Search results for: attentional bias
454 Elitism: Navigating Professional Diversity Barriers
Authors: Rachel Nir, Tina Mckee
Abstract:
In the UK, reliance has been placed on the professions to ‘heal themselves’ in improving equality and diversity. This approach has faltered, in part due to the global economic climate, and stimulus is needed to make faster equality progress. Recent empirical evidence has identified specific diversity barriers, namely: the cost of training; the use of high school grades as a primary selection criteria; the significance of prior work experience in recruitment decisions; and recruitment from elite universities. Students from majority groups and affluent backgrounds are advantaged over their counterparts. We as educators are passionate about resisting this. We believe that education can be a key agent of change. As part of this belief, the presenters have recently designed learning and teaching materials for the 2015/16 academic year. These are aimed at undergraduate law students for the purpose of 1) educating them on career barriers; 2) helping them to develop personal strategies to overcome them; and 3) encouraging them to address their own biases, both conscious and implicit, so that they, themselves, may be fairer employers and managers in the future.Keywords: career barriers, challenging professional bias, education, elitism, personal student strategies
Procedia PDF Downloads 239453 Self-Overestimation and Underestimation of Others: A Catalyst for Religious Conflict in Nigeria
Authors: Abdulazeez Balogun Shittu
Abstract:
This study investigates the role of self-overestimation and underestimation of others in fueling religious conflicts in Nigeria. Using a mixed-methods approach, this research examines how exaggerated self-perceptions and diminished views of others contribute to intergroup tensions, stereotypes, and violence. The findings reveal that self-overestimation and underestimation of others are significant predictors of religious conflict, mediated by factors such as intergroup bias, social identity, cultural narratives and lack of interfaith dialogue. The study also identifies the consequences of these biases, including Escalated sectarian violence, social cohesion erosion and polarized communities. To mitigate these effects, the research recommends interfaith education and dialogue initiatives, inclusive governance and policy frameworks and pluralistic media representation. This study contributes to the understanding of psychological and social dynamics driving religious conflict in Nigeria, informing evidence-based policies and interventions to promote peaceful coexistence.Keywords: conflict resolution, intergroup relations, Nigeria, Religious conflict, self-overestimation, social psychology, underestimation of others
Procedia PDF Downloads 17452 Evaluation Synthesis of Private Sector Engagement in International Development
Authors: Valerie Habbel, Magdalena Orth, Johanna Richter, Steffen Schimko
Abstract:
Cooperation between development actors and the private sector is becoming increasingly important, as it is expected to mobilize additional resources to achieve the Sustainable Development Goals (SDGs), among other things. However, whether the goals of cooperation are achieved has so far only been explored in evaluations and studies of individual projects and instruments. The evaluation synthesis attempts to close this gap by systematically analyzing existing evidence (evaluations and academic studies) from national and international development cooperation on private sector engagement. Overall, the evaluations and studies considered report mainly positive effects on investors and donors, intermediaries, partner countries, and target groups. However, various analyses, including on the quality of the evaluations, point to a positive bias in the results. The evaluation synthesis makes recommendations on the definition of indicators, the measurement and evaluation of impacts and additionality, knowledge management, and the consideration of transaction costs in cooperation with private actors.Keywords: evaluation synthesis, private sector engagement, international development, sustainable development
Procedia PDF Downloads 213451 Language Developmental Trends of Mandarin-Speaking Preschoolers in Beijing
Authors: Nga Yui Tong
Abstract:
Mandarin, the official language of China, is based on the Beijing dialect and is spoken by more than one billion people from all over the world. To investigate the trends of Mandarin acquisition, 192 preschoolers are recruited by stratified random sampling. They are from 4 different districts in Beijing, 2 schools in each district, with 4 age groups, both genders, and 3 children in each stratum. The children are paired up to conduct semi-structured free play for 30 minutes. Their language output is videotaped, transcribed, and coded for the calculation of Mean Length of Utterance (MLU). Two-way ANOVA showed that the variation of MLU is significantly contributed by age, which is coherent to previous findings of other languages. This first large-scale study to investigate the developmental trend of Mandarin in young children in Beijing provides empirical evidence to the development of standards and curriculum planning for early Mandarin education. Interestingly, the gender effect in the study is insignificant, with boys showing a slightly higher MLU than girls across all age groups and settings, except the 4.5 years same-gender dyads. The societal factors in the Chinese context on parenting and gender bias are worth looking into.Keywords: Beijing, language development, Mandarin, preschoolers
