Search results for: documents clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1522

Search results for: documents clustering

1222 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data

Authors: Jaehyung An, Sungjoo Lee

Abstract:

Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.

Keywords: NLP, patent analysis, SAO, semantic-analysis

Procedia PDF Downloads 262
1221 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering

Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher

Abstract:

Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.

Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing

Procedia PDF Downloads 169
1220 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 98
1219 The Significance of Childhood in Shaping Family Microsystems from the Perspective of Biographical Learning: Narratives of Adults

Authors: Kornelia Kordiak

Abstract:

The research is based on a biographical approach and serves as a foundation for understanding individual human destinies through the analysis of the context of life experiences. It focuses on the significance of childhood in shaping family micro-worlds from the perspective of biographical learning. In this case, the family micro-world is interpreted as a complex of beliefs and judgments about elements of the ‘total universe’ based on the individual's experiences. The main aim of the research is to understand the importance of childhood in shaping family micro-worlds from the perspective of reflection on biographical learning. Additionally, it contributes to a deeper understanding of the familial experiences of the studied individuals who form these family micro-worlds and the course of the biographical learning process in the subjects. Biographical research aligns with an interpretative paradigm, where individuals are treated as active interpreters of the world, giving meaning to their experiences and actions based on their own values and beliefs. The research methods used in the project—narrative interview method and analysis of personal documents—enable obtaining a multidimensional perspective on the phenomenon under study. Narrative interviews serve as the main data collection method, allowing researchers to delve into various life contexts of individuals. Analysis of these narratives identifies key moments and life patterns, as well as discovers the significance of childhood in shaping family micro-worlds. Moreover, analysis of personal documents such as diaries or photographs enriches the understanding of the studied phenomena by providing additional contexts and perspectives. The research will be conducted in three phases: preparatory, main, and final. The anticipated schedule includes preparation of research tools, selection of research sample, conducting narrative interviews and analysis of personal documents, as well as analysis and interpretation of collected research material. The narrative interview method and document analysis will be utilized to capture various contexts and interpretations of childhood experiences and family relations. The research will contribute to a better understanding of family dynamics and individual developmental processes. It will allow for the identification and understanding of mechanisms of biographical learning and their significance in shaping identity and family relations. Analysis of adult narratives will enable the identification of factors determining patterns of behavior and attitudes in adult life, which may have significant implications for pedagogical practice.

Keywords: childhood, adulthood, biographical learning, narrative interview, analysis of personal documents, family micro-worlds

Procedia PDF Downloads 29
1218 Theoretical Literature Review on Lack of Cardiorespiratory Fitness and Its Effects on Children

Authors: E. Abdi

Abstract:

The purpose of this theoretical literature review is to study the relevant academic literature on lack of cardiorespiratory fitness and its effects on children. The total of thirty eight relevant documents were identified and considered for this review which nineteen of those were original research articles published in peer reviewed journals. The other nineteen articles were statistical documents. This document is structured to examine 4 effects in deficiency of cardiorespiratory fitness in school aged children: (a) obesity, (b) inadequate fitness level, (c) unhealthy life style, and (d) academics. The categories provide a theoretical framework for future studies. The results are broken down into 6 sections: (a) academics,( b) healthy life style, (c) low cost, (d) obesity, (e) Relative Age Effect (RAE), and (f) race/poverty. The study discusses that regular physical fitness assists children and adolescents to develop healthy physical activity behaviors which can be sustained throughout adult life. Conclusion suggests that advocacy for increasing physical activity and decreasing sedentary behaviors at school and home are necessary.

Keywords: cardiorespiratory, endurance, physical activity, physical fitness

Procedia PDF Downloads 429
1217 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis

Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone

Abstract:

Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.

Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning

Procedia PDF Downloads 17
1216 Tree-Based Inference for Regionalization: A Comparative Study of Global Topological Perturbation Methods

Authors: Orhun Aydin, Mark V. Janikas, Rodrigo Alves, Renato Assuncao

Abstract:

In this paper, a tree-based perturbation methodology for regionalization inference is presented. Regionalization is a constrained optimization problem that aims to create groups with similar attributes while satisfying spatial contiguity constraints. Similar to any constrained optimization problem, the spatial constraint may hinder convergence to some global minima, resulting in spatially contiguous members of a group with dissimilar attributes. This paper presents a general methodology for rigorously perturbing spatial constraints through the use of random spanning trees. The general framework presented can be used to quantify the effect of the spatial constraints in the overall regionalization result. We compare several types of stochastic spanning trees used in inference problems such as fuzzy regionalization and determining the number of regions. Performance of stochastic spanning trees is juxtaposed against the traditional permutation-based hypothesis testing frequently used in spatial statistics. Inference results for fuzzy regionalization and determining the number of regions is presented on the Local Area Personal Incomes for Texas Counties provided by the Bureau of Economic Analysis.

Keywords: regionalization, constrained clustering, probabilistic inference, fuzzy clustering

Procedia PDF Downloads 231
1215 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 472
1214 Agroecology Approaches Towards Sustainable Agriculture and Food System: Reviewing and Exploring Selected Policies and Strategic Documents through an Agroecological Lens

Authors: Dereje Regasa

Abstract:

The global food system is at a crossroads, which requires prompt action to minimize the effects of the crises. Agroecology is gaining prominence due to its contributions to sustainable food systems. To support efforts in mitigating the crises, the Food and Agriculture Organization (FAO) established alternative approaches for sustainable agri-food systems. Agroecological elements and principles were developed to guide and support measures that countries need to achieve the Sustainable Development Goals (SDGs). The SDGs require the systemic integration of practices for a smart intensification or adaptation of traditional or industrial agriculture. As one of the countries working towards SDGs, the agricultural practices in Ethiopia need to be guided by these agroecological elements and principles. Aiming at the identification of challenging aspects of a sustainable agri-food system and the characterization of an enabling environment for agroecology, as well as exploring to what extent the existing policies and strategies support the agroecological transition process, five policy and strategy documents were reviewed. These documents are the Rural Development Policy and Strategy, the Environment Policy, the Biodiversity Policy, and the Soil Strategy of the Ministry of Agriculture (MoA). Using the Agroecology Criteria Tool (ACT), the contents were reviewed, focusing on agroecological requirements and the inclusion of sustainable practices. ACT is designed to support a self-assessment of elements supporting agroecology. For each element, binary values were assigned based on the inclusion of the minimum requirements index and then validated through discussion with the document owners. The results showed that the documents were well below the requirements for an agroecological transition of the agri-food system. The Rural Development Policy and Strategy only suffice to 83% in Human and Social Value. It does not support the transition concerning the other elements. The Biodiversity Policy and Soil Strategy suffice regarding the inclusion of Co-creation and Sharing of knowledge (100%), while the remaining elements were not considered sufficiently. In contrast, the Environment Policy supports the transition with three elements accounting for 100%. These are Resilience, Recycling, and Human and Social Care. However, when the four documents were combined, elements such as Synergies, Diversity, Efficiency, Human and Social value, Responsible governance, and Co-creation and Sharing of knowledge were identified as fully supportive (100%). This showed that the policies and strategies complemented one another to a certain extent. However, the evaluation results call for improvements concerning elements like Culture and food traditions, Circular and solidarity economy, Resilience, Recycling, and Regulation and balance since the majority of the elements were not sufficiently observed. Consequently, guidance for the smart intensification of local practices is needed, as well as traditional knowledge enriched with advanced technologies. Ethiopian agricultural and environmental policies and strategies should provide sufficient support and guidance for the intensification of sustainable practices and should provide a framework for an agroecological transition towards a sustainable agri-food system.

