Search results for: features based techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33181

Search results for: features based techniques

301 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.

Keywords: bio-economy, biomass energy, financing, metrics

Procedia PDF Downloads 137
300 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing

Authors: Leonie Bradfield, Stephen Fityus, John Simmons

Abstract:

The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.

Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump

Procedia PDF Downloads 145
299 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors

Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara

Abstract:

Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.

Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement

Procedia PDF Downloads 96
298 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy

Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon

Abstract:

Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).

Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect

Procedia PDF Downloads 158
297 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage

Authors: Andrew Laming, John Hattie, Mark Wilson

Abstract:

Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.  

Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean

Procedia PDF Downloads 39
296 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults

Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer

Abstract:

This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.

Keywords: communication, cooperation, development, interaction, neuroscience

Procedia PDF Downloads 231
295 Kinematic Gait Analysis Is a Non-Invasive, More Objective and Earlier Measurement of Impairment in the Mdx Mouse Model of Duchenne Muscular Dystrophy

Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K. Lehtimäki, A. Nurmi, D. Wells

Abstract:

Duchenne muscular dystrophy (DMD) is caused by an X linked mutation in the dystrophin gene; lack of dystrophin causes a progressive muscle necrosis which leads to a progressive decrease in mobility in those suffering from the disease. The MDX mouse, a mutant mouse model which displays a frank dystrophinopathy, is currently widely employed in pre clinical efficacy models for treatments and therapies aimed at DMD. In general the end-points examined within this model have been based on invasive histopathology of muscles and serum biochemical measures like measurement of serum creatine kinase (sCK). It is established that a “critical period” between 4 and 6 weeks exists in the MDX mouse when there is extensive muscle damage that is largely sub clinical but evident with sCK measurements and histopathological staining. However, a full characterization of the MDX model remains largely incomplete especially with respect to the ability to aggravate of the muscle damage beyond the critical period. The purpose of this study was to attempt to aggravate the muscle damage in the MDX mouse and to create a wider, more readily translatable and discernible, therapeutic window for the testing of potential therapies for DMD. The study consisted of subjecting 15 male mutant MDX mice and 15 male wild-type mice to an intense chronic exercise regime that consisted of bi-weekly (two times per week) treadmill sessions over a 12 month period. Each session was 30 minutes in duration and the treadmill speed was gradually built up to 14m/min for the entire session. Baseline plasma creatine kinase (pCK), treadmill training performance and locomotor activity were measured after the “critical period” at around 10 weeks of age and again at 14 weeks of age, 6 months, 9 months and 12 months of age. In addition, kinematic gait analysis was employed using a novel analysis algorithm in order to compare changes in gait and fine motor skills in diseased exercised MDX mice compared to exercised wild type mice and non exercised MDX mice. In addition, a morphological and metabolic profile (including lipid profile), from the muscles most severely affected, the gastrocnemius muscle and the tibialis anterior muscle, was also measured at the same time intervals. Results indicate that by aggravating or exacerbating the underlying muscle damage in the MDX mouse by exercise a more pronounced and severe phenotype in comes to light and this can be picked up earlier by kinematic gait analysis. A reduction in mobility as measured by open field is not apparent at younger ages nor during the critical period, but changes in gait are apparent in the mutant MDX mice. These gait changes coincide with pronounced morphological and metabolic changes by non-invasive anatomical MRI and proton spectroscopy (1H-MRS) we have reported elsewhere. Evidence of a progressive asymmetric pathology in imaging parameters as well as in the kinematic gait analysis was found. Taken together, the data show that chronic exercise regime exacerbates the muscle damage beyond the critical period and the ability to measure through non-invasive means are important factors to consider when performing preclinical efficacy studies in the MDX mouse.

Keywords: Gait, muscular dystrophy, Kinematic analysis, neuromuscular disease

Procedia PDF Downloads 259
294 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery

Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal

Abstract:

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.

Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT

Procedia PDF Downloads 213
293 Ragging and Sludging Measurement in Membrane Bioreactors

Authors: Pompilia Buzatu, Hazim Qiblawey, Albert Odai, Jana Jamaleddin, Mustafa Nasser, Simon J. Judd

Abstract:

Membrane bioreactor (MBR) technology is challenged by the tendency for the membrane permeability to decrease due to ‘clogging’. Clogging includes ‘sludging’, the filling of the membrane channels with sludge solids, and ‘ragging’, the aggregation of short filaments to form long rag-like particles. Both sludging and ragging demand manual intervention to clear out the solids, which is time-consuming, labour-intensive and potentially damaging to the membranes. These factors impact on costs more significantly than membrane surface fouling which, unlike clogging, is largely mitigated by the chemical clean. However, practical evaluation of MBR clogging has thus far been limited. This paper presents the results of recent work attempting to quantify sludging and clogging based on simple bench-scale tests. Results from a novel ragging simulation trial indicated that rags can be formed within 24-36 hours from dispersed < 5 mm-long filaments at concentrations of 5-10 mg/L under gently agitated conditions. Rag formation occurred for both a cotton wool standard and samples taken from an operating municipal MBR, with between 15% and 75% of the added fibrous material forming a single rag. The extent of rag formation depended both on the material type or origin – lint from laundering operations forming zero rags – and the filament length. Sludging rates were quantified using a bespoke parallel-channel test cell representing the membrane channels of an immersed flat sheet MBR. Sludge samples were provided from two local MBRs, one treating municipal and the other industrial effluent. Bulk sludge properties measured comprised mixed liquor suspended solids (MLSS) concentration, capillary suction time (CST), particle size, soluble COD (sCOD) and rheology (apparent viscosity μₐ vs shear rate γ). The fouling and sludging propensity of the sludge was determined using the test cell, ‘fouling’ being quantified as the pressure incline rate against flux via the flux step test (for which clogging was absent) and sludging by photographing the channel and processing the image to determine the ratio of the clogged to unclogged regions. A substantial difference in rheological and fouling behaviour was evident between the two sludge sources, the industrial sludge having a higher viscosity but less shear-thinning than the municipal. Fouling, as manifested by the pressure increase Δp/Δt, as a function of flux from classic flux-step experiments (where no clogging was evident), was more rapid for the industrial sludge. Across all samples of both sludge origins the expected trend of increased fouling propensity with increased CST and sCOD was demonstrated, whereas no correlation was observed between clogging rate and these parameters. The relative contribution of fouling and clogging was appraised by adjusting the clogging propensity via increasing the MLSS both with and without a commensurate increase in the COD. Results indicated that whereas for the municipal sludge the fouling propensity was affected by the increased sCOD, there was no associated increased in the sludging propensity (or cake formation). The clogging rate actually decreased on increasing the MLSS. Against this, for the industrial sludge the clogging rate dramatically increased with solids concentration despite a decrease in the soluble COD. From this was surmised that sludging did not relate to fouling.