Procedia PDF Downloads 122450 Observational Study -HIV/ AIDS and Medical Personnel in Mangalore, India
Authors: Anjana Sreedharan, Harish Rao
Abstract:
Background: India has the world’s third largest population of people living with HIV/AIDS, with a prevalence rate of 0.69 in the state of Karnataka. This study aims at assessing the HIV/AIDS related knowledge, attitude and behavior of the medical personnel in 3 hospitals in the city of Mangalore. Methods: Surgeons, Anesthetists, OT staff nurses, ward nursing staff, House surgeons working in the hospitals associated with Kasturba Medical college, Mangalore were given questionnaires and interviewed. Their knowledge about HIV, their attitude towards HIV positive patients and bias in management of the patients was assessed. Conclusion: So far, it has been found that amongst doctors, discrimination was mainly in the form of HIV testing without consent and a lack of confidentiality. However, the doctors rarely changed the treatment plan on knowing the HIV status of the patient. Amongst the nursing staff and interns, there is a serious lacuna of knowledge regarding HIV transmission, as compared to consultants. The patient seldom faced verbal abuse from the team. Use of universal precautions is less among the entire team due to insufficient availability of the same.Keywords: discrimination, HIV/ AIDS, medical colleges, stigma
Procedia PDF Downloads 332449 Comparing Nonverbal Deception Detection of Police Officers and Human Resources Students in the Czech Republic
Authors: Lenka Mynaříková, Hedvika Boukalová
Abstract:
The study looks at the ability to detect nonverbal deception among police officers and management students in the Czech Republic. Respondents from police departments (n=197) and university students of human resources (n=161) completed a deception detection task and evaluated veracity of the statements of suspects in 21 video clips from real crime investigations. Their evaluations were based on nonverbal behavior. Voices in the video clips were modified so that words were not recognizable, yet paraverbal voice characteristics were preserved. Results suggest that respondents have a tendency to lie bias based on their profession. In the evaluation of video clips, stereotypes also played a significant role. The statements of suspects of a different ethnicity, younger age or specific visual features were considered deceitful more often. Research might be beneficial for training in professions that are in need of deception detection techniques.Keywords: deception detection, police officers, human resources, forensic psychology, forensic studies, organizational psychology
Procedia PDF Downloads 431448 Multi-Band Frequency Conversion Scheme with Multi-Phase Shift Based on Optical Frequency Comb
Authors: Tao Lin, Shanghong Zhao, Yufu Yin, Zihang Zhu, Wei Jiang, Xuan Li, Qiurong Zheng
Abstract:
A simple operated, stable and compact multi-band frequency conversion and multi-phase shift is proposed to satisfy the demands of multi-band communication and radar phase array system. The dual polarization quadrature phase shift keying (DP-QPSK) modulator is employed to support the LO sideband and the optical frequency comb simultaneously. Meanwhile, the fiber is also used to introduce different phase shifts to different sidebands. The simulation result shows that by controlling the DC bias voltages and a C band microwave signal with frequency of 4.5 GHz can be simultaneously converted into other signals that cover from C band to K band with multiple phases. It also verifies that the multi-band and multi-phase frequency conversion system can be stably performed based on current manufacturing art and can well cope with the DC drifting. It should be noted that the phase shift of the converted signal also partly depends of the length of the optical fiber.Keywords: microwave photonics, multi-band frequency conversion, multi-phase shift, conversion efficiency
Procedia PDF Downloads 255447 Efficient Layout-Aware Pretraining for Multimodal Form Understanding
Authors: Armineh Nourbakhsh, Sameena Shah, Carolyn Rose
Abstract:
Layout-aware language models have been used to create multimodal representations for documents that are in image form, achieving relatively high accuracy in document understanding tasks. However, the large number of parameters in the resulting models makes building and using them prohibitive without access to high-performing processing units with large memory capacity. We propose an alternative approach that can create efficient representations without the need for a neural visual backbone. This leads to an 80% reduction in the number of parameters compared to the smallest SOTA model, widely expanding applicability. In addition, our layout embeddings are pre-trained on spatial and visual cues alone and only fused with text embeddings in downstream tasks, which can facilitate applicability to low-resource of multi-lingual domains. Despite using 2.5% of training data, we show competitive performance on two form understanding tasks: semantic labeling and link prediction.Keywords: layout understanding, form understanding, multimodal document understanding, bias-augmented attention
Procedia PDF Downloads 151446 Does Stock Markets Asymmetric Information Affect Foreign Capital Flows?