Keywords: agroecology, diversity, recycling, sustainable food system, transition

Procedia PDF Downloads 88
1213 Rupture in the Paradigm of the International Policy of Illicit Drugs in the Field of Public Health and within the Framework of the World Health Organization, 2001 to 2016

Authors: Emy Nayana Pinto, Denise Bomtempo Birche De Carvalho

Abstract:

In the present study, the harmful use of illicit drugs is seen as a public health problem and as one of the expressions of the social question, since its consequences fall mainly on the poorer classes of the population. This perspective is a counterpoint to the dominant paradigm on illicit drug policy at the global level, whose centrality lies within the criminal justice arena. The 'drug problem' is internationally combated through fragmented approaches that focus its actions on banning and criminalizing users. In this sense, the research seeks to answer the following key questions: What are the influences of the prohibitionism in the recommendations of the United Nations (UN), the World Health Organization (WHO), and the formulation of drug policies in member countries? What are the actors that have been provoking the prospect of breaking with the prohibitionist paradigm? What is the WHO contribution to the rupture with the prohibitionist paradigm and the displacement of the drug problem in the field of public health? The general objective of this work is to seek evidence from the perspective of rupture with the prohibitionist paradigm in the field of drugs policies at the global and regional level, through analysis of documents of the World Health Organization (WHO), between the years of 2001 to 2016. The research was carried out in bibliographical and documentary sources. The bibliographic sources contributed to the approach with the object and the theoretical basis of the research. The documentary sources served to answer the research questions and evidence the existence of the perspective of change in drug policy. Twenty-two documents of the UN system were consulted, of which fifteen had the contribution of the World Health Organization (WHO). In addition to the documents that directly relate to the subject of the research, documents from various agencies, programs, and offices, such as the Joint United Nations Program on HIV/AIDS (UNAIDS) and the United Nations Office on Drugs and Crime (UNODC), which also has drugs as the central or transversal theme of its performance. The results showed that from the 2000s it was possible to find in the literature review and in the documentary analysis evidence of the critique of the prohibitionist paradigm parallel to the construction of a new perspective for drug policy at the global level and the displacement of criminal justice approaches for the scope of public health, with the adoption of alternative and pragmatic interventions based on human rights, scientific evidence and the reduction of social damages and health by the misuse of illicit drugs.

Keywords: illicit drugs, international organizations, prohibitionism, public health, World Health Organization

Procedia PDF Downloads 157
1212 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 143
1211 Contesting Discourses in Physical Education: A Critical Discourse Analysis of 20 Textbooks Used in Physical Education Teacher Education in Denmark

Authors: Annemari Munk Svendsen, Jesper Tinggaard Svendsen

Abstract:

The purpose of this study was to investigate different discourses about the body, movement and the main progression in and aim of Physical Education (PE) that are immersed within Physical Education Teacher Education (PETE) textbooks. The study was based on an examination of Danish PETE course documents listing 296 educational texts prescribed by PETE teachers for PETE programs in Denmark. It presents a more specific analysis of the 20 most used textbooks in Danish PETE. The study found three different discourses termed: (1) Developing the potential for sport, (2) Basis for creative sensing and (3) Being part of a cultural ballast. These discourses represent different ways of conceptualising and appraising PE as a school subject. The results also suggest that PETE textbooks are deeply involved in the (re)construction, struggling and ‘working’ of classical discourses in PE. Furthermore, that PETE textbooks comprise powerful documents that through their recurrent use of high modality are tending to be unequivocal in their suggestions for PE practices. On the basis of these findings, the presentation suggests that PETE teachers may use textbook analysis in the educational program as a tool for enhancing critical reflections upon central ideological dilemmas in PE.

Keywords: critical discourse analysis, critical reflection, physical education teacher education, textbooks

Procedia PDF Downloads 296
1210 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices

Authors: Ganesh B. Shinde, Vijaya B. Musande

Abstract:

Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.

Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices

Procedia PDF Downloads 319
1209 The Effect of Classroom Atmospherics on Second Language Learning

Authors: Sresha Yadav, Ishwar Kumar

Abstract:

Second language learning is an important area of research in the language and linguistic domains. Literature suggests that several factors impact second language learning, including age, motivation, objectives, teacher, instructional material, classroom interaction, intelligence and previous background, previous linguistic experience, other student characteristics. Previous researchers have also highlighted that classroom atmospherics has a significant impact on learning as well as on the performance of students. However, the impact of classroom atmospherics on second language learning is still not known in the existing literature. Therefore, the purpose of the present study is to explore whether classroom atmospherics has an impact on second language learning or not? And if it does, it would be worthwhile to explore the nature of such relationship. The present study aims to explore the impact of classroom atmospherics on second language learning by dwelling into the existing literature to explore factors which impact second language learning, classroom atmospherics which impact language learning and the metrics through which such learning impacts could be measured. Based on the findings of literature review, the researchers have adopted a clustering approach for categorization and positioning of various measures of second language learning. Based on the clustering approach, the researchers have approach for measuring the impact of classroom atmospherics on second language learning by drawing a student sample consisting of 80 respondents. The results of the study uncover various basic premises of second language learning, especially with regard to classroom atmospherics. The present study is important not only from the point of view of language learning but implications could be drawn with regard to the design of classroom atmospherics, environmental psychology, anthropometrics, etc as well.

Keywords: classroom atmospherics, cluster analysis, linguistics, second language learning

Procedia PDF Downloads 458
1208 Personalization of Context Information Retrieval Model via User Search Behaviours for Ranking Document Relevance

Authors: Kehinde Agbele, Longe Olumide, Daniel Ekong, Dele Seluwa, Akintoye Onamade

Abstract:

One major problem of most existing information retrieval systems (IRS) is that they provide even access and retrieval results to individual users specially based on the query terms user issued to the system. When using IRS, users often present search queries made of ad-hoc keywords. It is then up to IRS to obtain a precise representation of user’s information need, and the context of the information. In effect, the volume and range of the Internet documents is growing exponentially and consequently causes difficulties for a user to obtain information that precisely matches the user interest. Diverse combination techniques are used to achieve the specific goal. This is due, firstly, to the fact that users often do not present queries to IRS that optimally represent the information they want, and secondly, the measure of a document's relevance is highly subjective between diverse users. In this paper, we address the problem by investigating the optimization of IRS to individual information needs in order of relevance. The paper addressed the development of algorithms that optimize the ranking of documents retrieved from IRS. This paper addresses this problem with a two-fold approach in order to retrieve domain-specific documents. Firstly, the design of context of information. The context of a query determines retrieved information relevance using personalization and context-awareness. Thus, executing the same query in diverse contexts often leads to diverse result rankings based on the user preferences. Secondly, the relevant context aspects should be incorporated in a way that supports the knowledge domain representing users’ interests. In this paper, the use of evolutionary algorithms is incorporated to improve the effectiveness of IRS. A context-based information retrieval system that learns individual needs from user-provided relevance feedback is developed whose retrieval effectiveness is evaluated using precision and recall metrics. The results demonstrate how to use attributes from user interaction behavior to improve the IR effectiveness.

Keywords: context, document relevance, information retrieval, personalization, user search behaviors

Procedia PDF Downloads 464
1207 An Approach of Computer Modalities for Exploration of Hieroglyphics Substantial in an Investigation

Authors: Aditi Chauhan, Neethu S. Mohan

Abstract:

In the modern era, the advancement and digitalization in technology have taken place during an investigation of crime scene. The rapid enhancement and investigative techniques have changed the mean of identification of suspect. Identification of the person is one of the significant aspects, and personal authentication is the key of security and reliability in society. Since early 90 s, people have relied on comparing handwriting through its class and individual characteristics. But in today’s 21st century we need more reliable means to identify individual through handwriting. An approach employing computer modalities have lately proved itself auspicious enough in exploration of hieroglyphics substantial in investigating the case. Various software’s such as FISH, WRITEON, and PIKASO, CEDAR-FOX SYSTEM identify and verify the associated quantitative measure of the similarity between two samples. The research till date has been confined to identify the authorship of the concerned samples. But prospects associated with the use of computational modalities might help to identify disguised writing, forged handwriting or say altered or modified writing. Considering the applications of such modal, similar work is sure to attract plethora of research in immediate future. It has a promising role in national security too. Documents exchanged among terrorist can also be brought under the radar of surveillance, bringing forth their source of existence.

