Search results for: Gian Carlo F. Maliwat
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 418

Search results for: Gian Carlo F. Maliwat

118 The Classification Accuracy of Finance Data through Holder Functions

Authors: Yeliz Karaca, Carlo Cattani

Abstract:

This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).

Keywords: artificial neural networks, finance data, Holder regularity, multifractals

Procedia PDF Downloads 246
117 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines

Authors: P. Byrnes, F. A. DiazDelaO

Abstract:

The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.

Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines

Procedia PDF Downloads 221
116 Windstorm Risk Assessment for Offshore Wind Farms in the North Sea

Authors: Paul Buchana, Patrick E. Mc Sharry

Abstract:

In 2017 there will be about 38 wind farms in the North Sea belonging to 5 different countries. The North Sea is ideal for offshore wind power generation and is thus attractive to offshore wind energy developers and investors. With concerns about the potential for offshore wind turbines to sustain substantial damage as a result of extreme weather conditions, particularly windstorms, this poses a unique challenge to insurers and reinsurers as to adequately quantify the risk and offer appropriate insurance cover for these assets. The need to manage this risk also concerns regulators, who provide the oversight needed to ensure that if a windstorm or a series of storms occur in this area over a one-year time frame, the insurers of these assets in the EU remain solvent even after meeting consequent damage costs. In this paper, using available European windstorm data for the past 33 years and actual wind farm locations together with information pertaining to each of the wind farms (number of turbines, total capacity and financial value), we present a Monte Carlo simulation approach to assess the number of turbines that would be buckled in each of the wind farms using maximum wind speeds reaching each of them. These wind speeds are drawn from historical windstorm data. From the number of turbines buckled, associated financial loss and output capacity can be deduced. The results presented in this paper are targeted towards offshore wind energy developers, insurance and reinsurance companies and regulators.

Keywords: catastrophe modeling, North Sea wind farms, offshore wind power, risk analysis

Procedia PDF Downloads 299
115 Feedback Matrix Approach for Relativistic Runaway Electron Avalanches Dynamics in Complex Electric Field Structures

Authors: Egor Stadnichuk

Abstract:

Relativistic runaway electron avalanches (RREA) are a widely accepted source of thunderstorm gamma-radiation. In regions with huge electric field strength, RREA can multiply via relativistic feedback. The relativistic feedback is caused both by positron production and by runaway electron bremsstrahlung gamma-rays reversal. In complex multilayer thunderstorm electric field structures, an additional reactor feedback mechanism appears due to gamma-ray exchange between separate strong electric field regions with different electric field directions. The study of this reactor mechanism in conjunction with the relativistic feedback with Monte Carlo simulations or by direct solution of the kinetic Boltzmann equation requires a significant amount of computational time. In this work, a theoretical approach to study feedback mechanisms in RREA physics is developed. It is based on the matrix of feedback operators construction. With the feedback matrix, the problem of the dynamics of avalanches in complex electric structures is reduced to the problem of finding eigenvectors and eigenvalues. A method of matrix elements calculation is proposed. The proposed concept was used to study the dynamics of RREAs in multilayer thunderclouds.

Keywords: terrestrial Gamma-ray flashes, thunderstorm ground enhancement, relativistic runaway electron avalanches, gamma-rays, high-energy atmospheric physics, TGF, TGE, thunderstorm, relativistic feedback, reactor feedback, reactor model

Procedia PDF Downloads 172
114 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 293
113 Preliminary Study on the Factors Affecting Safety Parameters of (Th, U)O₂ Fuel Cycle: The Basis for Choosing Three Fissile Enrichment Zones

Authors: E. H. Uguru, S. F. A. Sani, M. U. Khandaker, M. H. Rabir

Abstract:

The beginning of cycle transient safety parameters is paramount for smooth reactor operation. The enhanced operational safety of UO₂ fuelled AP1000 reactor being the first using three fissile enrichment zones motivated this research for (Th, U)O₂ fuel. This study evaluated the impact of fissile enrichment, soluble boron, and gadolinia on the transient safety parameters to determine the basis for choosing the three fissile enrichment zones. Fuel assembly and core model of Westinghouse small modular reactor were investigated using different fuel and reactivity control arrangements. The Monte Carlo N-Particle eXtended (MCNPX) integrated with CINDER90 burn-up code was used for the calculations. The results show that the moderator temperature coefficient of reactivity (MTC) and the fuel temperature coefficient of reactivity (FTC) were respectively negative and decreased with increasing fissile enrichment. Soluble boron significantly decreased the MTC but slightly increased FTC while gadolinia followed the same trend with a minor impact. However, the MTC and FTC respectively decreased significantly with increasing change in temperature. These results provide a guide on the considerable factors in choosing the three fissile enrichment zones for (Th, U)O₂ fuel in anticipation of their impact on safety parameters. Therefore, this study provides foundational results on the factors that must be considered in choosing three fissile arrangement zones for (Th, U)O₂ fuel.

Keywords: reactivity, safety parameters, small modular reactor, soluble boron, thorium fuel cycle

Procedia PDF Downloads 131
112 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects

Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta

Abstract:

Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.

Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect

Procedia PDF Downloads 214
111 Analyzing the Impact of Migration on HIV and AIDS Incidence Cases in Malaysia

Authors: Ofosuhene O. Apenteng, Noor Azina Ismail

Abstract:

The human immunodeficiency virus (HIV) that causes acquired immune deficiency syndrome (AIDS) remains a global cause of morbidity and mortality. It has caused panic since its emergence. Relationships between migration and HIV/AIDS have become complex. In the absence of prospectively designed studies, dynamic mathematical models that take into account the migration movement which will give very useful information. We have explored the utility of mathematical models in understanding transmission dynamics of HIV and AIDS and in assessing the magnitude of how migration has impact on the disease. The model was calibrated to HIV and AIDS incidence data from Malaysia Ministry of Health from the period of 1986 to 2011 using Bayesian analysis with combination of Markov chain Monte Carlo method (MCMC) approach to estimate the model parameters. From the estimated parameters, the estimated basic reproduction number was 22.5812. The rate at which the susceptible individual moved to HIV compartment has the highest sensitivity value which is more significant as compared to the remaining parameters. Thus, the disease becomes unstable. This is a big concern and not good indicator from the public health point of view since the aim is to stabilize the epidemic at the disease-free equilibrium. However, these results suggest that the government as a policy maker should make further efforts to curb illegal activities performed by migrants. It is shown that our models reflect considerably the dynamic behavior of the HIV/AIDS epidemic in Malaysia and eventually could be used strategically for other countries.

Keywords: epidemic model, reproduction number, HIV, MCMC, parameter estimation

Procedia PDF Downloads 366
110 Technology Valuation of Unconventional Gas R&D Project Using Real Option Approach

Authors: Young Yoon, Jinsoo Kim

Abstract:

The adoption of information and communication technologies (ICT) in all industry is growing under industry 4.0. Many oil companies also are increasingly adopting ICT to improve the efficiency of existing operations, take more accurate and quicker decision making and reduce entire cost by optimization. It is true that ICT is playing an important role in the process of unconventional oil and gas development and companies must take advantage of ICT to gain competitive advantage. In this study, real option approach has been applied to Unconventional gas R&D project to evaluate ICT of them. Many unconventional gas reserves such as shale gas and coal-bed methane(CBM) has developed due to technological improvement and high energy price. There are many uncertainties in unconventional development on the three stage(Exploration, Development, Production). The traditional quantitative benefits-cost method, such as net present value(NPV) is not sufficient for capturing ICT value. We attempted to evaluate the ICT valuation by applying the compound option model; the model is applied to real CBM project case, showing how it consider uncertainties. Variables are treated as uncertain and a Monte Carlo simulation is performed to consider variables effect. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).