Keywords: clogging, membrane bioreactors, ragging, sludge

Procedia PDF Downloads 156
292 Sandstone-Hosted Copper Mineralization in Oligo-Miocene-Red-Bed Strata, Chalpo North East of Iran: Constraints from Lithostratigraphy, Lithogeochemistry, Mineralogy, Mass Change Technique, and Ree Distribution

Authors: Mostafa Feiz, Hossein Hadizadeh, Mohammad Safari

Abstract:

The Chalpo copper area is located in northeastern Iran, which is part of the structural zone of central Iran and the back-arc basin of Sabzevar. This sedimentary basin accumulated in destructive-Oligomiocene sediments is named the Nasr-Chalpo-Sangerd (NCS) basin. The sedimentary layers in this basin originated mainly from Upper Cretaceous ophiolitic rocks and intermediate to mafic-post ophiolitic volcanic rocks, deposited as a nonconformity. The mineralized sandstone layers in the Chalpo area include leached zones (with a thickness of 5 to 8 meters) and mineralized lenses with a thickness of 0.5 to 0.7 meters. Ore minerals include primary sulfide minerals, such as chalcocite, chalcopyrite, and pyrite, as well as secondary minerals, such as covellite, digenite, malachite, and azurite, formed in three stages that comprise primary, simultaneously, and supergene stage. The best agents that control the mineralization in this area include the permeability of host rocks, the presence of fault zones as the conduits for copper oxide solutions, and significant amounts of plant fossils, which create a reducing environment for the deposition of mineralized layers. Statistical studies on copper layers indicate that Ag, Cd, Mo, and S have the maximum positive correlation with Cu, whereas TiO₂, Fe₂O₃, Al₂O₃, Sc, Tm, Sn, and the REEs have a negative correlation. The calculations of mass changes on copper-bearing layers and primary sandstone layers indicate that Pb, As, Cd, Te, and Mo are enriched in the mineralized zones, whereas SiO₂, TiO₂, Fe₂O₃, V, Sr, and Ba are depleted. The combination of geological, stratigraphic, and geochemical studies suggests that the origin of copper may have been the underlying red strata that contained hornblende, plagioclase, biotite, alkaline feldspar, and labile minerals. Dehydration and hydrolysis of these minerals during the diagenetic process caused the leaching of copper and associated elements by circling fluids, which formed an oxidant-hydrothermal solution. Copper and silver in this oxidant solution might have moved upwards through the basin-fault zones and deposited in the reducing environments in the sandstone layers that have had abundant organic matters. Copper in these solutions probably was carried by chloride complexes. The collision of oxidant and reduced solutions caused the deposition of Cu and Ag, whereas some stable elements in oxidant environments (e.g., Fe₂O₃, TiO₂, SiO₂, REEs) become unstable in the reduced condition. Therefore, the copper-bearing sandstones in the study area are depleted from these elements resulting from the leaching process. The results indicate that during the mineralization stage, LREEs and MREEs were depleted, but Cu, Ag, and S were enriched. Based on field evidence, it seems that the circulation of connate fluids in the reb-bed strata, produced by diagenetic processes, encountered to reduced facies, which formed earlier by abundant fossil-plant debris in the sandstones, is the best model for precipitating sulfide-copper minerals.

Keywords: Chalpo, oligo-miocene red beds, sandstone-hosted copper mineralization, mass change, LREEs, MREEs

Procedia PDF Downloads 41
291 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 105
290 Absenteeism in Polytechnical University Studies: Quantification and Identification of the Causes at Universitat Politècnica de Catalunya

Authors: E. Mas de les Valls, M. Castells-Sanabra, R. Capdevila, N. Pla, Rosa M. Fernandez-Canti, V. de Medina, A. Mujal, C. Barahona, E. Velo, M. Vigo, M. A. Santos, T. Soto

Abstract:

Absenteeism in universities, including polytechnical universities, is influenced by a variety of factors. Some factors overlap with those causing absenteeism in schools, while others are specific to the university and work-related environments. Indeed, these factors may stem from various sources, including students, educators, the institution itself, or even the alignment of degree curricula with professional requirements. In Spain, there has been an increase in absenteeism in polytechnical university studies, especially after the Covid crisis, posing a significant challenge for institutions to address. This study focuses on Universitat Politècnica de Catalunya• BarcelonaTech (UPC) and aims to quantify the current level of absenteeism and identify its main causes. The study is part of the teaching innovation project ASAP-UPC, which aims to minimize absenteeism through the redesign of teaching methodologies. By understanding the factors contributing to absenteeism, the study seeks to inform the subsequent phases of the ASAP-UPC project, which involve implementing methodologies to minimize absenteeism and evaluating their effectiveness. The study utilizes surveys conducted among students and polytechnical companies. Students' perspectives are gathered through both online surveys and in-person interviews. The surveys inquire about students' interest in attending classes, skill development throughout their UPC experience, and their perception of the skills required for a career in a polytechnical field. Additionally, polytechnical companies are surveyed regarding the skills they seek in prospective employees. The collected data is then analyzed to identify patterns and trends. This analysis involves organizing and categorizing the data, identifying common themes, and drawing conclusions based on the findings. This mixed-method approach has revealed that higher levels of absenteeism are observed in large student groups at both the Bachelor's and Master's degree levels. However, the main causes of absenteeism differ between these two levels. At the Bachelor's level, many students express dissatisfaction with in-person classes, perceiving them as overly theoretical and lacking a balance between theory, experimental practice, and problem-solving components. They also find a lack of relevance to professional needs. Consequently, they resort to using online available materials developed during the Covid crisis and attending private academies for exam preparation instead. On the other hand, at the Master's level, absenteeism primarily arises from schedule incompatibility between university and professional work. There is a discrepancy between the skills highly valued by companies and the skills emphasized during the studies, aligning partially with students' perceptions. These findings are of theoretical importance as they shed light on areas that can be improved to offer a more beneficial educational experience to students at UPC. The study also has potential applicability to other polytechnic universities, allowing them to adapt the surveys and apply the findings to their specific contexts. By addressing the identified causes of absenteeism, universities can enhance the educational experience and better prepare students for successful careers in polytechnical fields.

Keywords: absenteeism, polytechnical studies, professional skills, university challenges

Procedia PDF Downloads 44
289 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection

Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten

Abstract:

Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.

Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection

Procedia PDF Downloads 310
288 Mobile App versus Website: A Comparative Eye-Tracking Case Study of Topshop

Authors: Zofija Tupikovskaja-Omovie, David Tyler, Sam Dhanapala, Steve Hayes

Abstract:

The UK is leading in online retail and mobile adoption. However, there is a dearth of information relating to mobile apparel retail, and developing an understanding about consumer browsing and purchase behavior in m-retail channel would provide apparel marketers, mobile website and app developers with the necessary understanding of consumers’ needs. Despite the rapid growth of mobile retail businesses, no published study has examined shopping behaviour on fashion mobile websites and apps. A mixed method approach helped to understand why fashion consumers prefer websites on mobile devices, when mobile apps are also available. The following research methods were employed: survey, eye-tracking experiments, observation, and interview with retrospective think aloud. The mobile gaze tracking device by SensoMotoric Instruments was used to understand frustrations in navigation and other issues facing consumers in mobile channel. This method helped to validate and compliment other traditional user-testing approaches in order to optimize user experience and enhance the development of mobile retail channel. The study involved eight participants - females aged 18 to 35 years old, who are existing mobile shoppers. The participants used the Topshop mobile app and website on a smart phone to complete a task according to a specified scenario leading to a purchase. The comparative study was based on: duration and time spent at different stages of the shopping journey, number of steps involved and product pages visited, search approaches used, layout and visual clues, as well as consumer perceptions and expectations. The results from the data analysis show significant differences in consumer behaviour when using a mobile app or website on a smart phone. Moreover, two types of problems were identified, namely technical issues and human errors. Having a mobile app does not guarantee success in satisfying mobile fashion consumers. The differences in the layout and visual clues seem to influence the overall shopping experience on a smart phone. The layout of search results on the website was different from the mobile app. Therefore, participants, in most cases, behaved differently on different platforms. The number of product pages visited on the mobile app was triple the number visited on the website due to a limited visibility of products in the search results. Although, the data on traffic trends held by retailers to date, including retail sector breakdowns for visits and views, data on device splits and duration, might seem a valuable source of information, it cannot explain why consumers visit many product pages, stay longer on the website or mobile app, or abandon the basket. A comprehensive list of pros and cons was developed by highlighting issues for website and mobile app, and recommendations provided. The findings suggest that fashion retailers need to be aware of actual consumers’ behaviour on the mobile channel and their expectations in order to offer a seamless shopping experience. Added to which is the challenge of retaining existing and acquiring new customers. There seem to be differences in the way fashion consumers search and shop on mobile, which need to be explored in further studies.

Keywords: consumer behavior, eye-tracking technology, fashion retail, mobile app, m-retail, smart phones, topshop, user experience, website

Procedia PDF Downloads 433
287 Reviving the Past, Enhancing the Future: Preservation of Urban Heritage Connectivity as a Tool for Developing Liveability in Historical Cities in Jordan, Using as Salt City as a Case Study

Authors: Sahar Yousef, Chantelle Niblock, Gul Kacmaz

Abstract:

Salt City, in the context of Jordan’s heritage landscape, is a significant case to explore when it comes to the interaction between tangible and intangible qualities of liveable cities. Most city centers, including Jerash, Salt, Irbid, and Amman, are historical locations. Six of these extraordinary sites were designated UNESCO World Heritage Sites. Jordan is widely acknowledged as a developing country characterized by swift urbanization and unrestrained expansion that exacerbate the challenges associated with the preservation of historic urban areas. The aim of this study is to conduct an examination and analysis of the existing condition of heritage connectivity within heritage city centers. This includes outdoor staircases, pedestrian pathways, footpaths, and other public spaces. Case study-style analysis of the urban core of As-Salt is the focus of this investigation. Salt City is widely acknowledged for its substantial tangible and intangible cultural heritage and has been designated as ‘The Place of Tolerance and Urban Hospitality’ by UNESCO since 2021. Liveability in urban heritage, particularly in historic city centers, incorporates several factors that affect our well-being; its enhancement is a critical issue in contemporary society. The dynamic interaction between humans and historical materials, which serves as a vehicle for the expression of their identity and historical narrative, constitutes preservation that transcends simple conservation. This form of engagement enables people to appreciate the diversity of their heritage recognising their previous and planned futures. Heritage preservation is inextricably linked to a larger physical and emotional context; therefore, it is difficult to examine it in isolation. Urban environments, including roads, structures, and other infrastructure, are undergoing unprecedented physical design and construction requirements. Concurrently, heritage reinforces a sense of affiliation with a particular location or space and unifies individuals with their ancestry, thereby defining their identity. However, a considerable body of research has focused on the conservation of heritage buildings in a fragmented manner without considering their integration within a holistic urban context. Insufficient attention is given to the significance of the physical and social roles played by the heritage staircases and baths that serve as connectors between these valued historical buildings. In doing so, the research uses a methodology that is based on consensus. Given that liveability is considered a complex matter with several dimensions. The discussion starts by making initial observations on the physical context and societal norms inside the urban center while simultaneously establishing the definitions of liveability and connectivity and examining the key criteria associated with these concepts. Then, identify the key elements that contribute to liveable connectivity within the framework of urban heritage in Jordanian city centers. Some of the outcomes that will be discussed in the presentation are: (1) There is not enough connectivity between heritage buildings as can be seen, for example, between buildings in Jada and Qala'. (2) Most of the outdoor spaces suffer from physical issues that hinder their use by the public, like in Salalem. (3) Existing activities in the city center are not well attended because of lack of communication between the organisers and the citizens.

Keywords: connectivity, Jordan, liveability, salt city, tangible and intangible heritage, urban heritage

Procedia PDF Downloads 39
286 Tip-Enhanced Raman Spectroscopy with Plasmonic Lens Focused Longitudinal Electric Field Excitation

Authors: Mingqian Zhang

Abstract:

Tip-enhanced Raman spectroscopy (TERS) is a scanning probe technique for individual objects and structured surfaces investigation that provides a wealth of enhanced spectral information with nanoscale spatial resolution and high detection sensitivity. It has become a powerful and promising chemical and physical information detection method in the nanometer scale. The TERS technique uses a sharp metallic tip regulated in the near-field of a sample surface, which is illuminated with a certain incident beam meeting the excitation conditions of the wave-vector matching. The local electric field, and, consequently, the Raman scattering, from the sample in the vicinity of the tip apex are both greatly tip-enhanced owning to the excitation of localized surface plasmons and the lightning-rod effect. Typically, a TERS setup is composed of a scanning probe microscope, excitation and collection optical configurations, and a Raman spectroscope. In the illumination configuration, an objective lens or a parabolic mirror is always used as the most important component, in order to focus the incident beam on the tip apex for excitation. In this research, a novel TERS setup was built up by introducing a plasmonic lens to the excitation optics as a focusing device. A plasmonic lens with symmetry breaking semi-annular slits corrugated on gold film was designed for the purpose of generating concentrated sub-wavelength light spots with strong longitudinal electric field. Compared to conventional far-field optical components, the designed plasmonic lens not only focuses an incident beam to a sub-wavelength light spot, but also realizes a strong z-component that dominants the electric field illumination, which is ideal for the excitation of tip-enhancement. Therefore, using a PL in the illumination configuration of TERS contributes to improve the detection sensitivity by both reducing the far-field background and effectively exciting the localized electric field enhancement. The FDTD method was employed to investigate the optical near-field distribution resulting from the light-nanostructure interaction. And the optical field distribution was characterized using an scattering-type scanning near-field optical microscope to demonstrate the focusing performance of the lens. The experimental result is in agreement with the theoretically calculated one. It verifies the focusing performance of the plasmonic lens. The optical field distribution shows a bright elliptic spot in the lens center and several arc-like side-lobes on both sides. After the focusing performance was experimentally verified, the designed plasmonic lens was used as a focusing component in the excitation configuration of TERS setup to concentrate incident energy and generate a longitudinal optical field. A collimated linearly polarized laser beam, with along x-axis polarization, was incident from the bottom glass side on the plasmonic lens. The incident light focused by the plasmonic lens interacted with the silver-coated tip apex and enhanced the Raman signal of the sample locally. The scattered Raman signal was gathered by a parabolic mirror and detected with a Raman spectroscopy. Then, the plasmonic lens based setup was employed to investigate carbon nanotubes and TERS experiment was performed. Experimental results indicate that the Raman signal is considerably enhanced which proves that the novel TERS configuration is feasible and promising.