Keywords: documents, identity, computational system, suspect

Procedia PDF Downloads 177
1206 Moving towards a General Definition of Public Happiness: A Grounded Theory Approach to the Recent Academic Research on Well-Being

Authors: Cristina Sanchez-Sanchez

Abstract:

Although there seems to be a growing interest in the study of the citizen’s happiness as an alternative measure of a country’s progress to GDP, happiness as a public concern is still an ambiguous concept, hard to define. Moreover, different notions are used indiscriminately to talk about the same thing. This investigation aims to determine the conceptions of happiness, well-being and quality of life that originate from the indexes that different governments and public institutions around the world have created to study them. Through the Scoping Review method, this study identifies the recent academic research in this field (a total of 267 documents between 2006 and 2016) from some of the most popular social sciences databases around the world, Web of Science, Scopus, JSTOR, Sage, EBSCO, IBSS and Google Scholar, and in Spain, ISOC and Dialnet. These 267 documents referenced 53 different indexes and researches. The Grounded Theory method has been applied to a sample of 13 indexes in order to identify the main categories they use to determine these three concepts. The results show that these are multi-dimensional concepts and similar indicators are used indistinctly to measure happiness, well-being and quality of life.

Keywords: common good, grounded theory, happiness economics, happiness index, quality of life, scoping review, well-being

Procedia PDF Downloads 280
1205 A Comparative Study on the Effects of Different Clustering Layouts and Geometry of Urban Street Canyons on Urban Heat Island in Residential Neighborhoods of Kolkata

Authors: Shreya Banerjee, Roshmi Sen, Subrata Chattopadhyay

Abstract:

Urbanization during the second half of the last century has created many serious environment related issues leading to global warming and climate change. India is not an exception as the country is also facing the problems of global warming and urban heat islands (UHI) in all the major metropolises. This paper discusses the effect of different housing cluster layouts, site geometry, and geometry of urban street canyons on the urban heat island profile. The study is carried out using the three dimensional microclimatic computational fluid dynamics model ENVI-met version 3.1. Simulation models are done for a typical summer day of 21st June, 2015 in four different residential neighborhoods in the city of Kolkata which predominantly belongs to Warm-Humid Monsoon Climate. The results show the changing pattern of urban heat island profile with respect to different clustering layouts, geometry, and morphology of urban street canyons. The comparison between the four neighborhoods shows that different microclimatic variables are strongly dependant on the neighborhood layout pattern and geometry. The inferences obtained from this study can be indicative towards the formulation of neighborhood design by-laws that will attenuate the urban heat island effect.

Keywords: urban heat island, neighborhood morphology, site microclimate, ENVI-met, numerical analysis

Procedia PDF Downloads 368
1204 Examines the Proportionality between the Needs of Industry and Technical and Vocational Training of Male and Female Vocational Schools

Authors: Khalil Aryanfar, Pariya Gholipor, Elmira Hafez

Abstract:

This study examines the proportionality between the needs of industry and technical and vocational training of male and female vocational schools. The research method was descriptive that was conducted in two parts: documentary analysis and needs assessment and Delphi method was used in the need assessment. The statistical population of the study included 312 individuals from the industry sector employers and 52 of them were selected through stratified random sampling. Methods of data collection in this study, upstream documents include: document of the development of technical and vocational training, Statistical Yearbook 1393 in Tehran, the available documents in Isfahan Planning Department, the findings indicate that there is an almost proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of welding, industrial electronics, electro technique, industrial drawing, auto mechanics, design, packaging, machine tool, metalworking, construction, accounting, computer graphics and the Administrative Affairs. The findings indicate that there is no proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of Thermal - cooling systems, building electricity, building drawing, interior architecture, car electricity and motor repair.