Keywords: information and communication technologies, R&D, real option, unconventional gas

Procedia PDF Downloads 229
109 Livonian Werewolves, 1500-1700s: A Sociological Assessment of Their Historical Significance and Origins through the Case of Old Thiess

Authors: Liu Jiaxin

Abstract:

This paper seeks to do an in-depth investigation on the phenomenon of Early Modern era (1500-1700s) Livonian werewolves. Noting their uniqueness in comparison to contemporaneous werewolves hailing from other geographic areas, the paper suggests that the Livonian werewolf is a metaphor for Livonian society at that time, one which was characterized by social turmoil and strict class hierarchy. This metaphor was utilized by different classes to establish their own interests in society, and thus the paper concludes that the werewolf is a mutable artifact whose value is contingent on its social context. This is demonstrated by the particular case of Old Thiess—a poor, elderly Livonian peasant who gave an unorthodox and anomalous testimony when accused of being a werewolf. In his court statement, it is shown how Thiess was, in fact, alluding to social tensions by lambasting the rich German elite and establishing the righteousness of the peasantry, of which he was a member. A close reading method was utilized on the trial transcript of Old Thiess with heavy reference to Carlo Ginzburg and Bruce Lincoln’s collaborative work Old Thiess, a Livonian werewolf: a classic case in comparative perspective. Through a contextual reading of Livonia’s social atmosphere, the paper draws connections between the content of the trial to wider societal disturbances happening at the time. The thesis—that the werewolf is a flexible metaphor for the social milieu—is further buttressed by numerous contemporaneous sources that had similar messages as Thiess’ transcript, which are discussed as well.

Keywords: early-modern baltic, Livonia, Old Thiess, social history, werewolves

Procedia PDF Downloads 105
108 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model

Authors: Qijiao He

Abstract:

MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.

Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation

Procedia PDF Downloads 172
107 Axial, Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack

Authors: Rita Greco, Giuseppe Carlo Marano

Abstract:

Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standard impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate the residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.

Keywords: pitting corrosion, strength deterioration, diffusion coefficient, surface chloride concentration, concrete structures, marine environment

Procedia PDF Downloads 321
106 Robust Shrinkage Principal Component Parameter Estimator for Combating Multicollinearity and Outliers’ Problems in a Poisson Regression Model

Authors: Arum Kingsley Chinedu, Ugwuowo Fidelis Ifeanyi, Oranye Henrietta Ebele

Abstract:

The Poisson regression model (PRM) is a nonlinear model that belongs to the exponential family of distribution. PRM is suitable for studying count variables using appropriate covariates and sometimes experiences the problem of multicollinearity in the explanatory variables and outliers on the response variable. This study aims to address the problem of multicollinearity and outliers jointly in a Poisson regression model. We developed an estimator called the robust modified jackknife PCKL parameter estimator by combining the principal component estimator, modified jackknife KL and transformed M-estimator estimator to address both problems in a PRM. The superiority conditions for this estimator were established, and the properties of the estimator were also derived. The estimator inherits the characteristics of the combined estimators, thereby making it efficient in addressing both problems. And will also be of immediate interest to the research community and advance this study in terms of novelty compared to other studies undertaken in this area. The performance of the estimator (robust modified jackknife PCKL) with other existing estimators was compared using mean squared error (MSE) as a performance evaluation criterion through a Monte Carlo simulation study and the use of real-life data. The results of the analytical study show that the estimator outperformed other existing estimators compared with by having the smallest MSE across all sample sizes, different levels of correlation, percentages of outliers and different numbers of explanatory variables.

Keywords: jackknife modified KL, outliers, multicollinearity, principal component, transformed M-estimator.

Procedia PDF Downloads 66
105 Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs

Authors: Andrej Golowin, Viktor Denk, Axel Riepe

Abstract:

Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.

Keywords: combined fatigue, damage tolerance, engine, surface treatment

Procedia PDF Downloads 497
104 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China

Authors: Da LI, Peng Xu

Abstract:

Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.

Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation

Procedia PDF Downloads 25
103 Strategies for Medium Sized Construction Firms to Survive the Current Economic Conditions That Is Compounded by the Most Recent COVID-19 Pandemic in Nigeria

Authors: Aloysius Colman Chukwuemeka Ezeabasili, Chibuike Patrick Ezeabasili

Abstract:

Medium Sized Construction Companies in Nigeria are those employing 50-250 workers that are mostly involved in roads, Commercial and domestic building Construction, among others. These companies are in the majority and contribute immensely to infrastructural development in Nigeria. Despite the last eight years of economic downturn and the past years of COVID-19 pandemic, signs of these Companies recovering from the economic recession and pandemic seem bright. Nigeria has recorded 213,000 confirmed cases 3968 deaths from COVID-19 as at now. These medium sized companies are currently trying to explore various opportunities to grow their businesses to achieve competitive advantages over others by studying and improving on their bidding efficiency, Strategies for selecting businesses, bidding markup Strategies, and cash flow. These strategies were studied through the recruitment of construction experts and professionals. Many of them have acquired new technologies that have impacted positively on their strategies. The impact of these technologies like the BIM, e-tendering, conditions of contract, and claim management strategies are advantages to them and has given them good advantages over their peers. Monte Carlo solution, Swot analysis, and average bid methods have also clearly added advantages to bidding practices. New and existing strategies are Scrutinized, and training of young Nigerians in advanced countries to acquire knowledge in best practices have elevated some of these companies. The Covid-19 has not been very harsh to Nigeria, and the country is surely not as devastated as the advanced countries. Nigeria has therefore been able to cope with the combination of the downturn and the pandemic.

Keywords: medium sized construction companies, competitive advantage, new bidding technologies, Nigeria

Procedia PDF Downloads 135
102 Distribution and Community Structure of Fish in Relation with Water Physico-chemical Parameters of Floodplain Rivers in the Alitash National Park, Ethiopia

Authors: Alamrew Eyayu

Abstract:

Riverine ecosystems are highly exposed to different forms of human activities, and different water features can affect fish distribution in such habitats. Tributaries of the Abbay and Tekeze Basins are supporting all life-requesting activities in Ethiopia. Fisheries of these habitats are also the mainstay of livelihoods. However, brutal human activities are affecting these ecosystems and the fish therein. This study was thus undertaken to examine fish distribution and community structure in relation to water parameters in Ayima, Gelegu and Shinfa Rivers. 2719 fish specimens identified into 43 species were sampled using gillnets, cast nets and electro-fishing on a seasonal campaign. Based on frequency of occurrence (%FO), 5 species fell in the ‘euconstant occurrence’ category or their FO was ≥75%, while many species were in the ‘constant occurrence’ category. Among others, site depth, total phosphorus, dissolved oxygen, and river channel diameter were key environmental factors determining fish community structure. Similarity percentage produced an overall average Bray-Curtis dissimilarity of 60.8% between the fish communities of the three rivers. The final model accounted for 77.2% of the total variance in fish composition, and all canonical axes were significant (Monte Carlo test 499, p =0.002). Generally, this study was conducted in areas where no ecological studies are undertaken, and the results obtained from this study could be important for the sustainable utilization of Ethiopian fisheries.

Keywords: fish biology, fisheries socioeconomics, aquatic biodiversity, fisheries management

Procedia PDF Downloads 29
101 Simulation of the Collimator Plug Design for Prompt-Gamma Activation Analysis in the IEA-R1 Nuclear Reactor

Authors: Carlos G. Santos, Frederico A. Genezini, A. P. Dos Santos, H. Yorivaz, P. T. D. Siqueira

Abstract:

The Prompt-Gamma Activation Analysis (PGAA) is a valuable technique for investigating the elemental composition of various samples. However, the installation of a PGAA system entails specific conditions such as filtering the neutron beam according to the target and providing adequate shielding for both users and detectors. These requirements incur substantial costs, exceeding $100,000, including manpower. Nevertheless, a cost-effective approach involves leveraging an existing neutron beam facility to create a hybrid system integrating PGAA and Neutron Tomography (NT). The IEA-R1 nuclear reactor at IPEN/USP possesses an NT facility with suitable conditions for adapting and implementing a PGAA device. The NT facility offers a thermal flux slightly colder and provides shielding for user protection. The key additional requirement involves designing detector shielding to mitigate high gamma ray background and safeguard the HPGe detector from neutron-induced damage. This study employs Monte Carlo simulations with the MCNP6 code to optimize the collimator plug for PGAA within the IEA-R1 NT facility. Three collimator models are proposed and simulated to assess their effectiveness in shielding gamma and neutron radiation from nucleon fission. The aim is to achieve a focused prompt-gamma signal while shielding ambient gamma radiation. The simulation results indicate that one of the proposed designs is particularly suitable for the PGAA-NT hybrid system.

