Search results for: binary classifier
696 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface
Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto
Abstract:
Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns
Procedia PDF Downloads 128695 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 75694 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 75693 Revisiting Domestication and Foreignisation Methods: Translating the Quran by the Hybrid Approach
Authors: Aladdin Al-Tarawneh
Abstract:
The Quran, as it is the sacred book of Islam and considered the literal word of God (Allah) in Arabic, is highly translated into many languages; however, the foreignising or the literal approach excessively stains the quality and discredits the final product in the eyes of its receptors. Such an approach fails to capture the intended meaning of the Quran and to communicate it in any language. Therefore, this study is conducted to propose a different approach that seeks involving other ones according to a hybrid model. Indeed, this study challenges the binary adherence that is highly used in Translation Studies (TS) in general and in the translation of the Quran in particular. Drawing on the genuine fact that the Quran can be communicated in any language in terms of meaning, and the translation is not sacred; this paper approaches the translation of the Quran by blending different methods like domestication or foreignisation in a systematic way, avoiding the binary choice made by many translators. To reach this aim, the paper has a conceptual part that seeks to elucidate and clarify the main methods employed in TS, and criticise and modify them to propose the new hybrid approach (the hybrid model) for translating the Quran – that is, the deductive method. To support and validate the outcome of the previous part, a comparative model is employed in order to highlight the differences between the suggested translation and other widely used ones – that is, the inductive method. By applying this methodology, the paper proves that there is a deficiency of communicating the original meaning of the Quran in light of the foreignising approach. In conclusion, the paper suggests producing a Quran translation has to take into account the adoption of many techniques to express the meaning of the Quran as understood in the original, and to offer this understanding in English in the most native-like manner to serve the intended target readers.Keywords: Quran translation, hybrid approach, domestication, foreignization, hybrid model
Procedia PDF Downloads 163692 Assessing and Identifying Factors Affecting Customers Satisfaction of Commercial Bank of Ethiopia: The Case of West Shoa Zone (Bako, Gedo, Ambo, Ginchi and Holeta), Ethiopia
Authors: Habte Tadesse Likassa, Bacha Edosa
Abstract:
Customer’s satisfaction was very important thing that is required for the existence of banks to be more productive and success in any organization and business area. The main goal of the study is assessing and identifying factors that influence customer’s satisfaction in West Shoa Zone of Commercial Bank of Ethiopia (Holeta, Ginchi, Ambo, Gedo and Bako). Stratified random sampling procedure was used in the study and by using simple random sampling (lottery method) 520 customers were drawn from the target population. By using Probability Proportional Size Techniques sample size for each branch of banks were allocated. Both descriptive and inferential statistics methods were used in the study. A binary logistic regression model was fitted to see the significance of factors affecting customer’s satisfaction in this study. SPSS statistical package was used for data analysis. The result of the study reveals that the overall level of customer’s satisfaction in the study area is low (38.85%) as compared those who were not satisfied (61.15%). The result of study showed that all most all factors included in the study were significantly associated with customer’s satisfaction. Therefore, it can be concluded that based on the comparison of branches on their customers satisfaction by using odd ratio customers who were using Ambo and Bako are less satisfied as compared to customers who were in Holeta branch. Additionally, customers who were in Ginchi and Gedo were more satisfied than that of customers who were in Holeta. Since the level of customers satisfaction was low in the study area, it is more advisable and recommended for concerned body works cooperatively more in maximizing satisfaction of their customers.Keywords: customers, satisfaction, binary logistic, complain handling process, waiting time
Procedia PDF Downloads 465691 A Five-Year Follow-up Survey Using Regression Analysis Finds Only Maternal Age to Be a Significant Medical Predictor for Infertility Treatment
Authors: Lea Stein, Sabine Rösner, Alessandra Lo Giudice, Beate Ditzen, Tewes Wischmann
Abstract:
For many couples bearing children is a consistent life goal; however, it cannot always be fulfilled. Undergoing infertility treatment does not guarantee pregnancies and live births. Couples have to deal with miscarriages and sometimes even discontinue infertility treatment. Significant medical predictors for the outcome of infertility treatment have yet to be fully identified. To further our understanding, a cross-sectional five-year follow-up survey was undertaken, in which 95 women and 82 men that have been treated at the Women’s Hospital of Heidelberg University participated. Binary logistic regressions, parametric and non-parametric methods were used for our sample to determine the relevance of biological (infertility diagnoses, maternal and paternal age) and lifestyle factors (smoking, drinking, over- and underweight) on the outcome of infertility treatment (clinical pregnancy, live birth, miscarriage, dropout