Authors: Farid Habibi Tanha, Mojtaba Jahanbazi, Morteza Foroutan, Rasidah Mohd Rashid
Abstract:
This paper depicts the effects of asymmetric information in determining capital inflows to be captured through stock market microstructure. The model can explain several stylized facts regarding the capital immobility. The first phase of the research involves in collecting and refining 150,000,000 daily data of 11 stock markets over a period of one decade in an effort to minimize the impact of survivorship bias. Three micro techniques were used to measure information asymmetries. The final phase analyzes the model through panel data approach. As a unique contribution, this research will provide valuable information regarding negative effects of information asymmetries in stock markets on attracting foreign investments. The results of this study can be directly considered by policy makers to monitor and control changes of capital flow in order to keep market conditions in a healthy manner, by preventing and managing possible shocks to avoid sudden reversals and market failures.Keywords: asymmetric information, capital inflow, market microstructure, investment
Procedia PDF Downloads 322445 Study the effect of bulk traps on Solar Blind Photodetector Based on an IZTO/β Ga2O3/ITO Schottky Diode
Authors: Laboratory of Semiconducting, Metallic Materials (LMSM) Biskra Algeria
Abstract:
InZnSnO2 (IZTO)/β-Ga2O3 Schottky solar barrier photodetector (PhD) exposed to 255 nm was simulated and compared to the measurement. Numerical simulations successfully reproduced the photocurrent at reverse bias and response by taking into account several factors, such as conduction mechanisms and material parameters. By adopting reducing the density of the trap as an improvement. The effect of reducing the bulk trap densities on the photocurrent, response, and time-dependent (continuous conductivity) was studied. As the trap density decreased, the photocurrent increased. The response was 0.04 A/W for the low Ga2O3 trap density. The estimated decay time for the lowest intensity ET (0.74, 1.04 eV) is 0.05 s and is shorter at ∼0.015 s for ET (0.55 eV). This indicates that the shallow traps had the dominant effect (ET = 0.55 eV) on the continuous photoconductivity phenomenon. Furthermore, with decreasing trap densities, this PhD can be considered as a self-powered solar-blind photodiode (SBPhD).Keywords: IZTO/β-Ga2O3, self-powered solar-blind photodetector, numerical simulation, bulk traps
Procedia PDF Downloads 87444 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients
Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff
Abstract:
Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)
Procedia PDF Downloads 359443 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP
Procedia PDF Downloads 91442 Empirical Study of Running Correlations in Exam Marks: Same Statistical Pattern as Chance
Authors: Weisi Guo
Abstract:
It is well established that there may be running correlations in sequential exam marks due to students sitting in the order of course registration patterns. As such, a random and non-sequential sampling of exam marks is a standard recommended practice. Here, the paper examines a large number of exam data stretching several years across different modules to see the degree to which it is true. Using the real mark distribution as a generative process, it was found that random simulated data had no more sequential randomness than the real data. That is to say, the running correlations that one often observes are statistically identical to chance. Digging deeper, it was found that some high running correlations have students that indeed share a common course history and make similar mistakes. However, at the statistical scale of a module question, the combined effect is statistically similar to the random shuffling of papers. As such, there may not be the need to take random samples for marks, but it still remains good practice to mark papers in a random sequence to reduce the repetitive marking bias and errors.Keywords: data analysis, empirical study, exams, marking
Procedia PDF Downloads 183441 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures
Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman
Abstract:
Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction
Procedia PDF Downloads 49440 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru
Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza
Abstract:
Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality-WRF-Chem model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.Keywords: ground-ozone, lima, sulphur dioxide, WRF-chem
Procedia PDF Downloads 137439 A Hebbian Neural Network Model of the Stroop Effect
Authors: Vadim Kulikov
Abstract:
The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop
Procedia PDF Downloads 269438 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach
Authors: Hamed Rahmani, Wim Groot