Keywords: MCNP6.1, neutron, prompt-gamma ray, prompt-gamma activation analysis

Procedia PDF Downloads 75
100 Fast Return Path Planning for Agricultural Autonomous Terrestrial Robot in a Known Field

Authors: Carlo Cernicchiaro, Pedro D. Gaspar, Martim L. Aguiar

Abstract:

The agricultural sector is becoming more critical than ever in view of the expected overpopulation of the Earth. The introduction of robotic solutions in this field is an increasingly researched topic to make the most of the Earth's resources, thus going to avoid the problems of wear and tear of the human body due to the harsh agricultural work, and open the possibility of a constant careful processing 24 hours a day. This project is realized for a terrestrial autonomous robot aimed to navigate in an orchard collecting fallen peaches below the trees. When it receives the signal indicating the low battery, it has to return to the docking station where it will replace its battery and then return to the last work point and resume its routine. Considering a preset path in orchards with tree rows with variable length by which the robot goes iteratively using the algorithm D*. In case of low battery, the D* algorithm is still used to determine the fastest return path to the docking station as well as to come back from the docking station to the last work point. MATLAB simulations were performed to analyze the flexibility and adaptability of the developed algorithm. The simulation results show an enormous potential for adaptability, particularly in view of the irregularity of orchard field, since it is not flat and undergoes modifications over time from fallen branch as well as from other obstacles and constraints. The D* algorithm determines the best route in spite of the irregularity of the terrain. Moreover, in this work, it will be shown a possible solution to improve the initial points tracking and reduce time between movements.

Keywords: path planning, fastest return path, agricultural autonomous terrestrial robot, docking station

Procedia PDF Downloads 134
99 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization

Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang

Abstract:

The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.

Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling

Procedia PDF Downloads 254
98 Floristic Diversity, Composition and Environmental Correlates on the Arid, Coralline Islands of the Farasan Archipelago, Red SEA, Saudi Arabia

Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Asyraf Mansor, Saud AL-Rowaily

Abstract:

Urban expansion and the associated increase in anthropogenic pressures have led to a great loss of the Red Sea’s biodiversity. Floristic composition, diversity, and environmental controls were investigated for 210 relive's on twenty coral islands of Farasan in the Red Sea, Saudi Arabia. Multivariate statistical analyses for classification (Cluster Analysis), ordination (Detrended Correspondence Analysis (DCA), and Redundancy Analysis (RDA) were employed to identify vegetation types and their relevance to the underlying environmental gradients. A total of 191 flowering plants belonging to 53 families and 129 genera were recorded. Geophytes and chamaephytes were the main life forms in the saline habitats, whereas therophytes and hemicryptophytes dominated the sandy formations and coral rocks. The cluster analysis and DCA ordination identified twelve vegetation groups that linked to five main habitats with definite floristic composition and environmental characteristics. The constrained RDA with Monte Carlo permutation tests revealed that elevation and soil salinity were the main environmental factors explaining the vegetation distributions. These results indicate that the flora of the study archipelago represents a phytogeographical linkage between Africa and Saharo-Arabian landscape functional elements. These findings should guide conservation and management efforts to maintain species diversity, which is threatened by anthropogenic activities and invasion by the exotic invasive tree Prosopis juliflora (Sw.) DC.