Keywords: longitudinal electric field, plasmonics, raman spectroscopy, tip-enhancement

Procedia PDF Downloads 350
285 Modern Hybrid of Older Black Female Stereotypes in Hollywood Film

Authors: Frederick W. Gooding, Jr., Mark Beeman

Abstract:

Nearly a century ago, the groundbreaking 1915 film ‘The Birth of a Nation’ popularized the way Hollywood made movies with its avant-garde, feature-length style. The movie's subjugating and demeaning depictions of African American women (and men) reflected popular racist beliefs held during the time of slavery and the early Jim Crow era. Although much has changed concerning race relations in the past century, American sociologist Patricia Hill Collins theorizes that the disparaging images of African American women originating in the era of plantation slavery are adaptable and endure as controlling images today. In this context, a comparative analysis of the successful contemporary film, ‘Bringing Down the House’ starring Queen Latifah is relevant as this 2004 film was designed to purposely defy and ridicule classic stereotypes of African American women. However, the film is still tied to the controlling images from the past, although in a modern hybrid form. Scholars of race and film have noted that the pervasive filmic imagery of the African American woman as the loyal mammy stereotype faded from the screen in the post-civil rights era in favor of more sexualized characters (i.e., the Jezebel trope). Analyzing scenes and dialogue through the lens of sociological and critical race theory, the troubling persistence of African American controlling images in film stubbornly emerge in a movie like ‘Bringing Down the House.’ Thus, these controlling images, like racism itself, can adapt to new social and economic conditions. Although the classic controlling images appeared in the first feature length film focusing on race relations a century ago, ‘The Birth of a Nation,’ this black and white rendition of the mammy figure was later updated in 1939 with the classic hit, ‘Gone with the Wind’ in living color. These popular controlling images have loomed quite large in the minds of international audiences, as ‘Gone with the Wind’ is still shown in American theaters currently, and experts at the British Film Institute in 2004 rated ‘Gone with the Wind’ as the number one movie of all time in UK movie history based upon the total number of actual viewings. Critical analysis of character patterns demonstrate that images that appear superficially benign contribute to a broader and quite persistent pattern of marginalization within the aggregate. This approach allows experts and viewers alike to detect more subtle and sophisticated strands of racial discrimination that are ‘hidden in plain sight’ despite numerous changes in the Hollywood industry that appear to be more voluminous and diverse than three or four decades ago. In contrast to white characters, non-white or minority characters are likely to be subtly compromised or marginalized relative to white characters if and when seen within mainstream movies, rather than be subjected to obvious and offensive racist tropes. The hybrid form of both the older Jezebel and Mammy stereotypes exhibited by lead actress Queen Latifah in ‘Bringing Down the House’ represents a more suave and sophisticated merging of past imagery ideas deemed problematic in the past as well as the present.

Keywords: African Americans, Hollywood film, hybrid, stereotypes

Procedia PDF Downloads 154
284 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships

Authors: Vijaya Dixit Aasheesh Dixit

Abstract:

Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.

Keywords: learning curve, materials management, shipbuilding, sister ships

Procedia PDF Downloads 476
283 A Comprehensive Planning Model for Amalgamation of Intensification and Green Infrastructure

Authors: Sara Saboonian, Pierre Filion

Abstract:

The dispersed-suburban model has been the dominant one across North America for the past seventy years, characterized by automobile reliance, low density, and land-use specialization. Two planning models have emerged as possible alternatives to address the ills inflicted by this development pattern. First, there is intensification, which promotes efficient infrastructure by connecting high-density, multi-functional, and walkable nodes with public transit services within the suburban landscape. Second is green infrastructure, which provides environmental health and human well-being by preserving and restoring ecosystem services. This research studies incompatibilities and the possibility of amalgamating the two alternatives in an attempt to develop a comprehensive alternative to suburban model that advocates density, multi-functionality and transit- and pedestrian-conduciveness, with measures capable of mitigating the adverse environmental impacts of compactness. The research investigates three Canadian urban growth centers, where intensification is the current planning practice, and the awareness of green infrastructure benefits is on the rise. However, these three centers are contrasted by their development stage, the presence or absence of protected natural land, their environmental approach, and their adverse environmental consequences according to the planning cannons of different periods. The methods include reviewing the literature on green infrastructure planning, criticizing the Ontario provincial plans for intensification, surveying residents’ preferences for alternative models, and interviewing officials who deal with the local planning for the centers. Moreover, the research draws on recalling debates between New Urbanism and Landscape/Ecological Urbanism. The case studies expose the difficulties in creating urban growth centres that accommodate green infrastructure while adhering to intensification principles. First, the dominant status of intensification and the obstacles confronting intensification have monopolized the planners’ concerns. Second, the tension between green infrastructure and intensification explains the absence of the green infrastructure typologies that correspond to intensification-compatible forms and dynamics. Finally, the lack of highlighted social-economic benefits of green infrastructure reduces residents’ participation. Moreover, the results from the research provide insight into predominating urbanization theories, New Urbanism and Landscape/Ecological Urbanism. In order to understand political, planning, and ecological dynamics of such blending, dexterous context-specific planning is required. Findings suggest the influence of the following factors on amalgamating intensification and green infrastructure. Initially, producing ecosystem services-based justifications for green infrastructure development in the intensification context provides an expert-driven backbone for the implementation programs. This knowledge-base should be translated to effectively imbue different urban stakeholders. Moreover, due to the limited greenfields in intensified areas, spatial distribution and development of multi-level corridors such as pedestrian-hospitable settings and transportation networks along green infrastructure measures are required. Finally, to ensure the long-term integrity of implemented green infrastructure measures, significant investment in public engagement and education, as well as clarification of management responsibilities is essential.