Abstract:
The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Centre of Iran and the Ministry of Cooperatives Labour and Social Welfare that was taken from the labour force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of six in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education and years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.Keywords: NEET youth, probit, CART, machine learning, unemployment
Procedia PDF Downloads 108437 To Smile or Not to Smile: How Engendered Facial Cues affect Hiring Decisions
Authors: Sabrina S. W. Chan, Emily Schwartzman, Nicholas O. Rule
Abstract:
Past literature showed mixed findings on how smiling affects a person’s chance of getting hired. On one hand, smiling suggests enthusiasm, cooperativeness, and enthusiasm, which can elicit positive impressions. On the other hand, smiling can suggest weaker professionalism or a filler to hide nervousness, which can lower a candidate’s perceived competence. Emotion expressions can also be perceived differently depending on the person’s gender and can activate certain gender stereotypes. Women especially face a double bind with respect to hiring decisions and smiling. Because women are socially expected to smile more, those who do not smile will be considered stereotype incongruent. This becomes a noisy signal to employers and may lower their chance of being hired. However, women’s smiling as a formality may also be an obstacle. They are more likely to put on fake smiles; but if they do, they are also likely to be perceived as inauthentic and over-expressive. This paper sought to investigate how smiling affects hiring decisions, and whether this relationship is moderated by gender. In Study 1, participants were shown a series of smiling and emotionally neutral face images, incorporated into fabricated LinkedIn profiles. Participants were asked to rate how hireable they thought that candidate was. Results showed that participants rated smiling candidates as more hireable than nonsmiling candidates, and that there was no difference in gender. Moreover, individuals who did not study business were more biased in their perceptions than those who did. Since results showed a trending favoritism over female targets, in suspect of desirability bias, a second study was conducted to collect implicit measures behind the decision-making process. In Study 2, a mouse-tracking design was adopted to explore whether participants’ implicit attitudes were different from their explicit responses on hiring. Participants asked to respond whether they would offer an interview to a candidate. Findings from Study 1 was replicated in that smiling candidates received more offers than neutral-faced candidates. Results also showed that female candidates received significantly more offers than male candidates but was associated with higher attractiveness ratings. There were no significant findings in reaction time or change of decisions. However, stronger hesitation was detected for responses made towards neutral targets when participants perceived the given position as masculine, implying a conscious attempt of making situational judgments (e.g., considering candidate’s personality and job fit) to override automatic processing (evaluations based on attractiveness). Future studies would look at how these findings differ for positions which are stereotypically masculine (e.g., surgeons) and stereotypically feminine (e.g., kindergarten teachers). Current findings have strong implications for developing bias-free hiring policies in workplace, especially for organizations who maintain online/hybrid working arrangements in the post-pandemic era. This also bridges the literature gap between face perception and gender discrimination, highlighting how engendered facial cues can affect individual’s career development and organization’s success in diversity and inclusion.Keywords: engendered facial cues, face perception, gender stereotypes, hiring decisions, smiling, workplace discrimination
Procedia PDF Downloads 135436 The Perils of Flagging Pirates: How Gender, False Consensus and Normative Messages Influence Digital Piracy Intentions
Authors: Kate Whitman, Zahra Murad, Joe Cox, Adam Cox
Abstract:
This study investigates the influence of normative communications on digital piracy intentions. Although descriptive norms are thought to influence behavior, the study examines the potential bias in one's own behavior, leading to false consensus—a phenomenon perpetuating undesirable activities. The research tests the presence of false consensus and the effect of correcting normative predictions on changes in piracy intentions, examining gender differences. Results from a controlled experiment (N = 684) indicate that normative communications, reflecting the "real" norm based on government data (N=5000), increase (decrease) piracy intentions among men (women) underestimating their peers' behavior. Conversely, neither men nor women overestimating their peers' piracy show any notable change in intentions. Considering men consume more illegal content than women, suggesting they pose a higher risk, the study highlights the need for cautious use of normative communications. Therefore, policymakers should minimize the visibility of piracy behavior for effective digital piracy management.Keywords: digital piracy, false consensus, normative interventions, persuasive messages