Keywords: biodiversity, classification, conservation, ordination, Red Sea

Procedia PDF Downloads 343
97 Residual Lifetime Estimation for Weibull Distribution by Fusing Expert Judgements and Censored Data

Authors: Xiang Jia, Zhijun Cheng

Abstract:

The residual lifetime of a product is the operation time between the current time and the time point when the failure happens. The residual lifetime estimation is rather important in reliability analysis. To predict the residual lifetime, it is necessary to assume or verify a particular distribution that the lifetime of the product follows. And the two-parameter Weibull distribution is frequently adopted to describe the lifetime in reliability engineering. Due to the time constraint and cost reduction, a life testing experiment is usually terminated before all the units have failed. Then the censored data is usually collected. In addition, other information could also be obtained for reliability analysis. The expert judgements are considered as it is common that the experts could present some useful information concerning the reliability. Therefore, the residual lifetime is estimated for Weibull distribution by fusing the censored data and expert judgements in this paper. First, the closed-forms concerning the point estimate and confidence interval for the residual lifetime under the Weibull distribution are both presented. Next, the expert judgements are regarded as the prior information and how to determine the prior distribution of Weibull parameters is developed. For completeness, the cases that there is only one, and there are more than two expert judgements are both focused on. Further, the posterior distribution of Weibull parameters is derived. Considering that it is difficult to derive the posterior distribution of residual lifetime, a sample-based method is proposed to generate the posterior samples of Weibull parameters based on the Monte Carlo Markov Chain (MCMC) method. And these samples are used to obtain the Bayes estimation and credible interval for the residual lifetime. Finally, an illustrative example is discussed to show the application. It demonstrates that the proposed method is rather simple, satisfactory, and robust.

Keywords: expert judgements, information fusion, residual lifetime, Weibull distribution

Procedia PDF Downloads 142
96 Nonlinear Vibration of FGM Plates Subjected to Acoustic Load in Thermal Environment Using Finite Element Modal Reduction Method

Authors: Hassan Parandvar, Mehrdad Farid

Abstract:

In this paper, a finite element modeling is presented for large amplitude vibration of functionally graded material (FGM) plates subjected to combined random pressure and thermal load. The material properties of the plates are assumed to vary continuously in the thickness direction by a simple power law distribution in terms of the volume fractions of the constituents. The material properties depend on the temperature whose distribution along the thickness can be expressed explicitly. The von Karman large deflection strain displacement and extended Hamilton's principle are used to obtain the governing system of equations of motion in structural node degrees of freedom (DOF) using finite element method. Three-node triangular Mindlin plate element with shear correction factor is used. The nonlinear equations of motion in structural degrees of freedom are reduced by using modal reduction method. The reduced equations of motion are solved numerically by 4th order Runge-Kutta scheme. In this study, the random pressure is generated using Monte Carlo method. The modeling is verified and the nonlinear dynamic response of FGM plates is studied for various values of volume fraction and sound pressure level under different thermal loads. Snap-through type behavior of FGM plates is studied too.

Keywords: nonlinear vibration, finite element method, functionally graded material (FGM) plates, snap-through, random vibration, thermal effect

Procedia PDF Downloads 262
95 Bayesian Locally Approach for Spatial Modeling of Visceral Leishmaniasis Infection in Northern and Central Tunisia

Authors: Kais Ben-Ahmed, Mhamed Ali-El-Aroui

Abstract:

This paper develops a Local Generalized Linear Spatial Model (LGLSM) to describe the spatial variation of Visceral Leishmaniasis (VL) infection risk in northern and central Tunisia. The response from each region is a number of affected children less than five years of age recorded from 1996 through 2006 from Tunisian pediatric departments and treated as a poison county level data. The model includes climatic factors, namely averages of annual rainfall, extreme values of low temperatures in winter and high temperatures in summer to characterize the climate of each region according to each continentality index, the pluviometric quotient of Emberger (Q2) to characterize bioclimatic regions and component for residual extra-poison variation. The statistical results show the progressive increase in the number of affected children in regions with high continentality index and low mean yearly rainfull. On the other hand, an increase in pluviometric quotient of Emberger contributed to a significant increase in VL incidence rate. When compared with the original GLSM, Bayesian locally modeling is improvement and gives a better approximation of the Tunisian VL risk estimation. According to the Bayesian approach inference, we use vague priors for all parameters model and Markov Chain Monte Carlo method.

