then used for tool condition monitoring. The extracted feature from audio signal was compared to the flank wear progression on the cutting inserts. The spectrogram reveals a promising feature, named as ‘spindle noise’, which emits from the main spindle motor of turning machine. The spindle noise frequency was detected at 5.86 kHz of regardless of cutting conditions used on this particular CNC lathe. Varying cutting speed and feed rate have an influence on the magnitude of power spectrum of spindle noise. The magnitude of spindle noise frequency alters in conjunction with the tool wear progression. The magnitude increases significantly in the transition state between steady-state wear and severe wear. This could be used as a warning signal to prepare for tool replacement or adapt cutting parameters to extend tool life.

Keywords: tool wear, flank wear, condition monitoring, spindle noise

Procedia PDF Downloads 338
12397 Commutativity of Fractional Order Linear Time-Varying Systems

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of MATLAB (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, analog control

Procedia PDF Downloads 114
12396 Linking Metabolism, Pluripotency and Epigenetic Changes during Early Differentiation of Embryonic Stem Cells

Authors: Arieh Moussaieff, Bénédicte Elena-Herrmann, Yaakov Nahmias, Daniel Aberdam

Abstract:

Differentiation of pluripotent stem cells is a slow process, marked by the gradual loss of pluripotency factors over days in culture. While the first few days of differentiation show minor changes in the cellular transcriptome, intracellular signaling pathways remain largely unknown. Recently, several groups demonstrated that the metabolism of pluripotent mouse and human cells is different from that of somatic cells, showing a marked increase in glycolysis previously identified in cancer as the Warburg effect. Here, we sought to identify the earliest metabolic changes induced at the first hours of differentiation. High-resolution NMR analysis identified 35 metabolites and a distinct, gradual transition in metabolism during early differentiation. Metabolic and transcriptional analyses showed the induction of glycolysis toward acetate and acetyl-coA in pluripotent cells, and an increase in cholesterol biosynthesis during early differentiation. Importantly, this metabolic pathway regulated differentiation of human and mouse embryonic stem cells. Acetate delayed differentiation preventing differentiation-induced histone de-acetylation in a dose-dependent manner. Glycolytic inhibitors upstream of acetate caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our data suggests that a rapid loss of glycolysis in early differentiation down-regulates acetate and acetyl-coA production, causing a loss of histone acetylation and concomitant loss of pluripotency. It demonstrate that pluripotent stem cells utilize a novel metabolism pathway to maintain pluripotency through acetate/acetyl-coA and highlights the important role metabolism plays in pluripotency and early differentiation of stem cells.

Keywords: pluripotency, metabolomics, epigenetics, acetyl-coA

Procedia PDF Downloads 470
12395 Preserving Heritage in the Face of Natural Disasters: Lessons from the Bam Experience in Iran

Authors: Mohammad Javad Seddighi, Avar Almukhtar

Abstract:

The occurrence of natural disasters, such as floods and earthquakes, can cause significant damage to heritage sites and surrounding areas. In Iran, the city of Bam was devastated by an earthquake in 2003, which had a major impact on the rivers and watercourses around the city. This study aims to investigate the environmental design techniques and sustainable hazard mitigation strategies that can be employed to preserve heritage sites in the face of natural disasters, using the Bam experience as a case study. The research employs a mixed-methods approach, combining both qualitative and quantitative data collection and analysis methods. The study begins with a comprehensive literature review of recent publications on environmental design techniques and sustainable hazard mitigation strategies in heritage conservation. This is followed by a field study of the rivers and watercourses around Bam, including the Adoori River (Talangoo) and other watercourses, to assess the current conditions and identify potential hazards. The data collected from the field study is analysed using statistical methods and GIS mapping techniques. The findings of this study reveal the importance of sustainable hazard mitigation strategies and environmental design techniques in preserving heritage sites during natural disasters. The study suggests that these techniques can be used to prevent the outbreak of another natural disaster in Bam and the surrounding areas. Specifically, the study recommends the establishment of a comprehensive early warning system, the creation of flood-resistant landscapes, and the use of eco-friendly building materials in the reconstruction of heritage sites. These findings contribute to the current knowledge of sustainable hazard mitigation and environmental design in heritage conservation.

Keywords: natural disasters, heritage conservation, sustainable hazard mitigation, environmental design, landscape architecture, flood management, disaster resilience

Procedia PDF Downloads 88