rate). During infertility treatment, 72.6% of couples became pregnant and 69.5% were able to give birth. Suffering from miscarriages 27.5% of couples and 20.5% decided to discontinue an unsuccessful fertility treatment. The binary logistic regression models for clinical pregnancies, live births and dropouts were statistically significant for the maternal age, whereas the paternal age in addition to maternal and paternal BMI, smoking, infertility diagnoses and infections, showed no significant predicting effect on any of the outcome variables. The results confirm an effect of maternal age on infertility treatment, whereas the relevance of other medical predictors remains unclear. Further investigations should be considered to increase our knowledge of medical predictors.Keywords: advanced maternal age, assisted reproductive technology, female factor, male factor, medical predictors, infertility treatment, reproductive medicine
Procedia PDF Downloads 109690 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems
Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari
Abstract:
Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.Keywords: environment, organic pollutant, phosphate ore, photodegradation
Procedia PDF Downloads 132689 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 135688 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 144687 Improvement of Data Transfer over Simple Object Access Protocol (SOAP)
Authors: Khaled Ahmed Kadouh, Kamal Ali Albashiri
Abstract:
This paper presents a designed algorithm involves improvement of transferring data over Simple Object Access Protocol (SOAP). The aim of this work is to establish whether using SOAP in exchanging XML messages has any added advantages or not. The results showed that XML messages without SOAP take longer time and consume more memory, especially with binary data.Keywords: JAX-WS, SMTP, SOAP, web service, XML
Procedia PDF Downloads 495686 One vs. Rest and Error Correcting Output Codes Principled Rebalancing Schemes for Solving Imbalanced Multiclass Problems
Authors: Alvaro Callejas-Ramos, Lorena Alvarez-Perez, Alexander Benitez-Buenache, Anibal R. Figueiras-Vidal
Abstract:
This contribution presents a promising formulation which allows to extend the principled binary rebalancing procedures, also known as neutral re-balancing mechanisms in the sense that they do not alter the likelihood ratioKeywords: Bregman divergences, imbalanced multiclass classifi-cation, informed re-balancing, invariant likelihood ratio
Procedia PDF Downloads 216685 Human Gait Recognition Using Moment with Fuzzy
Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain
Abstract:
A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments
Procedia PDF Downloads 758684 Experimental Study on Strength Development of Low Cement Concrete Using Mix Design for Both Binary and Ternary Mixes
Authors: Mulubrhan Berihu, Supratic Gupta, Zena Gebriel
Abstract:
Due to the design versatility, availability, and cost efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economical and environmental benefits besides the reduction of CO2 emission from cement production. The study aims to document the effect on strength property of concrete due to use of low cement by maximizing supplementary cementitious materials like fly ash or marble powder. Based on the different mix proportion of pozzolana and marble powder a range of mix design was formulated. The first part of the project is to study the strength of low cement concrete using fly ash replacement experimentally. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicates that strength is a function of w/b. In the second part a new set of mix design has been carried out with fly ash and marble powder to study the strength of both binary and ternary mixes. In this experimental study, three groups of mix design (c+FA, c+FA+m and c+m), four sets of mixes for each group were taken up. Experimental results show that c+FA has maintained the best strength and impermeability whereas c+m obtained less compressive strength, poorer permeability and split tensile strength. c+FA shows a big difference in gaining of compressive strength from 7 days to 28 days compression strength compared to others and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases the strength decreases significantly. At the same time higher permeability has been seen in the specimens which were tested for three hours than one hour.Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs
Procedia PDF Downloads 209683 Direct Approach in Modeling Particle Breakage Using Discrete Element Method
Authors: Ebrahim Ghasemi Ardi, Ai Bing Yu, Run Yu Yang
Abstract:
Current study is aimed to develop an available in-house discrete element method (DEM) code and link it with direct breakage event. So, it became possible to determine the particle breakage and then its fragments size distribution, simultaneous with DEM simulation. It directly applies the particle breakage inside the DEM computation algorithm and if any breakage happens the original particle is replaced with daughters. In this way, the calculation will be followed based on a new updated particles list which is very similar to the real grinding environment. To validate developed model, a grinding ball impacting an unconfined particle bed was simulated. Since considering an entire ball mill would be too computationally demanding, this method provided a simplified environment to test the model. Accordingly, a representative volume of the ball mill was simulated inside a box, which could emulate media (ball)–powder bed impacts in a ball mill and during particle bed impact tests. Mono, binary and ternary particle beds were simulated to determine the effects of granular composition on breakage kinetics. The results obtained from the DEM simulations showed a reduction in the specific breakage rate for coarse particles in binary mixtures. The origin of this phenomenon, commonly known as cushioning or decelerated breakage in dry milling processes, was explained by the DEM simulations. Fine particles in a particle bed increase mechanical energy loss, and reduce and distribute interparticle forces thereby inhibiting the breakage of the coarse component. On the other hand, the specific breakage rate of fine particles increased due to contacts associated with coarse particles. Such phenomenon, known as acceleration, was shown to be less significant, but should be considered in future attempts to accurately quantify non-linear breakage kinetics in the modeling of dry milling processes.Keywords: particle bed, breakage models, breakage kinetic, discrete element method