Keywords: needs assessment, technical and vocational training, industry

Procedia PDF Downloads 455
1203 Genetic Diversity in Capsicum Germplasm Based on Inter Simple Sequence Repeat Markers

Authors: Siwapech Silapaprayoon, Januluk Khanobdee, Sompid Samipak

Abstract:

Chili peppers are the fruits of Capsicum pepper plants well known for their fiery burning sensation on the tongue after consumption. They are members of the Solanaceae or common nightshade family along with potato, tomato and eggplant. Thai cuisine has gained popularity for its distinct flavors due to usages of various spices and its heat from the addition of chili pepper. Though being used in little quantity for each dish, chili pepper holds a special place in Thai cuisine. There are many varieties of chili peppers in Thailand, and thirty accessions were collected at Rajamangala University of Technology Lanna, Lampang, Thailand. To effectively manage any germplasm it is essential to know the diversity and relationships among members. Thirty-six Inter Simple Sequence Repeat (ISSRs) DNA markers were used to analyze the germplasm. Total of 335 polymorphic bands was obtained giving the average of 9.3 alleles per marker. Unweighted pair-group mean arithmetic method (UPGMA) clustering of data using NTSYS-pc software indicated that the accessions showed varied levels of genetic similarity ranging from 0.57-1.00 similarity coefficient index indicating significant levels of variation. At SM coefficient of 0.81, the germplasm was separated into four groups. Phenotypic variation was discussed in context of phylogenetic tree clustering.

Keywords: diversity, germplasm, Chili pepper, ISSR

Procedia PDF Downloads 152
1202 Diversity and Equality in Four Finnish and Italian Energy Companies' Open Access Material

Authors: Elisa Bertagna

Abstract:

A frame analysis of the work done by various energy multinational companies concerning diversity issues and gender equality is presented. Documents of four multinational companies - two from Finland and two from Italy - have been studied. The array of companies’ documents includes data from their websites, policies and so on. The Finnish and Italian contexts have been chosen as a sample of North and South Europe, of 'advanced' and 'less advanced'. The aim of the analysis is to understand if and how human resource and diversity management in Finnish and Italian multinational energy companies communicate their activity towards the employees. Attention is given on how employees are reacting in their role and on the consequences of its social positioning. The findings of this essay are crucially important. They show how the companies in object tend to focus on the HR and DM positive actions towards female employees’ struggles since the industry is characterized by multinationals with male-dominated employees. In this way, other categories, which are also depicted as sensitive such as young and elderly people or foreigners, do not receive the same amount of attention. Consequently, power hierarchies can be found: 'women' as a social category are given more importance and space in the companies’ data than others. Consequently, the present work analysis reflects on possible struggles that such companies might be facing concerning gender biases and further diverse issues.

Keywords: energy, diversity, gender, multinationals, power hierarchies

Procedia PDF Downloads 144
1201 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity

Authors: Vahid Ebrahimipour

Abstract:

Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.

Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation

Procedia PDF Downloads 105
1200 Ethical Discussions on Prenatal Diagnosis: Iranian Case of Thalassemia Prevention Program

Authors: Sachiko Hosoya

Abstract:

Objectives: The purpose of this paper is to investigate the social policy of preventive genetic medicine in Iran, by following the legalization process of abortion law and the factors affecting the process in wider Iranian contexts. In this paper, ethical discussions of prenatal diagnosis and selective abortion in Iran will be presented, by exploring Iranian social policy to control genetic diseases, especially a genetic hemoglobin disorder called Thalassemia. The ethical dilemmas in application of genetic medicine into social policy will be focused. Method: In order to examine the role of the policy for prevention of genetic diseases and selective abortion in Iran, various resources have been sutudied, not only academic articles, but also discussion in the Parliament and documents related to a court case, as well as ethnographic data on living situation of Thalassemia patients. Results: Firstly, the discussion on prenatal diagnosis and selective abortion is overviewed from the viewpoints of ethics, disability rights activists, and public policy for lower-resources countries. As a result, it should be noted that the point more important in the discussion on prenatal diagnosis and selective abortion in Iran is the allocation of medical resources. Secondly, the process of implementation of national thalassemia screening program and legalization of ‘Therapeutic Abortion Law’ is analyzed, through scrutinizing documents such as the Majlis record, government documents and related laws and regulations. Although some western academics accuse that Iranian policy of selective abortion seems to be akin to eugenic public policy, Iranian government carefully avoid to distortions of the policy as ‘eugenic’. Thirdly, as a comparative example, discussions on an Iranian court case of patient’s ‘right not to be born’ will be introduced. Along with that, restrictive living environments of people with Thalassemia patients and the carriers are depicted, to understand some disabling social factors for people with genetic diseases in the local contexts of Iran.