Keywords: ecosystem services, green infrastructure, intensification, planning

Procedia PDF Downloads 327
282 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer

Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller

Abstract:

Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.

Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine

Procedia PDF Downloads 71
281 Impact of School Environment on Socio-Affective Development: A Quasi-Experimental Longitudinal Study of Urban and Suburban Gifted and Talented Programs

Authors: Rebekah Granger Ellis, Richard B. Speaker, Pat Austin

Abstract:

This study used two psychological scales to examine the level of social and emotional intelligence and moral judgment of over 500 gifted and talented high school students in various academic and creative arts programs in a large metropolitan area in the southeastern United States. For decades, numerous models and programs purporting to encourage socio-affective characteristics of adolescent development have been explored in curriculum theory and design. Socio-affective merges social, emotional, and moral domains. It encompasses interpersonal relations and social behaviors; development and regulation of emotions; personal and gender identity construction; empathy development; moral development, thinking, and judgment. Examining development in these socio-affective domains can provide insight into why some gifted and talented adolescents are not successful in adulthood despite advanced IQ scores. Particularly whether nonintellectual characteristics of gifted and talented individuals, such as emotional, social and moral capabilities, are as advanced as their intellectual abilities and how these are related to each other. Unique characteristics distinguish gifted and talented individuals; these may appear as strengths, but there is the potential for problems to accompany them. Although many thrive in their school environments, some gifted students struggle rather than flourish. In the socio-affective domain, these adolescents face special intrapersonal, interpersonal, and environmental problems. Gifted individuals’ cognitive, psychological, and emotional development occurs asynchronously, in multidimensional layers at different rates and unevenly across ability levels. Therefore, it is important to examine the long-term effects of participation in various gifted and talented programs on the socio-affective development of gifted and talented adolescents. This quasi-experimental longitudinal study examined students in several gifted and talented education programs (creative arts school, urban charter schools, and suburban public schools) for (1) socio-affective development level and (2) whether a particular gifted and talented program encourages developmental growth. The following research questions guided the study: (1) How do academically and artistically talented gifted 10th and 11th grade students perform on psychometric scales of social and emotional intelligence and moral judgment? Do they differ from their age or grade normative sample? Are their gender differences among gifted students? (2) Does school environment impact 10th and 11th grade gifted and talented students’ socio-affective development? Do gifted adolescents who participate in a particular school gifted program differ in their developmental profiles of social and emotional intelligence and moral judgment? Students’ performances on psychometric instruments were compared over time and by type of program. Participants took pre-, mid-, and post-tests over the course of an academic school year with Defining Issues Test (DIT-2) assessing moral judgment and BarOn EQ-I: YV assessing social and emotional intelligence. Based on these assessments, quantitative differences in growth on psychological scales (individual and school) were examined. Change scores between schools were also compared. If a school showed change, artifacts (culture, curricula, instructional methodology) provided insight as to environmental qualities that produced this difference.

Keywords: gifted and talented education, moral development, socio-affective development, socio-affective education

Procedia PDF Downloads 144
280 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.

Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor

Procedia PDF Downloads 103
279 The Impact of Spirituality on the Voluntary Simplicity Lifestyle Tendency: An Explanatory Study on Turkish Consumers

Authors: Esna B. Buğday, Niray Tunçel

Abstract:

Spirituality has a motivational influence on consumers' psychological states, lifestyles, and behavioral intentions. Spirituality refers to the feeling that there is a divine power greater than ourselves and a connection among oneself, others, nature, and the sacred. In addition, spirituality concerns the human soul and spirit against the material and physical world and consists of three dimensions: self-discovery, relationships, and belief in a higher power. Of them, self-discovery is to explore the meaning and the purpose of life. Relationships refer to the awareness of the connection between human beings and nature as well as respect for them. In addition, higher power represents the transcendent aspect of spirituality, which means to believe in a holy power that creates all the systems in the universe. Furthermore, a voluntary simplicity lifestyle is (1) to adopt a simple lifestyle by minimizing the attachment to and the consumption of material things and possessions, (2) to have an ecological awareness respecting all living creatures, and (3) to express the desire for exploring and developing the inner life. Voluntary simplicity is a multi-dimensional construct that consists of a desire for a voluntarily simple life (e.g., avoiding excessive consumption), cautious attitudes in shopping (e.g., not buying unnecessary products), acceptance of self-sufficiency (e.g., being self-sufficient individual), and rejection of highly developed functions of products (e.g., preference for simple functioned products). One of the main reasons for living simply is to sustain a spiritual life, as voluntary simplicity provides the space for achieving psychological and spiritual growth, cultivating self-reliance since voluntary simplifier frees themselves from the overwhelming externals and takes control of their daily lives. From this point of view, it is expected that people with a strong sense of spirituality will be likely to adopt a simple lifestyle. In this respect, the study aims to examine the impact of spirituality on consumers' voluntary simple lifestyle tendencies. As consumers' consumption attitudes and behaviors depend on their lifestyles, exploring the factors that lead them to embrace voluntary simplicity significantly predicts their purchase behavior. In this respect, this study presents empirical research based on a data set collected from 478 Turkish consumers through an online survey. First, exploratory factor analysis is applied to the data to reveal the dimensions of spirituality and voluntary simplicity scales. Second, confirmatory factor analysis is conducted to assess the measurement model. Last, the hypotheses are analyzed using partial least square structural equation modeling (PLS-SEM). The results confirm that spirituality's self-discovery and relationships dimensions positively impact both cautious attitudes in shopping and acceptance of self-sufficiency dimensions of voluntary simplicity. In contrast, belief in a higher power does not significantly influence consumers' voluntary simplicity tendencies. Even though there has been theoretical support drawing a positive relationship between spirituality and voluntary simplicity, to the best of the authors' knowledge, this has not been empirically tested in the literature before. Hence, this study contributes to the current knowledge by analyzing the direct influence of spirituality on consumers' voluntary simplicity tendencies. Additionally, analyzing this impact on the consumers of an emerging market is another contribution to the literature.