Procedia PDF Downloads 199682 Smallholder Farmers’ Adaptation Strategies and Socioeconomic Determinants of Climate Variability in Boset District, Oromia, Ethiopia
Authors: Hurgesa Hundera, Samuel Shibeshibikeko, Tarike Daba, Tesfaye Ganamo
Abstract:
The study aimed at examining the ongoing adaptation strategies used by smallholder farmers in response to climate variability in Boset district. It also assessed the socioeconomic factors that influence the choice of adaptation strategies of smallholder farmers to climate variability risk. For attaining the objectives of the study, both primary and secondary sources of data were employed. The primary data were obtained through a household questionnaire, key informant interviews, focus group discussions, and observations, while secondary data were acquired through desk review. Questionnaires were distributed and filled by 328 respondents, and they were identified through systematic random sampling technique. Descriptive statistics and binary logistic regression model were applied in this study as the main analytical methods. The findings of the study reveal that the sample households have utilized multiple adaptation strategies in response to climate variability, such as cropping early mature crops, planting drought resistant crops, growing mixed crops on the same farm lands, and others. The results of the binary logistic model revealed that education, sex, age, family size, off farm income, farm experience, access to climate information, access to farm input, and farm size were significant and key factors determining farmers’ choice of adaptation strategies to climate variability in the study area. To enable effective adaptation measures, Ministry of Agriculture and Natural Resource, with its regional bureaus and offices and concerned non–governmental organizations, should consider climate variability in their planning and budgeting in all levels of decision making.Keywords: adaptation strategies, boset district, climate variability, smallholder farmers
Procedia PDF Downloads 87681 Enthalpies of Formation of Equiatomic Binary Hafnium Transition Metal Compounds HfM (M=Co, Ir, Os, Pt, Rh, Ru)
Authors: Hadda Krarcha, S. Messaasdi
Abstract:
In order to investigate Hafnium transition metal alloys HfM (M= Co, Ir, Os,Pt, Rh, Ru) phase diagrams in the region of 50/50% atomic ratio, we performed ab initio Full-Potential Linearized Augmented Plane Waves calculations of the enthalpies of formation of HfM compounds at B2 (CsCl) structure type. The obtained enthalpies of formation are discussed and compared to some of the existing models and available experimental data.Keywords: enthalpy of formation, transition metal, binarry compunds, hafnium
Procedia PDF Downloads 482680 Examination of the Relationship between Managerial Competence and Job Satisfacti̇on and Career Satisfacti̇on in Sports Managers'
Authors: Omur F. Karakullukcu, Bilal Okudan, Yusuf Can
Abstract:
The aim of this study is to analyze sports managers’ managerial competence levels and job satisfaction’s correlation with career satisfaction. In the study, it has also been analyzed if there is any significant difference in sports managers’ managerial competence, job and career satisfaction in terms of gender, age, duty status, year of service and level of education. 256 sports managers, who work at department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the managerial competence scale which was developed by Cetinkaya (2009), job satisfaction scale developed by Weiss at al.(1967) and Career Satisfaction Scale developed by Vatansever (2008) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, pearson correlation analysis has been used for defining the correlation of managerial competence levels, job satisfaction, and career satisfaction levels of sports managers. T-test analysis for binary grouping and anova analysis for more than binary groups have been used in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers’ managerial competence levels, job satisfaction, and career satisfaction levels. Also, the results show that there is a significant difference in managerial competence levels, job satisfaction and career satisfaction of sports managers in terms of duty status, year of service and level of education; however, the results reveal that there is no significant difference in terms of age groups and gender.Keywords: sports manager, managerial competence, job satisfaction, career satisfaction
Procedia PDF Downloads 263679 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)
Procedia PDF Downloads 309678 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study
Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming
Abstract:
Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.Keywords: binary outcomes, statistical methods, clinical trials, simulation study
Procedia PDF Downloads 114677 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.Keywords: Epilepsy, seizure, phase correlation, fluctuation, deviation.