Keywords: abortion, Iran, prenatal diagnosis, public health ethics, Thalassemia prevention program

Procedia PDF Downloads 348
1199 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis

Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.

Keywords: big data, social network analysis, text mining, topic modeling

Procedia PDF Downloads 297
1198 A Tool to Provide Advanced Secure Exchange of Electronic Documents through Europe

Authors: Jesus Carretero, Mario Vasile, Javier Garcia-Blas, Felix Garcia-Carballeira

Abstract:

Supporting cross-border secure and reliable exchange of data and documents and to promote data interoperability is critical for Europe to enhance sector (like eFinance, eJustice and eHealth). This work presents the status and results of the European Project MADE, a Research Project funded by Connecting Europe facility Programme, to provide secure e-invoicing and e-document exchange systems among Europe countries in compliance with the eIDAS Regulation (Regulation EU 910/2014 on electronic identification and trust services). The main goal of MADE is to develop six new AS4 Access Points and SMP in Europe to provide secure document exchanges using the eDelivery DSI (Digital Service Infrastructure) amongst both private and public entities. Moreover, the project demonstrates the feasibility and interest of the solution provided by providing several months of interoperability among the providers of the six partners in different EU countries. To achieve those goals, we have followed a methodology setting first a common background for requirements in the partner countries and the European regulations. Then, the partners have implemented access points in each country, including their service metadata publisher (SMP), to allow the access to their clients to the pan-European network. Finally, we have setup interoperability tests with the other access points of the consortium. The tests will include the use of each entity production-ready Information Systems that process the data to confirm all steps of the data exchange. For the access points, we have chosen AS4 instead of other existing alternatives because it supports multiple payloads, native web services, pulling facilities, lightweight client implementations, modern crypto algorithms, and more authentication types, like username-password and X.509 authentication and SAML authentication. The main contribution of MADE project is to open the path for European companies to use eDelivery services with cross-border exchange of electronic documents following PEPPOL (Pan-European Public Procurement Online) based on the e-SENS AS4 Profile. It also includes the development/integration of new components, integration of new and existing logging and traceability solutions and maintenance tool support for PKI. Moreover, we have found that most companies are still not ready to support those profiles. Thus further efforts will be needed to promote this technology into the companies. The consortium includes the following 9 partners. From them, 2 are research institutions: University Carlos III of Madrid (Coordinator), and Universidad Politecnica de Valencia. The other 7 (EDICOM, BIZbrains, Officient, Aksesspunkt Norge, eConnect, LMT group, Unimaze) are private entities specialized in secure delivery of electronic documents and information integration brokerage in their respective countries. To achieve cross-border operativity, they will include AS4 and SMP services in their platforms according to the EU Core Service Platform. Made project is instrumental to test the feasibility of cross-border documents eDelivery in Europe. If successful, not only einvoices, but many other types of documents will be securely exchanged through Europe. It will be the base to extend the network to the whole Europe. This project has been funded under the Connecting Europe Facility Agreement number: INEA/CEF/ICT/A2016/1278042. Action No: 2016-EU-IA-0063.