Procedia PDF Downloads 59435 On the Bias and Predictability of Asylum Cases
Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats
Abstract:
An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.Keywords: asylum adjudications, automated decision-making, machine learning, text mining
Procedia PDF Downloads 96434 The Perception and Integration of Lexical Tone and Vowel in Mandarin-speaking Children with Autism: An Event-Related Potential Study
Authors: Rui Wang, Luodi Yu, Dan Huang, Hsuan-Chih Chen, Yang Zhang, Suiping Wang
Abstract:
Enhanced discrimination of pure tones but diminished discrimination of speech pitch (i.e., lexical tone) were found in children with autism who speak a tonal language (Mandarin), suggesting a speech-specific impairment of pitch perception in these children. However, in tonal languages, both lexical tone and vowel are phonemic cues and integrally dependent on each other. Therefore, it is unclear whether the presence of phonemic vowel dimension contributes to the observed lexical tone deficits in Mandarin-speaking children with autism. The current study employed a multi-feature oddball paradigm to examine how vowel and tone dimensions contribute to the neural responses for syllable change detection and involuntary attentional orienting in school-age Mandarin-speaking children with autism. In the oddball sequence, syllable /da1/ served as the standard stimulus. There were three deviant stimulus conditions, representing tone-only change (TO, /da4/), vowel-only change (VO, /du1/), and change of tone and vowel simultaneously (TV, /du4/). EEG data were collected from 25 children with autism and 20 age-matched normal controls during passive listening to the stimulation. For each deviant condition, difference waveform measuring mismatch negativity (MMN) was derived from subtracting the ERP waveform to the standard sound from that to the deviant sound for each participant. Additionally, the linear summation of TO and VO difference waveforms was compared to the TV difference waveform, to examine whether neural sensitivity for TV change detection reflects simple summation or nonlinear integration of the two individual dimensions. The MMN results showed that the autism group had smaller amplitude compared with the control group in the TO and VO conditions, suggesting impaired discriminative sensitivity for both dimensions. In the control group, amplitude of the TV difference waveform approximated the linear summation of the TO and VO waveforms only in the early time window but not in the late window, suggesting a time course from dimensional summation to nonlinear integration. In the autism group, however, the nonlinear TV integration was already present in the early window. These findings suggest that speech perception atypicality in children with autism rests not only in the processing of single phonemic dimensions, but also in the dimensional integration process.Keywords: autism, event-related potentials , mismatch negativity, speech perception
Procedia PDF Downloads 221433 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 551432 Models Comparison for Solar Radiation
Authors: Djelloul Benatiallah
Abstract:
Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.Keywords: solar radiation, renewable energy, fossil, photovoltaic systems
Procedia PDF Downloads 79431 The Role of Coaching in Fostering Entrepreneurial Intention among Graduate Students in Tunisia
Authors: Abdellatif Amouri, Sami Boudabbous
Abstract:
The current study provides insights on the importance of entrepreneurial coaching as a source of developing entrepreneurial intentions among entrepreneurs and a determinant factor of business creation process and growth. Coaching, which implies exchange of adequate information and a mutual understanding between entrepreneurs and their partners, requires a better mutual knowledge of the representations and the perceptions of ideas which are widely present in their dealings and transactions. Therefore, to analyze entrepreneurs’ perceptions of business creation, we addressed a survey questionnaire to a group of Tunisian entrepreneurs and experts in business creation to indicate their level of approval concerning the prominence of coaching. The factor analysis indicates that more than 60% of the respondents believe that each statement reflects an aspect of coaching, with no bias to its position in the entrepreneurial process. Therefore, the image drawn from our respondents’ perceptions is that an entrepreneur is rather "constructed" and "shaped" by multiple apprenticeships both before and during the entrepreneurial act, through an accompaniment process and within interactions with trainers, consultants or professionals in starting a business. Similarly, the results indicate that the poor support structures and lack of accompaniment procedures stand as an obstacle impeding the development of entrepreneurial intention among business creators.Keywords: Entrepreneurial Behavior, Entrepreneurial Coaching, Entrepreneurial Intention, Perceptions, Venture Creation