Keywords: spirituality, voluntary simplicity, self-sufficiency, conscious shopping, Turkish consumers

Procedia PDF Downloads 132
278 Structural Fluxionality of Luminescent Coordination Compounds with Lanthanide Ions

Authors: Juliana A. B. Silva, Caio H. T. L. Albuquerque, Leonardo L. dos Santos, Cristiane K. Oliveira, Ivani Malvestiti, Fernando Hallwass, Ricardo L. Longo

Abstract:

Complexes with lanthanide ions have been extensively studied due to their applications as luminescent, magnetic and catalytic materials as molecular or extended crystals, thin films, glasses, polymeric matrices, ionic liquids, and in solution. NMR chemical shift data in solution have been reported and suggest fluxional structures in a wide range of coordination compounds with rare earth ions. However, the fluxional mechanisms for these compounds are still not established. This structural fluxionality may affect the photophysical, catalytic and magnetic properties in solution. Thus, understanding the structural interconversion mechanisms may aid the design of coordination compounds with, for instance, improved (electro)luminescence, catalytic and magnetic behaviors. The [Eu(btfa)₃bipy] complex, where btfa= 4,4,4-trifluoro-1-phenyl-1,3-butanedionate and bipy= 2,2’-bipiridyl, has a well-defined X-ray crystallographic structure and preliminary 1H NMR data suggested a structural fluxionality. Thus, we have investigated a series of coordination compounds with lanthanide ions [Ln(btfa)₃L], where Ln = La, Eu, Gd or Yb and L= bipy or phen (phen=1,10-phenanthroline) using a combined theoretical-experimental approach. These complexes were synthesized and fully characterized, and detailed NMR measurements were obtained. They were also studied by quantum chemical computational methods (DFT-PBE0). The aim was to determine the relevant factors in the structure of these compounds that favor or not the fluxional behavior. Measurements of the 1H NMR signals at variable temperature in CD₂Cl₂ of the [Eu(btfa)₃L] complexes suggest that these compounds have a fluxional structure, because the crystal structure has non-equivalent btfa ligands that should lead to non-equivalent hydrogen atoms and thus to more signals in the NMR spectra than those obtained at room temperature, where all hydrogen atoms of the btfa ligands are equivalent, and phen ligand has an effective vertical symmetry plane. For the [Eu(btfa)₃bipy] complex, the broadening of the signals at –70°C provides a lower bound for the coalescence temperature, which indicates the energy barriers involved in the structural interconversion mechanisms are quite small. These barriers and, consequently, the coalescence temperature are dependent upon the radii of the lanthanide ion as well as to their paramagnetic effects. The PBE0 calculated structures are in very good agreement with the crystallographic data and, for the [Eu(btfa)₃bipy] complex, this method provided several distinct structures with almost the same energy. However, the energy barrier for structural interconversion via dissociative pathways were found to be quite high and could not explain the experimental observations. Whereas the pseudo-rotation pathways, involving the btfa and bipy ligands, have very small activation barriers, in excellent agreement with the NMR data. The results also showed an increase in the activation barrier along the lanthanide series due to the decrease of the ionic radii and consequent increase of the steric effects. TD-DFT calculations showed a dependence of the ligand donor state energy with different structures of the complex [Eu(btfa)₃phen], which can affect the energy transfer rates and the luminescence. The energy required to promote the structural fluxionality may also enhance the luminescence quenching in solution. These results can aid in the design of more luminescent compounds and more efficient devices.

Keywords: computational chemistry, lanthanide-based compounds, NMR, structural fluxionality

Procedia PDF Downloads 175
277 Impact of the 2015 Drought on Rural Livelihood – a Case Study of Masurdi Village in Latur District of Maharashtra, India

Authors: Nitin Bhagat

Abstract:

Drought is a global phenomenon. It has a huge impact on agriculture and allied sector activities. Agriculture plays a substantial role in the economy of developing countries, which mainly depends on rainfall. The present study illustrates the drought conditions in Masurdi village of Latur district in the Marathwada region, Maharashtra. This paper is based on both primary as well as secondary data sources. The multistage sample method was used for primary data collection. The 100 households sample survey data has been collected from the village through a semi-structured questionnaire. The crop production data is collected from the Department of Agriculture, Government of Maharashtra. The rainfall data is obtained from the Department of Revenue, Office of Divisional Commissioner, Aurangabad for the period from 1988 to 2018. This paper examines the severity of drought consequences of the 2015 drought on domestic water supply, crop production, and the effect on children's schooling, livestock assets, bank credit, and migration. The study also analyzed climate variables' impact on the Latur district's total food grain production for 19 years from 2000 to 2018. This study applied multiple regression analysis to check the relationship between climatic variables and the Latur district's total food grain production. The climate variables are annual rainfall, maximum temperature and minimum temperature. The study considered that climatic variables are independent variables and total food grain as the dependent variable. It shows there is a significant relationship between rainfall and maximum temperature. The study also calculated rainfall deviations to find out the drought and normal years. According to drought manual 2016, the rainfall deviation calculated using the following formula. RF dev = {(RFi – RFn) / RFn}*100.Approximately 27.43 % of the workforce migrated from rural to urban areas for searching jobs, and crop production decreased tremendously due to inadequate rainfall in the drought year 2015. Many farm and non-farm labor, some marginal and small cultivators, migrated from rural to urban areas (like Pune, Mumbai, and Western Maharashtra).About 48 % of the households' children faced education difficulties; in the drought period, children were not going to school. They left their school and joined to bring water with their mother and fathers, sometimes they fetched water on their head or using a bicycle, near about 2 km from the village. In their school-going days, drinking water was not available in their schools, so the government declared holidays early in the academic education year 2015-16 compared to another academic year. Some college and 10th class students left their education due to financial problems. Many households benefited from state government schemes, like drought subsidies, crop insurance, and bank loans. Out of 100 households, about 50 (50 %) have obtained financial support from the state government’s subsidy scheme, 58 ( 58 %) have got crop insurance, and 41(41 %) irrigated households have got bank loans from national banks; besides that, only two families have obtained loans from their relatives and moneylenders.

Keywords: agriculture, drought, household, rainfall

Procedia PDF Downloads 149
276 Quantifying Impairments in Whiplash-Associated Disorders and Association with Patient-Reported Outcomes

Authors: Harpa Ragnarsdóttir, Magnús Kjartan Gíslason, Kristín Briem, Guðný Lilja Oddsdóttir

Abstract:

Introduction: Whiplash-Associated Disorder (WAD) is a health problem characterized by motor, neurological and psychosocial symptoms, stressing the need for a multimodal treatment approach. To achieve individualized multimodal approach, prognostic factors need to be identified early using validated patient-reported and objective outcome measures. The aim of this study is to demonstrate the degree of association between patient-reported and clinical outcome measures of WAD patients in the subacute phase. Methods: Individuals (n=41) with subacute (≥1, ≤3 months) WAD (I-II), medium to high-risk symptoms, or neck pain rating ≥ 4/10 on the Visual Analog Scale (VAS) were examined. Outcome measures included measurements for movement control (Butterfly test) and cervical active range of motion (cAROM) using the NeckSmart system, a computer system using an inertial measurement unit (IMU) that connects to a computer. The IMU sensor is placed on the participant’s head, who receives visual feedback about the movement of the head. Patient-reported neck disability, pain intensity, general health, self-perceived handicap, central sensitization, and difficulties due to dizziness were measured using questionnaires. Excel and R statistical software were used for statistical analyses. Results: Forty-one participants, 15 males (37%), 26 females (63%), mean (SD) age 36.8 (±12.7), underwent data collection. Mean amplitude accuracy (AA) (SD) in the Butterfly test for easy, medium, and difficult paths were 2.4mm (0.9), 4.4mm (1.8), and 6.8mm (2.7), respectively. Mean cAROM (SD) for flexion, extension, left-, and right rotation were 46.3° (18.5), 48.8° (17.8), 58.2° (14.3), and 58.9° (15.0), respectively. Mean scores on the Neck Disability Index (NDI), VAS, Dizziness Handicap Inventory (DHI), Central Sensitization Inventory (CSI), and 36-Item Short Form Survey RAND version (RAND) were 43% (17.4), 7 (1.7), 37 (25.4), 51 (17.5), and 39.2 (17.7) respectively. Females showed significantly greater deviation for AA compared to males for easy and medium Butterfly paths (p<0.05). Statistically significant moderate to strong positive correlation was found between the DHI and easy (r=0.6, p=0.05), medium (r=0.5, p=0.05)) and difficult (r=0.5, p<0.05) Butterfly paths, between the total RAND score and all cAROMs (r between 0.4-0.7, p≤0.05) except flexion (r=0.4, p=0.7), and between the NDI score and CSI (r=0.7, p<0.01), VAS (r=0.5, p<0.01), and DHI (r=0.7, p<0.01) scores respectively. Discussion: All patient-reported and objective measures were found to be outside the reference range. Results suggest females have worse movement control in the neck in the subacute WAD phase. However, no statistical difference based on gender was found in patient-reported measures. Suggesting females might have worse movement control than males in general in this phase. The correlation found between DHI and the Butterfly test can be explained because the DHI measures proprioceptive symptoms like dizziness and eye movement disorders that can affect the outcome of movement control tests. A correlation was found between the total RAND score and cAROM, suggesting that a reduced range of motion affects the quality of life. Significance: The NeckSmart system can detect abnormalities in cAROM, fine movement control, and kinesthesia of the neck. Results suggest females have worse movement control than males. Results show a moderate to a high correlation between several patient-reported and objective measurements.

Keywords: whiplash associated disorders, car-collision, neck, trauma, subacute

Procedia PDF Downloads 50
275 Environmentally Sustainable Transparent Wood: A Fully Green Approach from Bleaching to Impregnation for Energy-Efficient Engineered Wood Components

Authors: Francesca Gullo, Paola Palmero, Massimo Messori

Abstract:

Transparent wood is considered a promising structural material for the development of environmentally friendly, energy-efficient engineered components. To obtain transparent wood from natural wood materials two approaches can be used: i) bottom-up and ii) top-down. Through the second method, the color of natural wood samples is lightened through a chemical bleaching process that acts on chromophore groups of lignin, such as the benzene ring, quinonoid, vinyl, phenolics, and carbonyl groups. These chromophoric units form complex conjugate systems responsible for the brown color of wood. There are two strategies to remove color and increase the whiteness of wood: i) lignin removal and ii) lignin bleaching. In the lignin removal strategy, strong chemicals containing chlorine (chlorine, hypochlorite, and chlorine dioxide) and oxidizers (oxygen, ozone, and peroxide) are used to completely destroy and dissolve the lignin. In lignin bleaching methods, a moderate reductive (hydrosulfite) or oxidative (hydrogen peroxide) is commonly used to alter or remove the groups and chromophore systems of lignin, selectively discoloring the lignin while keeping the macrostructure intact. It is, therefore, essential to manipulate nanostructured wood by precisely controlling the nanopores in the cell walls by monitoring both chemical treatments and process conditions, for instance, the treatment time, the concentration of chemical solutions, the pH value, and the temperature. The elimination of wood light scattering is the second step in the fabrication of transparent wood materials, which can be achieved through two-step approaches: i) the polymer impregnation method and ii) the densification method. For the polymer impregnation method, the wood scaffold is treated with polymers having a corresponding refractive index (e.g., PMMA and epoxy resins) under vacuum to obtain the transparent composite material, which can finally be pressed to align the cellulose fibers and reduce interfacial defects in order to have a finished product with high transmittance (>90%) and excellent light-guiding. However, both the solution-based bleaching and the impregnation processes used to produce transparent wood generally consume large amounts of energy and chemicals, including some toxic or pollutant agents, and are difficult to scale up industrially. Here, we report a method to produce optically transparent wood by modifying the lignin structure with a chemical reaction at room temperature using small amounts of hydrogen peroxide in an alkaline environment. This method preserves the lignin, which results only deconjugated and acts as a binder, providing both a strong wood scaffold and suitable porosity for infiltration of biobased polymers while reducing chemical consumption, the toxicity of the reagents used, polluting waste, petroleum by-products, energy and processing time. The resulting transparent wood demonstrates high transmittance and low thermal conductivity. Through the combination of process efficiency and scalability, the obtained materials are promising candidates for application in the field of construction for modern energy-efficient buildings.

Keywords: bleached wood, energy-efficient components, hydrogen peroxide, transparent wood, wood composites

Procedia PDF Downloads 25
274 Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste

Authors: Kuo Chieh Chao, Thishani Amarathunga, Sangam Shrestha

Abstract:

Rainfall induced slope failures are one of the most damaging and disastrous natural hazards which occur frequently in the world. This type of sliding mainly occurs in the zone above the groundwater level in silty/sandy soils. When the rainwater begins to infiltrate into the vadose zone of the soil, the negative pore-water pressure tends to decrease and reduce the shear strength of soil material. Climate change has resulted in excessive and unpredictable rainfall in all around the world, resulting in landslides with dire consequences to human lives and infrastructure. Such problems could be overcome by examining in detail the causes for such slope failures and recommending effective repair plans for vulnerable locations by considering future climatic change. The selected area for this study is located in the road rehabilitation section from Maubara to Mota Ain road in Timor-Leste. Slope failures and cracks have occurred in 2013 and after repairs reoccurred again in 2017 subsequent to heavy rains. Both observed and future predicted climate data analyses were conducted to understand the severe precipitation conditions in past and future. Observed climate data were collected from NOAA global climate data portal. CORDEX data portal was used to collect Regional Climate Model (RCM) future predicted climate data. Both observed and RCM data were extracted to location-based data using ArcGIS Software. Linear scaling method was used for the bias correction of future data and bias corrected climate data were assigned to GeoStudio Software. Precipitations of wet seasons (December to March ) in 2007 to 2013 is higher than 2001-2006 period and it is more than nearly 40% higher precipitation than usual monthly average precipitation of 160mm.The results of seepage analyses which were carried out using SEEP/W model with observed climate, clearly demonstrated that the pore water pressure within the fill slope was significantly increased due to the increase of the infiltration during the wet season of 2013.One main Regional Climate Models (RCM) was analyzed in order to predict future climate variation under two Representative Concentration Pathways (RCPs).In the projected period of 76 years ahead from 2014, shows that the amount of precipitation is considerably getting higher in the future in both RCP 4.5 and RCP 8.5 emission scenarios. Critical pore water pressure conditions during 2014-2090 were used in order to recommend appropriate remediation methods. Results of slope stability analyses indicated that the factor of safety of the fill slopes was reduced from 1.226 to 0.793 during the dry season to wet season in 2013.Results of future slope stability which were obtained using SLOPE/W model for the RCP emissions scenarios depict that, the use of tieback anchors and geogrids in slope protection could be effective in increasing the stability of slopes to an acceptable level during the wet seasons. Moreover, methods and procedures like monitoring of slopes showing signs or susceptible for movement and installing surface protections could be used to increase the stability of slopes.