Keywords: security, e-delivery, e-invoicing, e-delivery, e-document exchange, trust

Procedia PDF Downloads 267
1197 The History of the Birth of Tunisian Higher Accounting Education

Authors: Rim Khemiri, Mariam Dammak

Abstract:

The aim of this study is to trace the historical evolution of Tunisian higher accounting education and to understand and highlight the circumstances of its birth and its development. A documentary study (archival documents, official documents, public speeches, etc.), as well as semi-directive interviews with key actors, were carried out as part of this research work. These interviews aim to fill a lack of information on this subject and to confirm events addressed by other sources, but for which it lacks the elements necessary for a good understanding. After having put forward the specificities of the Tunisian context, we will, first of all, proceed to a review of the literature related to our theme in various contexts of the world. Then, we will present the evolution of the accounting curriculum by highlighting the circumstances of its birth and those of the successive reforms led by the Tunisian government. The study of higher accounting education in Tunisia and its evolution has several interests. The first lies in understanding the circumstances of its birth and its evolution in relation to the historical, socio-economic, and political context of the country. The second is to propose a reading grid that allows an understanding of the reforms that led to the university accountancy accounting course as we know it today. And, the third, aims to complete the literature on the processes of evolution of higher education accounting, by treating a different context, in order to provide additional knowledge necessary to compare experiences in this area around the world.

Keywords: accounting history, higher accounting education, socio-economic and political context, Tunisian context

Procedia PDF Downloads 135
1196 The Analyzer: Clustering Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human Computer Interaction

Authors: Dona Shaini Abhilasha Nanayakkara, Kurugamage Jude Pravinda Gregory Perera

Abstract:

E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. The Analyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling The Analyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.

Keywords: data clustering, data standardization, dimensionality reduction, human computer interaction, user profiling

Procedia PDF Downloads 75
1195 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 57
1194 Statistical Discrimination of Blue Ballpoint Pen Inks by Diamond Attenuated Total Reflectance (ATR) FTIR

Authors: Mohamed Izzharif Abdul Halim, Niamh Nic Daeid

Abstract:

Determining the source of pen inks used on a variety of documents is impartial for forensic document examiners. The examination of inks is often performed to differentiate between inks in order to evaluate the authenticity of a document. A ballpoint pen ink consists of synthetic dyes in (acidic and/or basic), pigments (organic and/or inorganic) and a range of additives. Inks of similar color may consist of different composition and are frequently the subjects of forensic examinations. This study emphasizes on blue ballpoint pen inks available in the market because it is reported that approximately 80% of questioned documents analysis involving ballpoint pen ink. Analytical techniques such as thin layer chromatography, high-performance liquid chromatography, UV-vis spectroscopy, luminescence spectroscopy and infrared spectroscopy have been used in the analysis of ink samples. In this study, application of Diamond Attenuated Total Reflectance (ATR) FTIR is straightforward but preferable in forensic science as it offers no sample preparation and minimal analysis time. The data obtained from these techniques were further analyzed using multivariate chemometric methods which enable extraction of more information based on the similarities and differences among samples in a dataset. It was indicated that some pens from the same manufactures can be similar in composition, however, discrete types can be significantly different.

Keywords: ATR FTIR, ballpoint, multivariate chemometric, PCA

Procedia PDF Downloads 458
1193 Enhanced Arabic Semantic Information Retrieval System Based on Arabic Text Classification

Authors: A. Elsehemy, M. Abdeen , T. Nazmy

Abstract:

Since the appearance of the Semantic web, many semantic search techniques and models were proposed to exploit the information in ontology to enhance the traditional keyword-based search. Many advances were made in languages such as English, German, French and Spanish. However, other languages such as Arabic are not fully supported yet. In this paper we present a framework for ontology based information retrieval for Arabic language. Our system consists of four main modules, namely query parser, indexer, search and a ranking module. Our approach includes building a semantic index by linking ontology concepts to documents, including an annotation weight for each link, to be used in ranking the results. We also augmented the framework with an automatic document categorizer, which enhances the overall document ranking. We have built three Arabic domain ontologies: Sports, Economic and Politics as example for the Arabic language. We built a knowledge base that consists of 79 classes and more than 1456 instances. The system is evaluated using the precision and recall metrics. We have done many retrieval operations on a sample of 40,316 documents with a size 320 MB of pure text. The results show that the semantic search enhanced with text classification gives better performance results than the system without classification.

Keywords: Arabic text classification, ontology based retrieval, Arabic semantic web, information retrieval, Arabic ontology

Procedia PDF Downloads 526