Procedia PDF Downloads 439430 A Genetic Algorithm Based Ensemble Method with Pairwise Consensus Score on Malware Cacophonous Labels
Authors: Shih-Yu Wang, Shun-Wen Hsiao
Abstract:
In the field of cybersecurity, there exists many vendors giving malware samples classified results, namely naming after the label that contains some important information which is also called AV label. Lots of researchers relay on AV labels for research. Unfortunately, AV labels are too cluttered. They do not have a fixed format and fixed naming rules because the naming results were based on each classifiers' viewpoints. A way to fix the problem is taking a majority vote. However, voting can sometimes create problems of bias. Thus, we create a novel ensemble approach which does not rely on the cacophonous naming result but depend on group identification to aggregate everyone's opinion. To achieve this purpose, we develop an scoring system called Pairwise Consensus Score (PCS) to calculate result similarity. The entire method architecture combine Genetic Algorithm and PCS to find maximum consensus in the group. Experimental results revealed that our method outperformed the majority voting by 10% in term of the score.Keywords: genetic algorithm, ensemble learning, malware family, malware labeling, AV labels
Procedia PDF Downloads 87429 Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste
Authors: Kuo Chieh Chao, Thishani Amarathunga, Sangam Shrestha
Abstract:
Rainfall induced slope failures are one of the most damaging and disastrous natural hazards which occur frequently in the world. This type of sliding mainly occurs in the zone above the groundwater level in silty/sandy soils. When the rainwater begins to infiltrate into the vadose zone of the soil, the negative pore-water pressure tends to decrease and reduce the shear strength of soil material. Climate change has resulted in excessive and unpredictable rainfall in all around the world, resulting in landslides with dire consequences to human lives and infrastructure. Such problems could be overcome by examining in detail the causes for such slope failures and recommending effective repair plans for vulnerable locations by considering future climatic change. The selected area for this study is located in the road rehabilitation section from Maubara to Mota Ain road in Timor-Leste. Slope failures and cracks have occurred in 2013 and after repairs reoccurred again in 2017 subsequent to heavy rains. Both observed and future predicted climate data analyses were conducted to understand the severe precipitation conditions in past and future. Observed climate data were collected from NOAA global climate data portal. CORDEX data portal was used to collect Regional Climate Model (RCM) future predicted climate data. Both observed and RCM data were extracted to location-based data using ArcGIS Software. Linear scaling method was used for the bias correction of future data and bias corrected climate data were assigned to GeoStudio Software. Precipitations of wet seasons (December to March ) in 2007 to 2013 is higher than 2001-2006 period and it is more than nearly 40% higher precipitation than usual monthly average precipitation of 160mm.The results of seepage analyses which were carried out using SEEP/W model with observed climate, clearly demonstrated that the pore water pressure within the fill slope was significantly increased due to the increase of the infiltration during the wet season of 2013.One main Regional Climate Models (RCM) was analyzed in order to predict future climate variation under two Representative Concentration Pathways (RCPs).In the projected period of 76 years ahead from 2014, shows that the amount of precipitation is considerably getting higher in the future in both RCP 4.5 and RCP 8.5 emission scenarios. Critical pore water pressure conditions during 2014-2090 were used in order to recommend appropriate remediation methods. Results of slope stability analyses indicated that the factor of safety of the fill slopes was reduced from 1.226 to 0.793 during the dry season to wet season in 2013.Results of future slope stability which were obtained using SLOPE/W model for the RCP emissions scenarios depict that, the use of tieback anchors and geogrids in slope protection could be effective in increasing the stability of slopes to an acceptable level during the wet seasons. Moreover, methods and procedures like monitoring of slopes showing signs or susceptible for movement and installing surface protections could be used to increase the stability of slopes.Keywords: climate change, precipitation, SEEP/W, SLOPE/W, unsaturated soil