Procedia PDF Downloads 467676 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework
Authors: Abbas Raza Ali
Abstract:
Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation
Procedia PDF Downloads 175675 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 559674 The Role of Brooding and Reflective as Subtypes of Rumination toward Psychological Distress in University of Indonesia First-Year Undergraduate Students
Authors: Hepinda Fajari Nuharini, Sugiarti A. Musabiq
Abstract:
Background: Various and continuous pressures that exceed individual resources can cause first-year undergraduate college students to experience psychological distress. Psychological distress can occur when individuals use rumination as cognitive coping strategies. Rumination is one of the cognitive coping strategies that can be used by individuals to respond to psychological distress that causes individuals to think about the causes and consequences of events that have occurred. Rumination had two subtypes, such as brooding and reflective. Therefore, the purpose of this study was determining the role of brooding and reflective as subtypes of rumination toward psychological distress in University of Indonesia first-year undergraduate students. Methods: Participants of this study were 403 University of Indonesia first-year undergraduate students aged between 18 and 21 years old. Psychological distress measured using self reporting questionnaire (SRQ-20) and brooding and reflective as subtypes of rumination measured using Ruminative Response Scale - Short Version (RRS - Short Version). Results: Binary logistic regression analyses showed that 22.8% of the variation in psychological distress could be explained by the brooding and reflective as subtypes of rumination, while 77.2% of the variation in psychological distress could be explained by other factors (Nagelkerke R² = 0,228). The results of the binary logistic regression analysis also showed rumination subtype brooding is a significant predictor of psychological distress (b = 0,306; p < 0.05), whereas rumination subtype reflective is not a significant predictor of psychological distress (b = 0,073; p > 0.05). Conclusion: The findings of this study showed a positive relationship between brooding and psychological distress indicates that a higher level of brooding will predict higher psychological distress. Meanwhile, a negative relationship between reflective and psychological distress indicates a higher level of reflective will predict lower psychological distress in University of Indonesia first-year undergraduate students. Added Values: The psychological distress among first-year undergraduate students would then have an impact on student academic performance. Therefore, the results of this study can be used as a reference for making preventive action to reduce the percentage and impact of psychological distress among first-year undergraduate students.Keywords: brooding as subtypes of rumination, first-year undergraduate students, psychological distress, reflective as subtypes of rumination
Procedia PDF Downloads 108673 A New Internal Architecture Based On Feature Selection for Holonic Manufacturing System
Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani
Abstract:
This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine data set, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.Keywords: artificial neural network, bees algorithm, feature selection, Holon
Procedia PDF Downloads 457672 Development of Transgenic Tomato Immunity to Pepino Mosaic Virus and Tomato Yellow Leaf Curl Virus by Gene Silencing Approach
Authors: D. Leibman, D. Wolf, A. Gal-On
Abstract:
Viral diseases of tomato crops result in heavy yield losses and may even jeopardize the production of these crops. Classical tomato breeding for disease resistance against Tomato yellow leaf curl virus (TYLCV), leads to partial resistance associated with a number of recessive genes. To author’s best knowledge Pepino mosaic virus (PepMV) genetic resistance is not yet available. The generation of viral resistance by means of genetic engineering was reported and implemented for many crops, including tomato. Transgenic resistance against viruses is based, in most cases, on Post Transcriptional Gene Silencing (PTGS), an endogenous mechanism which destroys the virus genome. In this work, we developed immunity against PepMV and TYLCV in a tomato based on a PTGS mechanism. Tomato plants were transformed with a hairpin-construct-expressed transgene-derived double-strand-RNA (tr-dsRNA). In the case of PepMV, the binary construct harbored three consecutive fragments of the replicase gene from three different PepMV strains (Italian, Spanish and American), to provide resistance against a range of virus strains. In the case of TYLCV, the binary vector included three consecutive fragments of the IR, V2 and C2 viral genes constructed in a hairpin configuration. Selected transgenic lines (T0) showed a high accumulation of transgene siRNA of 21-24 bases, and T1 transgenic lines showed complete immunity to PepMV and TYLCV. Graft inoculation displayed immunity of the transgenic scion against PepMV and TYLCV. The study presents the engineering of resistance in tomato against two serious diseases, which will help in the production of high-quality tomato. However, unfortunately, these resistant plants have not been implemented due to public ignorance and opposition against breeding by genetic engineering.Keywords: PepMV, PTGS, TYLCV, tr-dsRNA
Procedia PDF Downloads 133671 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events
Authors: Andrey V. Timofeev
Abstract:
The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.Keywords: Lipschitz Classifier, classifiers ensembles, LPBoost, C-OTDR systems
Procedia PDF Downloads 461670 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique
Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar
Abstract:
Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image
Procedia PDF Downloads 228669 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes
Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez
Abstract:
Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability
Procedia PDF Downloads 233668 On the Mathematical Modelling of Aggregative Stability of Disperse Systems
Authors: Arnold M. Brener, Lesbek Tashimov, Ablakim S. Muratov
Abstract:
The paper deals with the special model for coagulation kernels which represents new control parameters in the Smoluchowski equation for binary aggregation. On the base of the model the new approach to evaluating aggregative stability of disperse systems has been submitted. With the help of this approach the simple estimates for aggregative stability of various types of hydrophilic nano-suspensions have been obtained.Keywords: aggregative stability, coagulation kernels, disperse systems, mathematical model
Procedia PDF Downloads 309667 Photophysical Study of Pyrene Butyric Acid in Aqueous Ionic Liquid
Authors: Pratap K. Chhotaray, Jitendriya Swain, Ashok Mishra, Ramesh L. Gardas
Abstract:
Ionic liquids (ILs) are molten salts, consist predominantly of ions and found to be liquid below 100°C. The unparalleled growing interest in ILs is based upon their never ending design flexibility. The use of ILs as a co-solvent in binary as well as a ternary mixture with molecular solvents multifold it’s utility. Since polarity is one of the most widely applied solvent concepts which represents simple and straightforward means for characterizing and ranking the solvent media, its study for a binary mixture of ILs is crucial for its widespread application and development. The primary approach to the assessment of solution phase intermolecular interactions, which generally occurs on the picosecond to nanosecond time scales, is to exploit the optical response of photophysical probe. Pyrene butyric acid (PBA) is used as fluorescence probe due to its high quantum yield, longer lifetime and high solvent polarity dependence of fluorescence spectra. Propylammonium formate (PAF) is the IL used for this study. Both the UV-absorbance spectra and steady state fluorescence intensity study of PBA in different concentration of aqueous PAF, reveals that with an increase in PAF concentration, both the absorbance and fluorescence intensity increases which indicate the progressive solubilisation of PBA. Whereas, near about 50% of IL concentration, all of the PBA molecules get solubilised as there are no changes in the absorbance and fluorescence intensity. Furthermore, the ratio II/IV, where the band II corresponds to the transition from S1 (ν = 0) to S0 (ν = 0), and the band IV corresponds to transition from S1 (ν = 0) to S0 (ν = 2) of PBA, indicates that the addition of water into PAF increases the polarity of the medium. Time domain lifetime study shows an increase in lifetime of PBA towards the higher concentration of PAF. It can be attributed to the decrease in non-radiative rate constant at higher PAF concentration as the viscosity is higher. The monoexponential decay suggests that homogeneity of solvation environment whereas the uneven width at full width at half maximum (FWHM) indicates there might exist some heterogeneity around the fluorophores even in the water-IL mixed solvents.Keywords: fluorescence, ionic liquid, lifetime, polarity, pyrene butyric acid
Procedia PDF Downloads 458