Keywords: generalized linear spatial model, local model, extra-poisson variation, continentality index, visceral leishmaniasis, Tunisia

Procedia PDF Downloads 397
94 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification

Procedia PDF Downloads 277
93 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
92 Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst

Authors: Ashish Bohre, Blaž Likozar, Saikat Dutta, Dionisios G. Vlachos, Basudeb Saha

Abstract:

Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism.

Keywords: methacrylic acid, itaconic acid, biomass, monomer, solid base catalyst

Procedia PDF Downloads 173
91 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments

Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor

Abstract:

Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.

Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics

Procedia PDF Downloads 94
90 Radiation Protection Assessment of the Emission of a d-t Neutron Generator: Simulations with MCNP Code and Experimental Measurements in Different Operating Conditions

Authors: G. M. Contessa, L. Lepore, G. Gandolfo, C. Poggi, N. Cherubini, R. Remetti, S. Sandri

Abstract:

Practical guidelines are provided in this work for the safe use of a portable d-t Thermo Scientific MP-320 neutron generator producing pulsed 14.1 MeV neutron beams. The neutron generator’s emission was tested experimentally and reproduced by MCNPX Monte Carlo code. Simulations were particularly accurate, even generator’s internal components were reproduced on the basis of ad-hoc collected X-ray radiographic images. Measurement campaigns were conducted under different standard experimental conditions using an LB 6411 neutron detector properly calibrated at three different energies, and comparing simulated and experimental data. In order to estimate the dose to the operator vs. the operating conditions and the energy spectrum, the most appropriate value of the conversion factor between neutron fluence and ambient dose equivalent has been identified, taking into account both direct and scattered components. The results of the simulations show that, in real situations, when there is no information about the neutron spectrum at the point where the dose has to be evaluated, it is possible - and in any case conservative - to convert the measured value of the count rate by means of the conversion factor corresponding to 14 MeV energy. This outcome has a general value when using this type of generator, enabling a more accurate design of experimental activities in different setups. The increasingly widespread use of this type of device for industrial and medical applications makes the results of this work of interest in different situations, especially as a support for the definition of appropriate radiation protection procedures and, in general, for risk analysis.

Keywords: instrumentation and monitoring, management of radiological safety, measurement of individual dose, radiation protection of workers

Procedia PDF Downloads 132
89 Competing Risks Modeling Using within Node Homogeneity Classification Tree

Authors: Kazeem Adesina Dauda, Waheed Babatunde Yahya

Abstract:

To design a tree that maximizes within-node homogeneity, there is a need for a homogeneity measure that is appropriate for event history data with multiple risks. We consider the use of Deviance and Modified Cox-Snell residuals as a measure of impurity in Classification Regression Tree (CART) and compare our results with the results of Fiona (2008) in which homogeneity measures were based on Martingale Residual. Data structure approach was used to validate the performance of our proposed techniques via simulation and real life data. The results of univariate competing risk revealed that: using Deviance and Cox-Snell residuals as a response in within node homogeneity classification tree perform better than using other residuals irrespective of performance techniques. Bone marrow transplant data and double-blinded randomized clinical trial, conducted in other to compare two treatments for patients with prostate cancer were used to demonstrate the efficiency of our proposed method vis-à-vis the existing ones. Results from empirical studies of the bone marrow transplant data showed that the proposed model with Cox-Snell residual (Deviance=16.6498) performs better than both the Martingale residual (deviance=160.3592) and Deviance residual (Deviance=556.8822) in both event of interest and competing risks. Additionally, results from prostate cancer also reveal the performance of proposed model over the existing one in both causes, interestingly, Cox-Snell residual (MSE=0.01783563) outfit both the Martingale residual (MSE=0.1853148) and Deviance residual (MSE=0.8043366). Moreover, these results validate those obtained from the Monte-Carlo studies.

Keywords: within-node homogeneity, Martingale residual, modified Cox-Snell residual, classification and regression tree

Procedia PDF Downloads 272