Keywords: climate change, precipitation, SEEP/W, SLOPE/W, unsaturated soil

Procedia PDF Downloads 105
273 Formulation of a Submicron Delivery System including a Platelet Lysate to Be Administered in Damaged Skin

Authors: Sergio A. Bernal-Chavez, Sergio Alcalá-Alcalá, Doris A. Cerecedo-Mercado, Adriana Ganem-Rondero

Abstract:

The prevalence of people with chronic wounds has increased dramatically by many factors including smoking, obesity and chronic diseases, such as diabetes, that can slow the healing process and increase the risk of becoming chronic. Because of this situation, the improvement of chronic wound treatments is a necessity, which has led to the scientific community to focus on improving the effectiveness of current therapies and the development of new treatments. The wound formation is a physiological complex process, which is characterized by an inflammatory stage with the presence of proinflammatory cells that create a proteolytic microenvironment during the healing process, which includes the degradation of important growth factors and cytokines. This decrease of growth factors and cytokines provides an interesting strategy for wound healing if they are administered externally. The use of nanometric drug delivery systems, such as polymer nanoparticles (NP), also offers an interesting alternative around dermal systems. An interesting strategy would be to propose a formulation based on a thermosensitive hydrogel loaded with polymeric nanoparticles that allows the inclusion and application of a platelet lysate (PL) on damaged skin, with the aim of promoting wound healing. In this work, NP were prepared by a double emulsion-solvent evaporation technique, using polylactic-co-glycolic acid (PLGA) as biodegradable polymer. Firstly, an aqueous solution of PL was emulsified into a PLGA organic solution, previously prepared in dichloromethane (DCM). Then, this disperse system (W/O) was poured into a polyvinyl alcohol (PVA) solution to get the double emulsion (W/O/W), finally the DCM was evaporated by magnetic stirring resulting in the NP formation containing PL. Once the NP were obtained, these systems were characterized by morphology, particle size, Z-potential, encapsulation efficiency (%EE), physical stability, infrared spectrum, calorimetric studies (DSC) and in vitro release profile. The optimized nanoparticles were included in a thermosensitive gel formulation of Pluronic® F-127. The gel was prepared by the cold method at 4 °C and 20% of polymer concentration. Viscosity, sol-gel phase transition, time of no flow solid-gel at wound temperature, changes in particle size by temperature-effect using dynamic light scattering (DLS), occlusive effect, gel degradation, infrared spectrum and micellar point by DSC were evaluated in all gel formulations. PLGA NP of 267 ± 10.5 nm and Z-potential of -29.1 ± 1 mV were obtained. TEM micrographs verified the size of NP and evidenced their spherical shape. The %EE for the system was around 99%. Thermograms and in infrared spectra mark the presence of PL in NP. The systems did not show significant changes in the parameters mentioned above, during the stability studies. Regarding the gel formulation, the transition sol-gel occurred at 28 °C with a time of no flow solid-gel of 7 min at 33°C (common wound temperature). Calorimetric, DLS and infrared studies corroborated the physical properties of a thermosensitive gel, such as the micellar point. In conclusion, the thermosensitive gel described in this work, contains therapeutic amounts of PL and fulfills the technological properties to be used in damaged skin, with potential application in wound healing and tissue regeneration.

Keywords: growth factors, polymeric nanoparticles, thermosensitive hydrogels, tissue regeneration

Procedia PDF Downloads 149
272 Official Seals on the Russian-Qing Treaties: Material Manifestations and Visual Enunciations

Authors: Ning Chia

Abstract:

Each of the three different language texts (Manchu, Russian, and Latin) of the 1689 Treaty of Nerchinsk bore official seals from Imperial Russia and Qing China. These seals have received no academic attention, yet they can reveal a site of a layered and shared material, cultural, political, and diplomatic world of the time in Eastern Eurasia. The very different seal selections from both empires while ratifying the Treaty of Beijing in 1860 have obtained no scholarly advertency either; they can also explicate a tremendously changed relationship with visual and material manifestation. Exploring primary sources in Manchu, Russian, and Chinese languages as well as the images of the visual seals, this study investigates the reasons and purposes of utilizing official seals for the treaty agreement. A refreshed understanding of Russian-Qing diplomacy will be developed by pursuing the following aspects: (i) Analyzing the iconographic meanings of each seal insignia and unearthing a competitive, yet symbols-delivered and seal-generated, 'dialogue' between the two empires (ii) Contextualizing treaty seals within the historical seal cultures, and discovering how domestic seal system in each empire’s political institution developed into treaty-defined bilateral relations (iii) Expounding the seal confiding in each empire’s daily governing routines, and annotating the trust in the seal as a quested promise from the opponent negotiator to fulfill the treaty terms (iv) Contrasting the two seal traditions along two civilization-lines, Eastern vs. Western, and dissecting how the two styles of seal emblems affected the cross-cultural understanding or misunderstanding between the two empires (v) Comprehending the history-making events from the substantial resources such as the treaty seals, and grasping why the seals for the two treaties, so different in both visual design and symbolic value, were chosen in the two relationship eras (vi) Correlating the materialized seal 'expression' and the imperial worldviews based on each empire’s national/or power identity, and probing the seal-represented 'rule under the Heaven' assumption of China and Russian rising role in 'European-American imperialism … centered on East Asia' (Victor Shmagin, 2020). In conclusion, the impact of official seals on diplomatic treaties needs profound knowledge in seal history, insignia culture, and emblem belief to be able to comprehend. The official seals in both Imperial Russia and Qing China belonged to a particular statecraft art in a specific material and visual form. Once utilized in diplomatic treaties, the meticulously decorated and politically institutionalized seals were transformed from the determinant means for domestic administration and social control into the markers of an empire’s sovereign authority. Overlooked in historical practice, the insignia seal created a wire of 'visual contest' between the two rival powers. Through this material lens, the scholarly knowledge of the Russian-Qing diplomatic relationship will be significantly upgraded. Connecting Russian studies, Qing/Chinese studies, and Eurasian studies, this study also ties material culture, political culture, and diplomatic culture together. It promotes the study of official seals and emblem symbols in worldwide diplomatic history.

Keywords: Russia-Qing diplomatic relation, Treaty of Beijing (1860), Treaty of Nerchinsk (1689), Treaty seals

Procedia PDF Downloads 189