Procedia PDF Downloads 136428 Reactive Sputter Deposition of Titanium Nitride on Silicon Using a Magnetized Sheet Plasma Source
Authors: Janella Salamania, Marcedon Fernandez, Matthew Villanueva Henry Ramos
Abstract:
Titanium nitrite (TiN) a popular functional and decorative coating because of its golden yellow color, high hardness and superior wear resistance. It is also being studied as a diffusion barrier in integrated circuits due to its known chemical stability and low resistivity. While there have been numerous deposition methods done for TiN, most required the heating of substrates at high temperatures. In this work, TiN films are deposited on silicon (111) and (100) substrates without substrate heating using a patented magnetized sheet plasma source. Films were successfully deposited without substrate heating at various target bias, while maintaining a constant 25% N2 to Ar ratio, and deposition of time of 30 minutes. The resulting films exhibited a golden yellow color which is characteristic of TiN. X-ray diffraction patterns show the formation of TiN predominantly oriented in the (111) direction regardless of substrate used. EDX data also confirms the 1:1 stoichiometry of titanium an nitrogen. Ellipsometry measurements estimate the thickness to range from 28 nm to 33 nm. SEM images were also taken to observe the morphology of the film.Keywords: coatings, nitrides, coatings, reactive magnetron sputtering, thin films
Procedia PDF Downloads 342427 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film
Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi
Abstract:
In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy
Procedia PDF Downloads 179426 Observations of Conformity in the Health Professions
Authors: Tanya Beran, Michelle Drefs, Ghazwan Altabbaa, Nouf Al Harbi, Noof Al Baz, Elizabeth Oddone Paolucci
Abstract:
Although research shows that interprofessional practice has desirable effects on patient care, its implementation can present challenges to its team members. In particular, they may feel pressured to agree with or conform to other members who share information that is contrary to their own understanding. Obtaining evidence of this phenomenon is challenging, as team members may underreport their conformity behaviors due to reasons such as social desirability. In this paper, a series of studies are reviewed in which several approaches to assessing conformity in the health care professions are tested. Simulations, questionnaires, and behavior checklists were developed to measure conformity behaviors. Insights from these studies show that a significant proportion of people conform either in the presence or absence of others, express a variety of verbal and nonverbal behaviors when considering whether to conform to others, may shift between conforming and moments later not conforming (and vice versa), and may not accurately report whether they conformed. A new method of measuring conformity using the implicit bias test is also discussed. People at all levels in the healthcare system are encouraged to develop both formal and informal.Keywords: conformity, decision-making, inter-professional teams, simulation
Procedia PDF Downloads 169425 Estimating the Probability of Winning the Best Actor/Actress Award Conditional on the Best Picture Nomination with Bayesian Hierarchical Models
Authors: Svetlana K. Eden
Abstract:
Movies and TV shows have long become part of modern culture. We all have our preferred genre, story, actors, and actresses. However, can we objectively discern good acting from the bad? As laymen, we are probably not objective, but what about the Oscar academy members? Are their votes based on objective measures? Oscar academy members are probably also biased due to many factors, including their professional affiliations or advertisement exposure. Heavily advertised films bring more publicity to their cast and are likely to have bigger budgets. Because a bigger budget may also help earn a Best Picture (BP) nomination, we hypothesize that best actor/actress (BA) nominees from BP-nominated movies would have higher chances of winning the award than those BA nominees from non-BP-nominated films. To test this hypothesis, three Bayesian hierarchical models are proposed, and their performance is evaluated. The results from all three models largely support our hypothesis. Depending on the proportion of BP nominations among BA nominees, the odds ratios (estimated over expected) of winning the BA award conditional on BP nomination vary from 2.8 [0.8-7.0] to 4.3 [2.0, 15.8] for actors and from 1.5 [0.0, 12.2] to 5.4 [2.7, 14.2] for actresses.Keywords: Oscar, best picture, best actor/actress, bias
Procedia PDF Downloads 223